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Introduction of 
Machine Learning Security Agenda

• Formulation
• How to attack?
• Sample Number?

• 1 sample attack

• Indiscriminate Poisoning Attack 
• Two objective functions

• Targeted Poisoning Attack 
• Convex

• Backdoor Attack
• Trigger

• Imperfect Knowledge
• Model / Training sample
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Poisoning Attack

• Spy is potential threat
• Hide regularly
• Damage the system sometimes
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Poisoning Attack

• How to manipulate training?
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Training

Model Decision

Reality SampleSensing

Inference

Learning



Poisoning Attack

• Process in Training
• Training Set Collection
• Model Training
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Training 
Set

Training

Poisoning Attack

• Two kinds of outcomes
• Contaminated Training Set

• A model trained by a contaminated dataset should be abnormal
• Constraints

• Number of contaminated samples
• Feature and label can be changed

• More practical
• Contaminated Trained Model

• Easier for adversaries since the learning procedure is controlled

• Concealment is an important factor to limit the change
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Poisoning Attack

• Deep Learning worsens the 
situation

• Requirement on huge 
calculation ability and large 
volume of samples

• Pre-trained models or 
collected samples provided 
by the third-party are 
commonly used

• Security is a concern
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Objective

• Indiscriminate Poisoning 
Attacks

• Downgrade the general 
performance

• Targeted Poisoning 
Attacks

• Specific unseen samples 
misclassified, the rest samples 
are classified correctly
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Campus
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University
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Target on misleading 
Emails with “SCUT” only



Formulation

• How to design a contaminated 
dataset?

• Two Characteristics:
• After obtaining a dataset, what 

action a user will take?
• Train a model w by minimizing 

the error on the contaminated 
dataset

• What is the purpose of attack?
• Downgrade the model w
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Formulation

• The objective is to create a contaminated dataset in order to 
train a model w, with the aim of maximizing the impact of the 
attack
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� : attack effectiveness of �
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e.g. accuracy drops

� : all possible contaminated sets

Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401
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�
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1. Standard Training Process
w is determined by minimizing 
the loss on “the training set”

2. Attack Impact
w also yields the large 
error on validation set

Contaminated training set

Indiscriminate 
Poisoning Attacks

Introduction of Machine Learning Security: Ch0311 Biggio B, Nelson B, Laskov P (2011) Support vector machines under adversarial label noise. In: Asian conference on machine learning
Xiao H, Xiao H, Eckert C (2012) Adversarial label flips attack on support vector machines. In: ECAI

Simple Investigation

Label Flip Attack

• Simple way to generate attack
• Train a classifier f by given a dataset D
• Modify D by changing labels of attack 

samples selected according to f
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Original Dataset (D)

f

Nearest-first Attack
Samples nearest to the 

boundary

Furthest-first Attack
Samples furthest to the 

boundary 



Biggio B, Nelson B, Laskov P (2011) Support vector machines under adversarial label noise. In: Asian conference on machine learning
Xiao H, Xiao H, Eckert C (2012) Adversarial label flips attack on support vector machines. In: ECAI

Simple Investigation

Label Flip Attack

• Simple way to generate attack
• Train a classifier f by given a dataset D
• Modify D by changing labels of attack 

samples selected according to f
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Original Dataset (D)

f

Maximize Rotation Degree Attack
Samples maximize the angle change of 

a linear classifier 

Maximize Classification Error Attack 
Samples maximize the classification 

error

Simple Investigation

Label Flip Attack

• Strong influence, may not concealed

• Simple, may not be effective
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Original Dataset (D)

f

Maximize Classification 
Error Attack 

Maximize Rotation Degree 
Attack 

Nearest-first Attack Furthest-first Attack

Simple Investigation

Label Flip Attack

• Label Flip Attack can be identified easily
• Attack samples are very different from the clean ones

• E.g. images of Dog are labeled as Cat

• Many contaminated samples are required
• Contaminated model’s performance is significantly low

• Security problems may be fixed soon
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General Formulation

Indiscriminate Poisoning Attacks

• Attack Impact: Error on unseen samples
• Validation set ( ) is used to represent unseen samples
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Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401



One Attack Sample

• Determine an optimal attack point ( ) in the training set 
( ) that maximizes classification error attack on the validation 
set ( )

• contains samples not in (server as unseen samples)
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Classification Error = 0.039
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Performance bad 
on validation set 

Poisoned training set 
(Training set + one contaminated sample)

trained on poisoned training set 

Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401

One Attack Sample

• SVM with 
a linear kernel
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Classification Error as
a function of xc

Classification Error = 0.022 Classification Error = 0.039

Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401
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One Attack Sample

• Experiments on MNIST
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Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401

Sponge Poisoning

• Accuracy is not the unique attack objective

• Energy consumption of a model is also an important 
consideration for embedded hardware systems

• Maintain the accuracy but increase the energy consumption
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)

Loss on unseen samples
Increase concealment

Energy consumption
Measure by the number of 
firing neurons in the model

Cinà, Biggio et al., Sponge Poisoning..., arXiv 2022



Sponge Poisoning
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Energy consumption
Measure by the number of 
firing neurons in the model

Cinà, Biggio et al., Sponge Poisoning..., arXiv 2022

Targeted Poisoning 
Attacks
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Targeted Poisoning Attacks

• Goal: misclassify specific samples to a desired class 
without decreasing general accuracy of the model

clean target stop sign 
classified as stop sign

clean target stop sign 
classified as speed limit
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General Formulation

Targeted Poisoning Attacks

• Accuracy on desired labels on unseen 
samples

• contains the same samples as with 
desired labels on targeted attack samples

Introduction of Machine Learning Security: Ch03 24

�
�

�

Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401
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Targeted 
Samples

True Labels
Attack Desired 

Labels

Accurate on non-targeted sample: Concealment
Accurate on targeted sample: Attack Impact



Targeted Poisoning Attacks

• Dataset: MNIST; Classifier: logistic regression.

• Attacker’s goal: having the digits “8” classified as “3”.
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Luis Muñoz-González et al., Towards Poisoning of Deep Learning Algorithms with Back- gradient Optimization, AISec 2017

Feature Collision

• Poisoning samples that collide with the target samples in 
the feature space

• Poisoning samples has similar positions but with different 
labels to the target samples 

Target Samples 

with fish Label

x x 

xFeature Mapping

Feature SpaceInput Space Poisoning samples 
with dog label 

x

Dog Region 
after poisoning
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Feature Collision

• Clean-Label Poisoning Attack 

• Misclassify a target sample as the 
desired class (class of base sample)
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Distance between
b' and t in feature space

Distance between
b' and b in input space

Clean base sample b
Label: Dog

Attack base sample b’
Label: Dog

Clean target sample t
Label: Fish

b : clean base sample

b’ : attack base sample

t : target sample

Label: Dog

Attack Model
Clean sample with 
the same class as t

Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks

Feature Collision

• AlexNet in CIFAR-10

• Poisoning images that 
cause a bird target to be 
misclassified as a dog 

• Opacity = 30%

Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks
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Feature Collision

Convex & Bullseye Polytope

• Improve attack effectiveness and transferability
• Convex Polytope: Create a convex polytope around the target
• Bullseye Polytope: Keep the target sample at the center of the 

polytope

Zhu et al., Transferable Clean-Label Poisoning Attacks on Deep Neural Nets, ICML 2019

Convex Polytope

x 

x

x

x

x

x
x

x

Bullseye PolytopeFeature Collision

xx

Drawback
• Area may be too small
• May too near to boundary

Drawback
• May too near to boundary
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Backdoor Attacks
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Backdoor Attacks

• Indiscriminate Poisoning Attack and Targeted Poisoning 
Attack may be noticed easily

• Security problem will be fixed soon

• Backdoor attack is more concealed attack
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Backdoor Attacks

• Goal: Only samples containing a trigger are misclassified 
as the desired class
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Backdoored stop sign 
(labeled as speedlimit)

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. NIPSW. MLCS, 2017

Model contaminated 
by backdoor attack

Clean Model



Backdoor Attack

• Backdoor attack is highly concealed
• Works correctly on normal samples

• Works poorly on samples with a trigger

• Trigger is the key factor
• Build a strong association between the trigger and target label in 

training

• Trigger parameters
• Location, Shape, Pixel value, Dynamic / Fixed

7
Classifier with 

backdoor attack

9

T Gu, B Dolan-Gavitt, S Garg(2017) BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. In: arXiv

trigger
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Backdoor Attack

• Combined from poisoning and 
evasion attacks

• Involve in both training and 
inference 

• Training: Build the association 
between the trigger and label

• Inference: Apply trigger to 
samples 

T Gu, B Dolan-Gavitt, S Garg(2017) BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. In: arXiv

Training

10 32 54 76 98 Label

Clean 
Training 
Samples

7Classifier with 
backdoor 

attack

9

Attack 
Samples

Inference
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Backdoor Attack

BadNets

• Original work proposing backdoor attacks, using small 
patterns as backdoor triggers

• Datasets: MNIST, Traffic signs

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine  learning model supply chain. NIPSW. MLCS, 2017
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Backdoor Attack

BadNets

• Faster-RCNN trained on a traffic-sign dataset

• Backdoor attack with a yellow sticker is 
added to a stop sign misclassified as a 
speed limit

• Accuracy 
Clean Backdoor
Model Model

• Stop Sign 89.7% 87.8%

• Speed Limit 88.3% 82.9%

• Stop Sign (Trigger) / 90.3%

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine  learning model supply chain. NIPSW. MLCS, 2017
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Backdoor Attack

Various Trigger

• Conditional Backdoor Generating Network
• GAN generates label specific triggers, easiest 

classified by the target class

• takes both the label and noise vector when 
generating new triggers

• Random Backdoor
• trigger is randomly generated

• the placement depends on the target class
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A Salem, R Wen, M Backes(2020) Dynamic Backdoor Attacks Against Machine Learning Models . In: arXiv

Backdoor Attack

Hidden Trigger

• Aims to enhance the concealment of attack

• Generated for each image by Encoder-Decoder network
• Encoder embeds a string message and minimize differences

between the input and encoded image
• Decoder aims to recover the hidden message

Introduction of Machine Learning Security: Ch03 38
Y Li, Y Li, B Wu, L Li(2023) Invisible backdoor attack with sample-specific triggers.  In: Proceedings of the IEEE/CVF International Conference on Computer Vision

Backdoor Attack

Hidden Trigger with Clean Label

• Similar idea to feature collision

• Attack Procedure
• Add trigger to plane image
• Optimize small perturbation to a 

target image aiming to collide 
contaminated image with the 
target image in the feature space

39Saha et al., Hidden Trigger Backdoor Attacks, AAAI 2020

Training

Inference
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Backdoor Attack

• Simple Trigger
• Simple, easy to associate with 

labels

• Easier to detect but strong 
influence to training

• Fancy Trigger
• Dynamic/Hidden Trigger

• May calculate for each sample

• More attack samples are 
required to build the 
association in training 

• May not be suitable to some 
scenarios
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Concealment

Attack Strength



Comparison

• Targeted Poisoning Attack 
• Features of targeted 

samples appear in nature

• Backdoor Attack
• Trigger (Special Features) 

appear artificially
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All black dogs are 
classified wrongly

Any image with the 
trigger, a red square, 
is classified wrongly

Evaluation

Introduction of Machine Learning Security: Ch0342

Evaluation

Attack Impact

• Model Performance Indicators
• Accuracy

on a set of samples 
• All samples (Indiscriminate Poisoning Attacks)
• Targeted / non-targeted sample (Targeted Poisoning Attacks)
• Samples with / without trigger (Backdoor Attacks)
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Evaluation

Attack Cost

• Ratio of attack samples to all 
training samples

• Change on attack samples
• Label : clean or contaminated

• Feature : x, FID, etc…
(refer to evaluation of evasion attack)

• Trigger : Visible
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Label
Stop Sign

(Clean Label)

Label
Speed Limit

(Contaminated Label)



Defense
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Defense of Poisoning Attack

• Poisoning Attack may involve in both training and 
inference

Training 
Set

Training

Trained Model

Unseen 
Sample

Classify

x

Indiscriminate Poisoning Attacks
Targeted Poisoning Attacks

Backdoor Attacks
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Defense of Poisoning Attack

1. Training Set Detection / 
Sanitization

2. Robust Learning

3. Trained Model Detection / 
Sanitization

4. Unseen Sample Detection / 
Sanitization

Introduction of Machine Learning Security: Ch03 47

Defense

Training Set 
Detection/Sanitization

Introduction of Machine Learning Security: Ch0348



Training Set Detection/Sanitization

• Given training samples, 
how can we know which ones are contaminated?
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Detection

Clean Attack

Ready for 
Training Sanitization Reject

Training Set

Training Set Detection/Sanitization

Reject on Negative Impact

• Recall, Indiscriminate Poisoning Attacks aim 
to reduce the general performance of a 
model

• Removing attack samples improve the 
performance

• Each sample x is evaluated by:
• Compares performance on the test set i of 

• Classifier A trained on the training set i
• Classifier B trained on the training set i + x

• If A performs better, x is removed
• If B performs better, x is maintained 

Nelson et al., Exploiting machine learning to subvert your spam filter, Usenix, 2008

Test Set 1

Training 
Set 1

Test Set 2

Training 
Set 2

Test Set 3

Training 
Set 3

Training 
Set

Test Set 1

Training 
Set i

Classifier A

Classifier B

Training 
Set i

+ x

Training Evaluate
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Training Set Detection/Sanitization

Data Complexity

• Capture the change of the 
distribution after removing a 
sample and its k nearest 
samples

• Quantify by Data complexity: 
classification difficulty

• Attack samples increase 
difficulty 

• Assumption: Poisoning 
samples are minority 
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PPK Chan, ZM He, H Li(2018) Data sanitization against adversarial label contamination based on data complexity. In: IJMLC 

Low Data 
Complexity

High Data 
Complexity Overlap

Range

Geometric Shape, 
Topological Structure, 
and Manifold DensityFeature Overlap

Class Separability

Training Set Detection/Sanitization

Data Complexity
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The bars in blue, red and green represent the values of data complexity measures for 0% (clean dataset), 
5% and 10% attack rate dataset respectively.

PPK Chan, ZM He, H Li(2018) Data sanitization against adversarial label contamination based on data complexity. In: IJMLC 



Training Set Detection/Sanitization

Data Complexity
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Training Set Detection/Sanitization

Similarity

• Poisoning points are often 
outliers

• kNN classifier is applied to 
re-assign the label for each 
training sample

OK!1 Triangle
2 Circle 3 Triangle

0 Circle

Update is 
required!

Paudice et al., Label Sanitization against Label Flipping Poisoning Attacks, Nemesis WS, 2018

Correction
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Defense

Model
Detection/Sanitization
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Model Detection/Sanitization

Abnormal Neuron: Dormancy

• Backdoored model 
misbehave on attack 
and clean samples 
differently

• Some neurons are 
dedicated to attack 
samples

• Prune the neurons that 
are dormant on clean 
inputs

Liu et al., Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural  Networks, RAID 2018
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Model Detection/Sanitization

Abnormal Neuron: Activation 

• Some neurons work differently 
from other due to backdoor 
attack

• Suspected neuron 
Identification bases on the 
significantly output change by 
changing its activation values

• Trigger Identification bases on 
an image by activating the 
suddenly jump of a suspected 
neuron
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Y Liu, WC Lee, G Tao(2019) ABS: Scanning neural networks for back-doors by artificial brain stimulation. In: ACM SIGSAC Conference on Computer and Communications Security

Model Detection/Sanitization

Trigger Identification

• Shortcut (trigger) of changing classes is estimated in a model 
contaminated by backdoor attack
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Wang B, Yao Y, Shan S, et al (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks In: SP

Model Detection/Sanitization

Trigger Identification

• 1st Step: Identify triggers for each class

• 2nd Step: Trigger candidates are significantly smaller than others 
are identified by outlier detection

• 3rd Step: Each selected trigger is applied to clean samples with 
correct label to fine-tune the model
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Wang B, Yao Y, Shan S, et al (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks In: SP

where
yt: target label
f(·): prediction function
ℓ(·): loss function
X: set of clean images
A(·): function that applies  trigger to image
∆: pattern (color)
m: mask (location and shape)

Model Detection/Sanitization

Trigger Identification
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Wang B, Yao Y, Shan S, et al (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks In: SP



Defense

Robust Training
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Robust Training

Outlier Reduction

• TRIM make the model less sensible to the outliers by 
selectively excluding the suspected samples

• Optimize iteratively:

• Choose a subset of training data I of size n that minimize the loss

• Minimize the loss on the subset I

I : Clean Sample Set (estimated)
n : size of I
N : size of full set (all samples)
 : attack ratio

The suspected samples are the N-I
training points with the highest loss

Jagielski, Biggio et al., Manipulating Machine Learning: ..., IEEE SP, 2018
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Robust Training

Outlier Reduction

Jagielski, Biggio et al., Manipulating Machine Learning: ..., IEEE SP, 2018

x x x x

y
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Defense

Test Sample
Detection/Sanitization
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Test Sample Detection/Sanitization

Perturbation

• Triggers in Backdoor Attack sample dominate the decision

• Analyze the change of outputs on perturbed samples
• Attack sample generates consistent outputs for its perturbation

Y Gao, C Xu, D Wang(2019) STRIP: A Defence Against Trojan Attacks on Deep Neural Networks . In35th Annual Computer Security Applications Conference

Yang, W., Lin, Y., Li, P., Zhou, J., & Sun, X. (2021). Rap: Robustness-aware perturbations for defending against backdoor attacks on nlp models.

NLP Digital Recognition
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Test Sample Detection/Sanitization

Heatmap

• Heatmap is generated to measure the 
contribution to the decision to detect 
trigger

• If there is only small region with a strong 
contribution, it is likely to be the trigger

• Generative Adversarial Network (GAN) is 
applied to generate the image
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