

Agenda

- Formulation
 - How to attack?
 - Sample Number?
 - 1 sample attack
- Indiscriminate Poisoning Attack
 - Two objective functions
- Targeted Poisoning Attack
 Convex
- Backdoor Attack
 - Trigger
- Imperfect Knowledge
 - Model / Training sample

Introduction of Machine Learning Security: Ch03 2

Poisoning Attacl

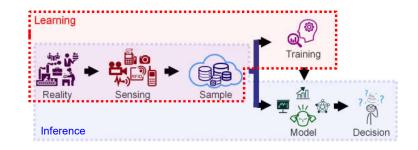
- Spy is potential threat
 - Hide regularly
 - Damage the system sometimes

Introduction of Machine Learning Security: Ch03

3

Poisoning Attack

• How to manipulate training?



- Process in Training
 - Training Set Collection
 - Model Training

Introduction of Machine Learning Security: Ch03

5

• Two kinds of outcomes

Contaminated Training Set

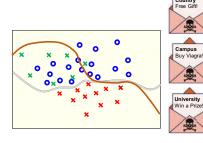
- A model trained by a contaminated dataset should be abnormal
- Constraints
 - Number of contaminated samples
 - Feature and label can be changed
- More practical
- Contaminated Trained Model
 - Easier for adversaries since the learning procedure is controlled
- Concealment is an important factor to limit the change

Introduction of Machine Learning Security: Ch03

- Deep Learning worsens the situation
 - Requirement on huge calculation ability and large volume of samples
 - Pre-trained models or collected samples provided by the third-party are commonly used
 - Security is a concern

Introduction of Machine Learning Security: Ch03

- Indiscriminate Poisoning **Attacks**
 - Downgrade the general performance



- Targeted Poisoning **Attacks**
 - Specific unseen samples misclassified, the rest samples are classified correctly

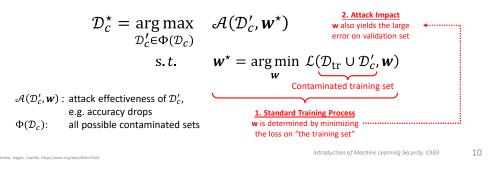
Introduction of Machine Learning Security: Ch03

- How to design a contaminated dataset?
- Two Characteristics:
 - After obtaining a dataset, what action a user will take?
 - Train a model w by minimizing the error on the contaminated dataset
 - What is the purpose of attack?
 - Downgrade the model w

Introduction of Machine Learning Security: Ch03

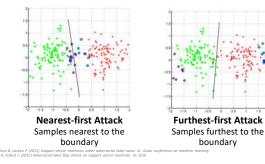
9

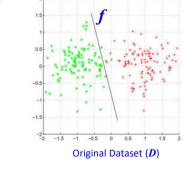
• The objective is to create a contaminated dataset \mathcal{D}_{c}^{\star} in order to train a model w, with the aim of maximizing the impact of the attack



- Simple way to generate attack
 - Train a classifier *f* by given a dataset *D*
 - Modify **D** by changing labels of attack samples selected according to f

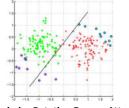
boundary





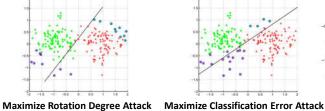
Introduction of Machine Learning Security: Ch03 12

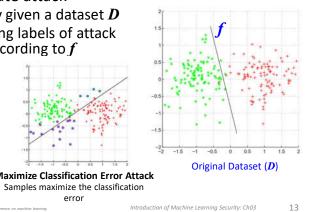
- Simple way to generate attack
 - Train a classifier *f* by given a dataset *D*
 - Modify **D** by changing labels of attack samples selected according to f



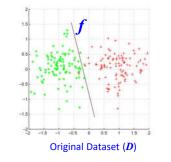
Samples maximize the angle change of

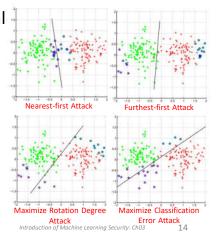
a linear classifier





- Strong influence, may not conceal
- Simple, may not be effective





Introduction of Machine Learning Security: Ch03

- Label Flip Attack can be identified easily
 - Attack samples are very different from the clean ones

error

- E.g. images of Dog are labeled as Cat
- Many contaminated samples are required
- Contaminated model's performance is significantly low
- Security problems may be fixed soon

• Attack Impact: Error on unseen samples

 $\boldsymbol{w}^{\star} = \arg\min \,\mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \mathcal{D}_{c}^{\prime}, \boldsymbol{w})$

• Validation set (\mathcal{D}_{val}) is used to represent unseen samples

$$\mathcal{D}_{c}^{\star} = \underset{\mathcal{D}_{c}^{\prime} \in \Phi(\mathcal{D}_{c})}{\operatorname{arg\,max}} \qquad \qquad \mathcal{L}(\mathcal{D}_{\operatorname{val}}, \boldsymbol{w}^{\star})$$
s. t.
$$\boldsymbol{w}^{\star} = \underset{\boldsymbol{w}}{\operatorname{arg\,min}} \quad \mathcal{L}(\mathcal{D}_{\operatorname{tr}} \cup \mathcal{D}_{c}^{\prime}, \boldsymbol{w})$$

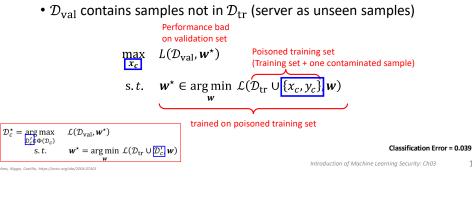
$$\mathcal{D}_{c}^{\star} = \underset{\boldsymbol{w}}{\operatorname{arg\,max}} \quad \mathcal{A}(\mathcal{D}_{c}^{\prime}, \boldsymbol{w}^{\star})$$

 $\mathcal{D}_{c}^{\prime} \in \Phi(\mathcal{D}_{c})$

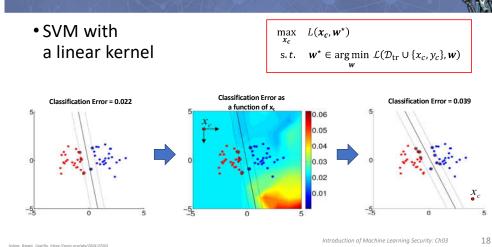
One Attack Sample

17

• Determine an optimal attack point (x_c, y_c) in the training set (\mathcal{D}_{tr}) that maximizes classification error attack on the validation set (\mathcal{D}_{val})



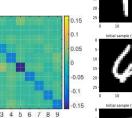
One Attack Sample

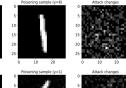


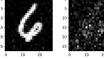
Dne Attack Sample

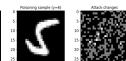
• Experiments on MNIST

Solans. Biagio. Castillo. https://grxiv.org/abs/2004.0740.









19

 $\mathcal{D}_{c}^{\star} = \arg \max$

Cinà, Biggio et al., Sponge Poi:

 $\mathcal{D}_{c}^{\prime} \in \Phi(\mathcal{D}_{c})$

s. t.

 $\mathcal{A}(\mathcal{D}_{c}', \boldsymbol{w}^{\star})$

 $w^* = \arg \min \mathcal{L}(\mathcal{D}_{tr} \cup \mathcal{D}'_{c}, w)$

Introduction of Machine Learning Security: Ch03

Sponge Poisoning

- Accuracy is not the unique attack objective
- Energy consumption of a model is also an important consideration for embedded hardware systems
- Maintain the accuracy but increase the energy consumption

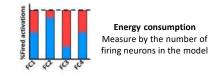
 $\max - \mathcal{L}(\mathcal{D}_{val}, \mathbf{w})$

$$\mathcal{L}(\mathcal{D}_{val}, \boldsymbol{w}^{\star}) + E(\mathcal{D}_{val}, \boldsymbol{w}^{\star})$$

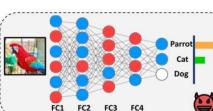
Loss on unseen samples Increase concealment **Energy consumption** Measure by the number of firing neurons in the model

Introduction of Machine Learning Security: Ch03

Sponge Poisoning



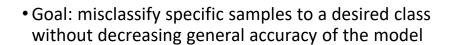


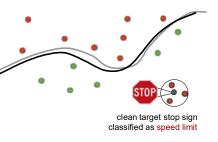


Cinò, Biggio et al., Sponge Poisoning..., arXiv 2022

Targeted Poisoning Attacks

Targeted Poisoning Attacks





Introduction of Machine Learning Security: Ch03

Targeted Poisoning Attack

- Accuracy on desired labels on unseen samples
 - \mathcal{D}'_{val} contains the same samples as \mathcal{D}_{val} with desired labels on targeted attack samples

 \mathcal{D}_{val}

True Labels

Introduction of Machine Learning Security: Ch03

 \mathcal{D}'_{val}

Attack Desired

Labels

9.

5

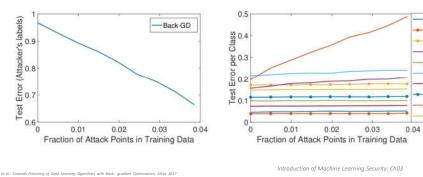
<u>.</u>

24

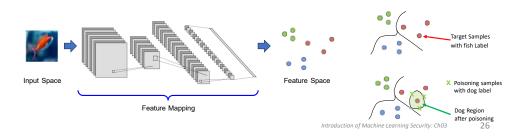
Solans, Bigglo, Castillo, https://anxiv.org/abs/20

25

- Dataset: MNIST; Classifier: logistic regression.
- Attacker's goal: having the digits "8" classified as "3".



- Poisoning samples that collide with the target samples in the feature space
 - Poisoning samples has similar positions but with different labels to the target samples



- Clean-Label Poisoning Attack
- Misclassify a target sample as the desired class (class of base sample)

$\operatorname{argmin} \ f(\mathbf{b}') - f(\mathbf{t}) \ _2^2$	$+\beta \parallel \mathbf{b}' - \mathbf{b} \parallel_2^2$	
x	\smile	
Distance between b' and t in feature space	Distance between b' and b in input space	

b : clean base sample b' : attack base sample t : target sample

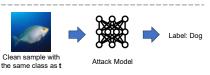
Clean base sample b

Label: Dog

Attack base sample h Label: Dog

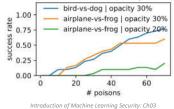
Clean target sample t Label: Fish

27



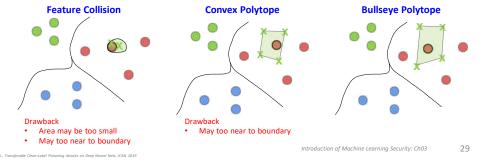
Introduction of Machine Learning Security: Ch03

- AlexNet in CIFAR-10
- Poisoning images that cause a bird target to be misclassified as a dog
- Opacity = 30%



Convex & Bullseye Polytope

- Improve attack effectiveness and transferability
- Convex Polytope: Create a convex polytope around the target
- Bullseye Polytope: Keep the target sample at the center of the polytope



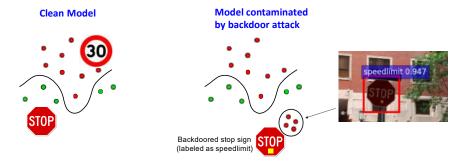
Backdoor Attacks

31

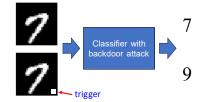
- Indiscriminate Poisoning Attack and Targeted Poisoning Attack may be noticed easily
 - Security problem will be fixed soon
- Backdoor attack is more concealed attack

Backdoor Attacks

• Goal: Only samples containing a trigger are misclassified as the desired class



- Backdoor attack is highly concealed
 - Works correctly on normal samples
 - Works poorly on samples with a trigger

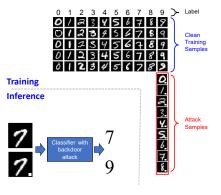


Introduction of Machine Learning Security: Ch03

33

- Trigger is the key factor
 - Build a strong association between the trigger and target label in training
- Trigger parameters
 - Location, Shape, Pixel value, Dynamic / Fixed

- Combined from poisoning and evasion attacks
 - Involve in both training and inference
 - Training: Build the association between the trigger and label
 - Inference: Apply trigger to samples



Introduction of Machine Learning Security: Ch03 34

- Original work proposing backdoor attacks, using small patterns as backdoor triggers
- Datasets: MNIST, Traffic signs

Original image Pattern Backdoor

Introduction of Machine Learning Security: Ch03

35

- Faster-RCNN trained on a traffic-sign dataset
- Backdoor attack with a yellow sticker is added to a stop sign misclassified as a speed limit
- Accuracy

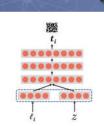
		Backdoor Model
 Stop Sign 	89.7%	87.8%
 Speed Limit 	88.3%	82.9%
 Stop Sign (Trigger) 	/	90.3%

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. NIPSW. MLCS, 201

Introduction of Machine Learning Security: Ch03

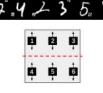
Backdoor Attack Various Trigger

- Conditional Backdoor Generating Network
 - GAN generates label specific triggers, easiest classified by the target class
 - takes both the label and noise vector when generating new triggers



Random Backdoor

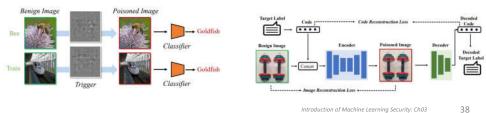
- trigger is randomly generated
- the placement depends on the target class



Introduction of Machine Learning Security: Ch03 37

Hidden Trigger

- Aims to enhance the concealment of attack
- Generated for each image by Encoder-Decoder network
 - Encoder embeds a string message and minimize differences between the input and encoded image
 - Decoder aims to recover the hidden message



Backdoor Attack Hidden Trigger with Clean La

- Similar idea to feature collision
- Attack Procedure
 - Add trigger to plane image
 - Optimize small perturbation to a target image aiming to collide contaminated image with the target image in the feature space

Clean Source + Patched Source Clean Target Dissoned Target Poisoned Target Poisoned Target Poisoned Target Poisoned Target Poisoned Target Dissoned Target Poisoned Target Dissoned Target Poisoned Poison

39

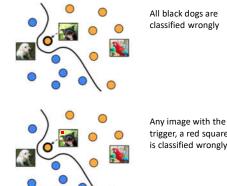
Backdoor Attack

- Simple Trigger
 - Simple, easy to associate with labels
 - Easier to detect but strong influence to training
- Fancy Trigger
 - Dynamic/Hidden Trigger
 - May calculate for each sample
 - More attack samples are required to build the association in training
 - May not be suitable to some scenarios

Attack Strength Concealment

Introduction of Machine Learning Security: Ch03 40

- Targeted Poisoning Attack
 - Features of targeted samples appear in nature
- Backdoor Attack
 - Trigger (Special Features) appear artificially



trigger, a red square, is classified wrongly

Introduction of Machine Learning Security: Ch03 41

- Model Performance Indicators
 - Accuracy
- on a set of samples
 - All samples (Indiscriminate Poisoning Attacks)
 - Targeted / non-targeted sample (Targeted Poisoning Attacks)
 - Samples with / without trigger (Backdoor Attacks)

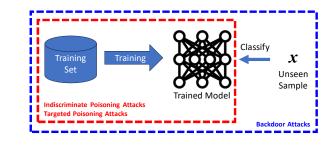
- Ratio of attack samples to all training samples
- Change on attack samples
 - Label : clean or contaminated
 - Feature : Δx , FID, etc... (refer to evaluation of evasion attack)

Label Stop Sign Speed Limit (Clean Label) (Contaminated Label)

• Trigger : Visible

Defense of Poisoning Attacl

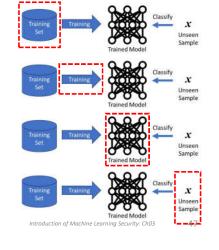
• Poisoning Attack may involve in both training and inference



Introduction of Machine Learning Security: Ch03 46

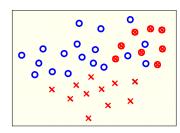
Defense of Poisoning Attack

- 1. Training Set Detection / Sanitization
- 2. Robust Learning
- 3. Trained Model Detection / Sanitization
- 4. Unseen Sample Detection / Sanitization



Training Set Detection/Sanitization

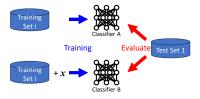
• Given training samples, how can we know which ones are contaminated?



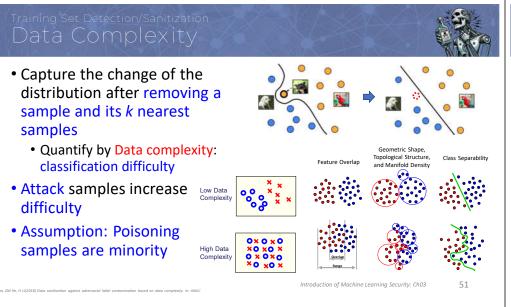
Introduction of Machine Learning Security: Ch03 49

Training Set Detection/Sanitization Reject on Negative Impac

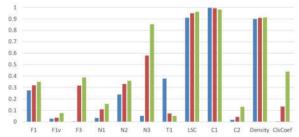
- Recall, Indiscriminate Poisoning Attacks aim to reduce the general performance of a model
- Removing attack samples improve the performance
- Each sample x is evaluated by:
 - Compares performance on the test set *i* of
 - Classifier A trained on the training set *i*
 - Classifier B trained on the training set i + x
 - If A performs better, *x* is removed
 - If B performs better, *x* is maintained



Introduction of Machine Learning Security: Ch03 50



Training Set Detection/Sanitization

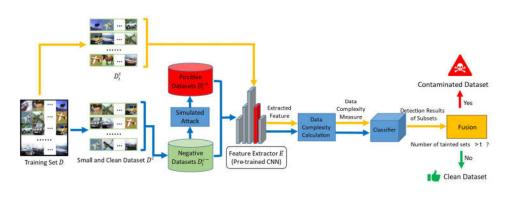


■0% **■**5% **■**10%

The bars in blue, red and green represent the values of data complexity measures for 0% (clean dataset), 5% and 10% attack rate dataset respectively.

PPK Chan, ZM He, H Li(2018) Data sanitization against adversarial label contamination based on data complexity. In: IJMLC

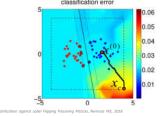
Training Set Detection/Sanitization Data Complexity

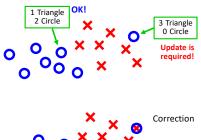


Introduction of Machine Learning Security: Ch03 53

Similarity

- Poisoning points are often outliers
- kNN classifier is applied to re-assign the label for each training sample classification error

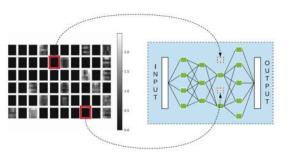




Introduction of Machine Learning Security: Ch03 54

Abnormal Neuron: Dormanc

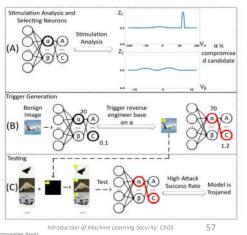
- Backdoored model misbehave on attack and clean samples differently
- Some neurons are dedicated to attack samples
- Prune the neurons that are **dormant** on clean inputs



Introduction of Machine Learning Security: Ch03 56

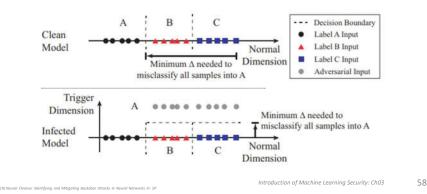
Abnormal Neuron: Activation

- Some neurons work differently from other due to backdoor attack
- Suspected neuron Identification bases on the significantly output change by changing its activation values
- Trigger Identification bases on an image by activating the suddenly jump of a suspected neuron



Trigger Identification

• Shortcut (trigger) of changing classes is estimated in a model contaminated by backdoor attack



Trigger Identification

• 1st Step: Identify triggers for each class $\min_{m,\Delta} \quad \ell(y_t, f(A(x, m, \Delta))) + \lambda \cdot |m|$

for $x \in X$

Wang B, Yao Y, Shan S, et al (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural N

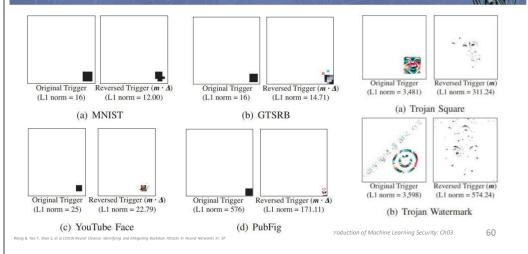
$$A(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{\Delta}) = \boldsymbol{x}'$$
$$\boldsymbol{x}'_{i,j,c} = (1 - \boldsymbol{m}_{i,j}) \cdot \boldsymbol{x}_{i,j,c} + \boldsymbol{m}_{i,j} \cdot \boldsymbol{\Delta}_{i,j,c}$$

59

where y_i : target label $f(\cdot)$: prediction function $\mathfrak{E}(\cdot)$: loss function χ : set of clean images $A(\cdot)$: function that applies trigger to image Δ : pattern (color)

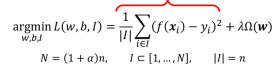
- m: mask (location and shape)
- 2nd Step: Trigger candidates are significantly smaller than others are identified by outlier detection
- 3rd Step: Each selected trigger is applied to clean samples with correct label to fine-tune the model

Introduction of Machine Learning Security: Ch03



Outlier Reduction

- TRIM make the model less sensible to the outliers by selectively excluding the suspected samples
- Optimize iteratively: The suspected samples are the N-I training points with the highest loss



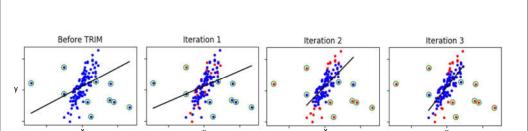
 $\begin{array}{l} I: Clean \ Sample \ Set \ (estimated) \\ n: size \ of \ I \\ N: size \ of \ full \ set \ (all \ samples) \\ \alpha: attack \ ratio \end{array}$

62

Introduction of Machine Learning Security: Ch03

- Choose a subset of training data I of size n that minimize the loss
- Minimize the loss on the subset I

Outlier Reductio

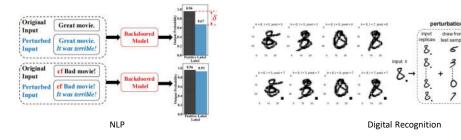


gielski, Biggio et al., Manipulating Machine Learning: ..., IEEE SP, 2018

Test Sample Detection/Sanitization

65

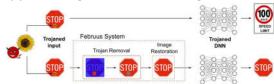
- Triggers in Backdoor Attack sample dominate the decision
- Analyze the change of outputs on perturbed samples
 - Attack sample generates consistent outputs for its perturbation



Yang, W., Lin, Y., Li, P., Zhou, J., & Sun, X. (2021). Rap: Robustness-aware perturbations for defending against backdoor attacks on nip models. Y Goo, C.Xu, D. Wang(2019) STRIP: A Defence Against Trajan Attacks on Deep Neural Networks . In35th Annual Computer Security Applications Conference Introduction of Machine Learning Security: Ch03

Test Sample Detection/San Heatmap

- Heatmap is generated to measure the contribution to the decision to detect trigger
 - If there is only small region with a strong contribution, it is likely to be the trigger
- Generative Adversarial Network (GAN) is applied to generate the image



Introduction of Machine Learning