

Agenda

- Formulation
 - How to attack?
 - Sample Number?
 - 1 sample attack
- Indiscriminate Poisoning Attack
 - Two objective functions
- Targeted Poisoning Attack
 - Convex
- Backdoor Attack
 - Trigger
- Imperfect Knowledge
 - Model / Training sample

Poisoning Attack

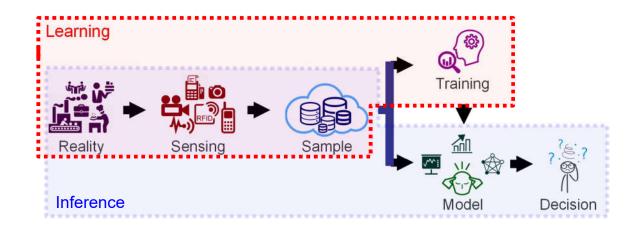
- Spy is potential threat
 - Hide regularly
 - Damage the system sometimes

Introduction of Machine Learning Security: Ch03

2

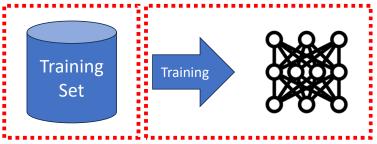
Poisoning Attack

• How to manipulate training?



Poisoning Attack

- Process in Training
 - Training Set Collection
 - Model Training



Introduction of Machine Learning Security: Ch03

5

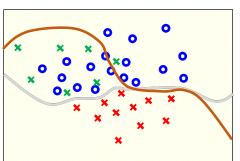
Poisoning Attack

- Two kinds of outcomes
 - Contaminated Training Set
 - A model trained by a contaminated dataset should be abnormal
 - Constraints
 - Number of contaminated samples
 - · Feature and label can be changed
 - More practical
 - Contaminated Trained Model
 - Easier for adversaries since the learning procedure is controlled
- Concealment is an important factor to limit the change

- Deep Learning worsens the situation
 - Requirement on huge calculation ability and large volume of samples
 - Pre-trained models or collected samples provided by the third-party are commonly used
 - Security is a concern

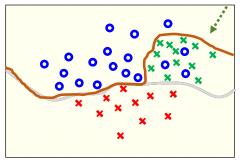
Introduction of Machine Learning Security: Ch03

- Indiscriminate Poisoning **Attacks**
 - Downgrade the general performance



- Targeted Poisoning **Attacks**
 - Specific unseen samples misclassified, the rest samples are classified correctly

Target on misleading Emails with "SCUT" only



Formulation

- How to design a contaminated dataset?
- Two Characteristics:
 - After obtaining a dataset, what action a user will take?
 - Train a model w by minimizing the error on the contaminated dataset
 - What is the purpose of attack?
 - Downgrade the model w

Introduction of Machine Learning Security: Ch03

9

Formulation

• The objective is to create a contaminated dataset \mathcal{D}_c^\star in order to train a model w, with the aim of maximizing the impact of the attack

$$\mathcal{D}_c^{\star} = \underset{\mathcal{D}_c' \in \Phi(\mathcal{D}_c)}{\operatorname{arg \, max}} \quad \mathcal{A}(\mathcal{D}_c', \boldsymbol{w}^{\star}) \quad \overset{\text{2. Attack Impact}}{\underset{\text{w also yields the large error on validation set}}}$$
 s. t . $\boldsymbol{w}^{\star} = \underset{\boldsymbol{w}}{\operatorname{arg \, min}} \quad \mathcal{L}(\mathcal{D}_{\operatorname{tr}} \cup \mathcal{D}_c', \boldsymbol{w})$

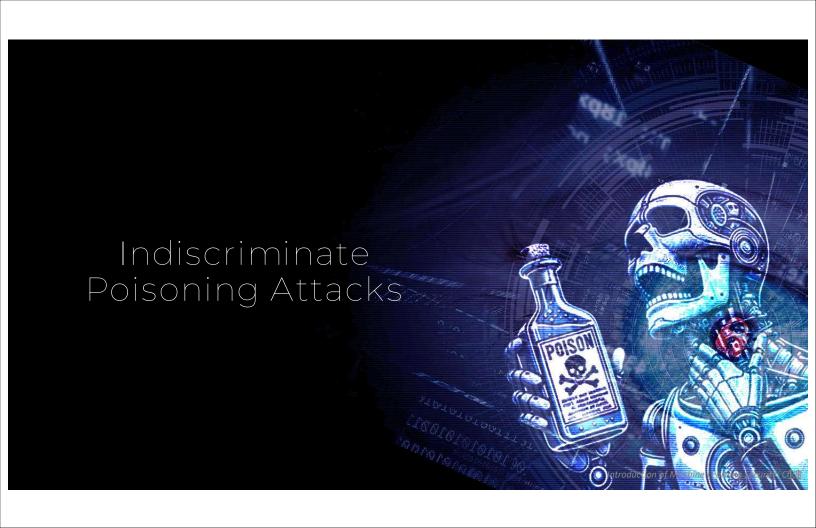
 $\mathcal{A}(\mathcal{D}_c', \mathbf{w})$: attack effectiveness of \mathcal{D}_c' ,

e.g. accuracy drops

 $\Phi(\mathcal{D}_c)$: all possible contaminated sets

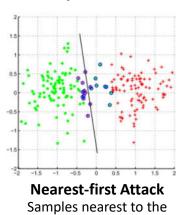
1. Standard Training Process

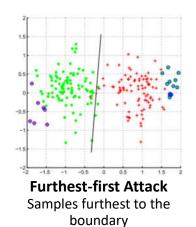
w is determined by minimizing the loss on "the training set"

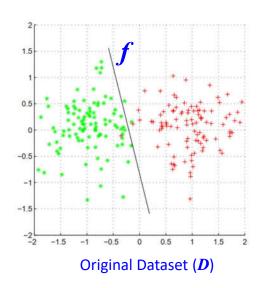


Simple Investigation Label Flip Attack

- Simple way to generate attack
 - ullet Train a classifier f by given a dataset $oldsymbol{D}$
 - Modify $m{D}$ by changing labels of attack samples selected according to $m{f}$





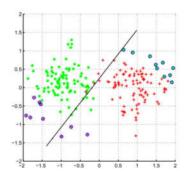


boundary

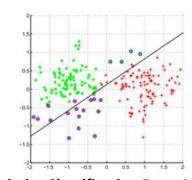
Simple Investigation

Label Flip Attack

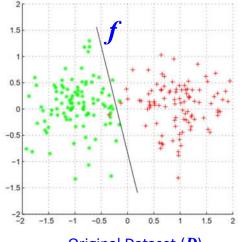
- Simple way to generate attack
 - ullet Train a classifier f by given a dataset $oldsymbol{D}$
 - ullet Modify $oldsymbol{D}$ by changing labels of attack samples selected according to $oldsymbol{f}$



Maximize Rotation Degree Attack Samples maximize the angle change of a linear classifier



Maximize Classification Error Attack
Samples maximize the classification
error



Original Dataset (D)

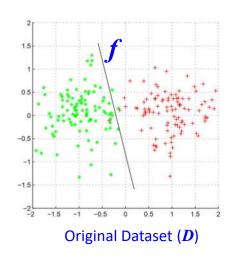
Introduction of Machine Learning Security: Ch03

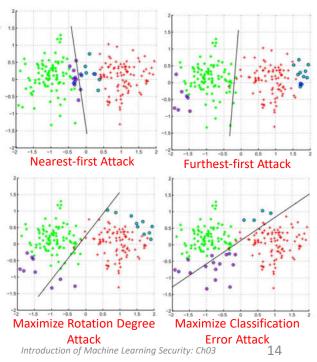
13

lao H, Xiao H, Eckert C (2012) Adversarial label flips attack on support vector machines. In: ECAI

Simple Investigation | ahe| Flin Attack

- Strong influence, may not conceal
- Simple, may not be effective





Simple Investigatior

Label Flip Attack

- Label Flip Attack can be identified easily
 - Attack samples are very different from the clean ones
 - E.g. images of Dog are labeled as Cat
 - Many contaminated samples are required
 - Contaminated model's performance is significantly low
- Security problems may be fixed soon

Introduction of Machine Learning Security: Ch03

15

General Formulation Indiscriminate Poisoning Attacks

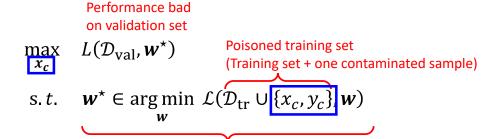
- Attack Impact: Error on unseen samples
 - ullet Validation set (\mathcal{D}_{val}) is used to represent unseen samples

$$\mathcal{D}_{c}^{\star} = \underset{\mathcal{D}_{c}' \in \Phi(\mathcal{D}_{c})}{\operatorname{arg \, max}} \quad \mathcal{L}(\mathcal{D}_{\operatorname{val}}, \boldsymbol{w}^{\star})$$
s. t.
$$\boldsymbol{w}^{\star} = \underset{\boldsymbol{w}}{\operatorname{arg \, min}} \quad \mathcal{L}(\mathcal{D}_{\operatorname{tr}} \cup \mathcal{D}_{c}', \boldsymbol{w})$$

$$\mathcal{D}_{c}^{\star} = \underset{\mathcal{D}_{c}' \in \Phi(\mathcal{D}_{c})}{\operatorname{arg max}} \quad \mathcal{A}(\mathcal{D}_{c}', \boldsymbol{w}^{\star})$$
s. t.
$$\boldsymbol{w}^{\star} = \underset{\boldsymbol{w}}{\operatorname{arg min}} \quad \mathcal{L}(\mathcal{D}_{\operatorname{tr}} \cup \mathcal{D}_{c}', \boldsymbol{w})$$

One Attack Sample

- Determine an optimal attack point (x_c, y_c) in the training set (\mathcal{D}_{tr}) that maximizes classification error attack on the validation set (\mathcal{D}_{val})
 - \mathcal{D}_{val} contains samples not in \mathcal{D}_{tr} (server as unseen samples)



$$\mathcal{D}_{c}^{\star} = \underset{\mathcal{D}_{c}' \notin \Phi(\mathcal{D}_{c})}{\operatorname{arg \, max}} \qquad \mathcal{L}(\mathcal{D}_{\operatorname{val}}, \boldsymbol{w}^{\star})$$
s. t.
$$\boldsymbol{w}^{\star} = \underset{\boldsymbol{w}}{\operatorname{arg \, min}} \ \mathcal{L}(\mathcal{D}_{\operatorname{tr}} \cup \mathcal{\overline{D}_{c}'} \boldsymbol{w})$$

trained on poisoned training set

Classification Error = 0.039

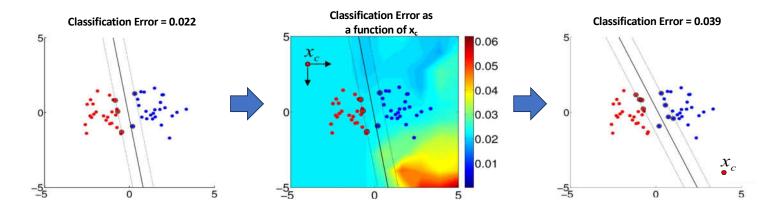
Introduction of Machine Learning Security: Ch03

17

One Attack Sample

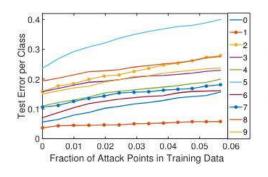
 SVM with a linear kernel

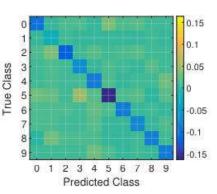
$$\max_{\boldsymbol{x}_c} \quad L(\boldsymbol{x}_c, \boldsymbol{w}^*)$$
s. t.
$$\boldsymbol{w}^* \in \operatorname*{arg\,min}_{\boldsymbol{w}} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \{\boldsymbol{x}_c, \boldsymbol{y}_c\}, \boldsymbol{w})$$

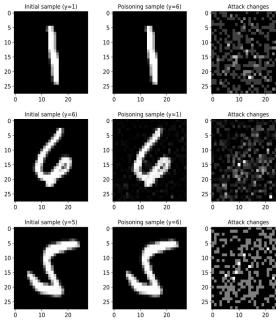


One Attack Sample

Experiments on MNIST







Introduction of Machine Learning Security: Ch03

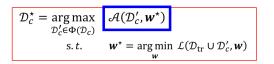
19

Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401

Sponge Poisoning

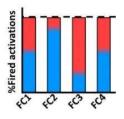
- Accuracy is not the unique attack objective
- Energy consumption of a model is also an important consideration for embedded hardware systems
- Maintain the accuracy but increase the energy consumption

$$\begin{array}{cccc} \text{max} & -\mathcal{L}(\mathcal{D}_{\text{val}}, \boldsymbol{w}^{\star}) & + & E(\mathcal{D}_{\text{val}}, \boldsymbol{w}^{\star}) \\ & & \text{Loss on unseen samples} & & \text{Energy consumption} \\ & & \text{Increase concealment} & & \text{Measure by the number of} \end{array}$$



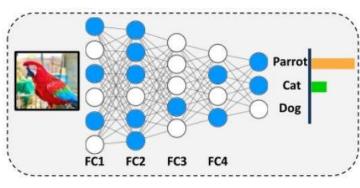
firing neurons in the model

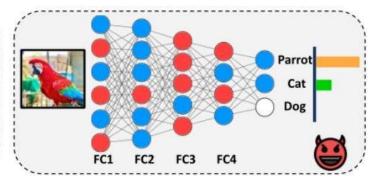
Sponge Poisoning



Energy consumption

Measure by the number of firing neurons in the model





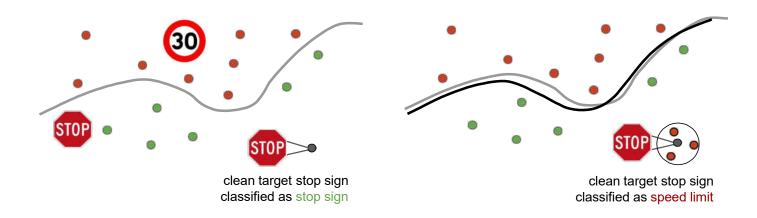
Introduction of Machine Learning Security: Ch03

21

Cinà, Biggio et al., Sponge Poisoning..., arXiv 2022

Targeted Poisoning Attacks

 Goal: misclassify specific samples to a desired class without decreasing general accuracy of the model



Introduction of Machine Learning Security: Ch03

23

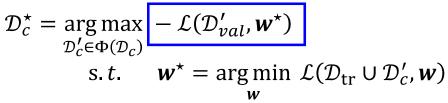
General Formulation Targeted Poisoning Attacks

 \mathcal{D}'_{val}

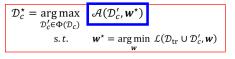
Attack Desired

Labels

- Accuracy on desired labels on unseen samples
 - \mathcal{D}'_{val} contains the same samples as \mathcal{D}_{val} with desired labels on targeted attack samples

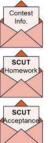


Accurate on non-targeted sample: Concealment Accurate on targeted sample: Attack Impact



Solans, Biggio, Castillo, https://arxiv.org/abs/2004.07401

Targeted Samples scut

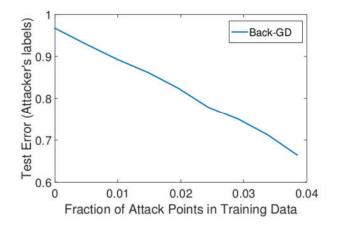


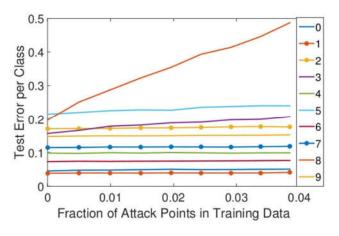
 \mathcal{D}_{val}

True Labels

Targeted Poisoning Attacks

- Dataset: MNIST; Classifier: logistic regression.
- Attacker's goal: having the digits "8" classified as "3".





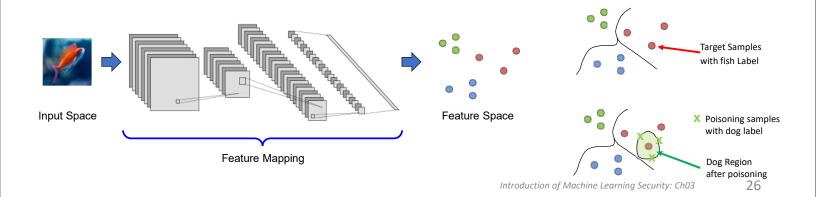
Introduction of Machine Learning Security: Ch03

25

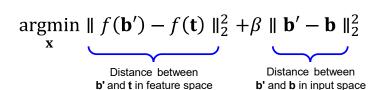
uis Muñoz-González et al., Towards Poisoning of Deep Learning Algorithms with Back- gradient Optimization, AlSec 2017

Feature Collision

- Poisoning samples that collide with the target samples in the feature space
 - Poisoning samples has similar positions but with different labels to the target samples

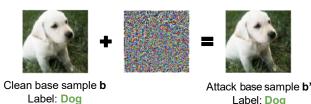


- Clean-Label Poisoning Attack
- Misclassify a target sample as the desired class (class of base sample)



b : clean base sample b': attack base sample

t: target sample



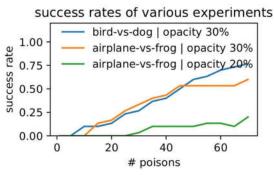
Clean sample with the same class as t

Introduction of Machine Learning Security: Ch03

27

Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks

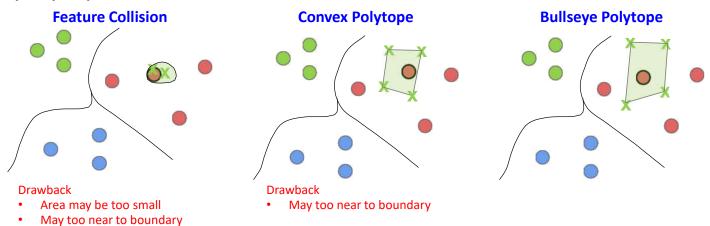
- AlexNet in CIFAR-10
- Poisoning images that cause a bird target to be misclassified as a dog
- Opacity = 30%



Feature Collision

Convex & Bullseye Polytope

- Improve attack effectiveness and transferability
- Convex Polytope: Create a convex polytope around the target
- Bullseye Polytope: Keep the target sample at the center of the polytope



Thu et al., Transferable Clean-Label Poisoning Attacks on Deep Neural Nets, ICML 2019

Introduction of Machine Learning Security: Ch03

29

Backdoor Attacks

- Indiscriminate Poisoning Attack and Targeted Poisoning Attack may be noticed easily
 - Security problem will be fixed soon
- Backdoor attack is more concealed attack

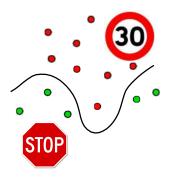
Introduction of Machine Learning Security: Ch03

31

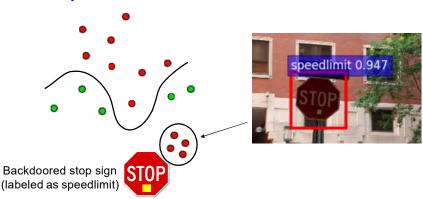
Backdoor Attacks

 Goal: Only samples containing a trigger are misclassified as the desired class

Clean Model

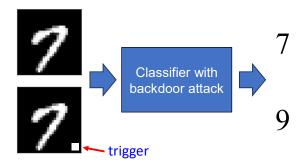


Model contaminated by backdoor attack



Backdoor Attack

- Backdoor attack is highly concealed
 - Works correctly on normal samples
 - Works poorly on samples with a trigger



- Trigger is the key factor
 - Build a strong association between the trigger and target label in training
- Trigger parameters
 - Location, Shape, Pixel value, Dynamic / Fixed

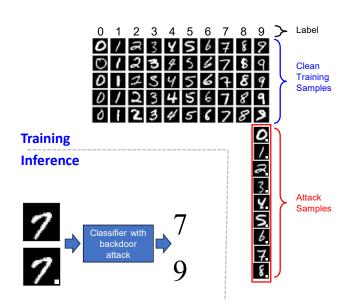
Introduction of Machine Learning Security: Ch03

33

T Gu, B Dolan-Gavitt, S Garg(2017) BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. In: arXiv

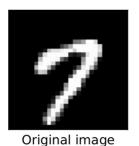
Backdoor Attack

- Combined from poisoning and evasion attacks
 - Involve in both training and inference
 - Training: Build the association between the trigger and label
 - Inference: Apply trigger to samples

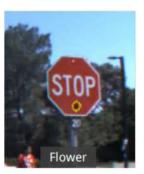


Backdoor Attack BadNets

- Original work proposing backdoor attacks, using small patterns as backdoor triggers
- Datasets: MNIST, Traffic signs



Pattern Backdoor



Introduction of Machine Learning Security: Ch03

35

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. NIPSW. MLCS, 2017

Backdoor Attack Rad Nets

8

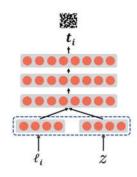
- Faster-RCNN trained on a traffic-sign dataset
- Backdoor attack with a yellow sticker is added to a stop sign misclassified as a speed limit
- Accuracy

	Clean	Backdoor
	Model	Model
Stop Sign	89.7%	87.8%
 Speed Limit 	88.3%	82.9%
 Stop Sign (Trigger) 	/	90.3%

Backdoor Attack

Various Trigger

- Conditional Backdoor Generating Network
 - GAN generates label specific triggers, easiest classified by the target class
 - takes both the label and noise vector when generating new triggers



- Random Backdoor
 - trigger is randomly generated
 - the placement depends on the target class

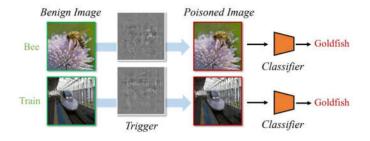
Introduction of Machine Learning Security: Ch03

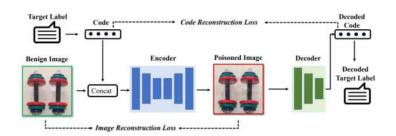
37

A Salem, R Wen, M Backes(2020) Dynamic Backdoor Attacks Against Machine Learning Models . In: arXiv

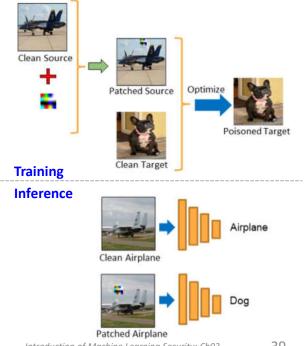
Backdoor Attack Hidden Trigger

- Aims to enhance the concealment of attack
- Generated for each image by Encoder-Decoder network
 - Encoder embeds a string message and minimize differences between the input and encoded image
 - Decoder aims to recover the hidden message





- Similar idea to feature collision
- Attack Procedure
 - Add trigger to plane image
 - Optimize small perturbation to a target image aiming to collide contaminated image with the target image in the feature space



Saha et al., Hidden Trigger Backdoor Attacks, AAAI 2020

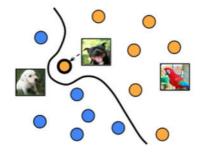
Introduction of Machine Learning Security: Ch03

- Simple Trigger
 - Simple, easy to associate with labels
 - Easier to detect but strong influence to training
- Fancy Trigger
 - Dynamic/Hidden Trigger
 - May calculate for each sample
 - More attack samples are required to build the association in training
 - May not be suitable to some scenarios

Concealmen

Comparison

- Targeted Poisoning Attack
 - Features of targeted samples appear in nature



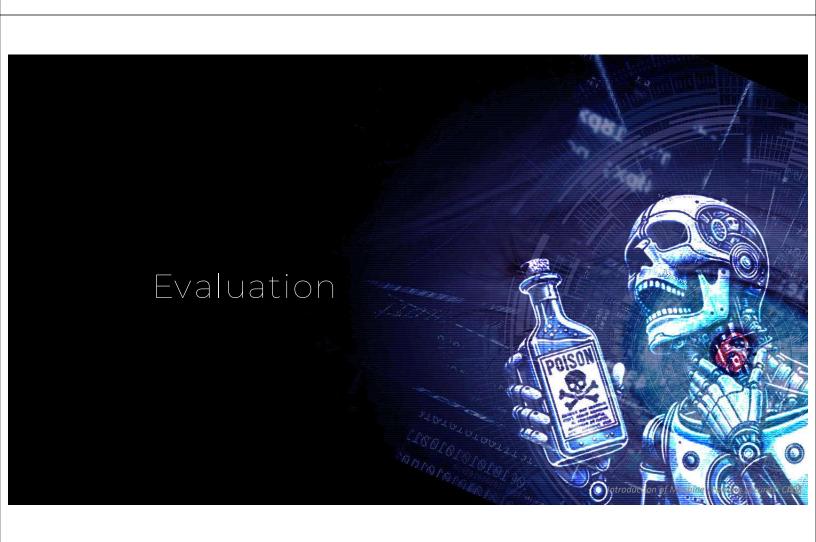
All black dogs are classified wrongly

- Backdoor Attack
 - Trigger (Special Features) appear artificially

Any image with the trigger, a red square, is classified wrongly

Introduction of Machine Learning Security: Ch03

41



Attack Impact

- Model Performance Indicators
 - Accuracy

on a set of samples

- All samples (Indiscriminate Poisoning Attacks)
- Targeted / non-targeted sample (Targeted Poisoning Attacks)
- Samples with / without trigger (Backdoor Attacks)

Introduction of Machine Learning Security: Ch03

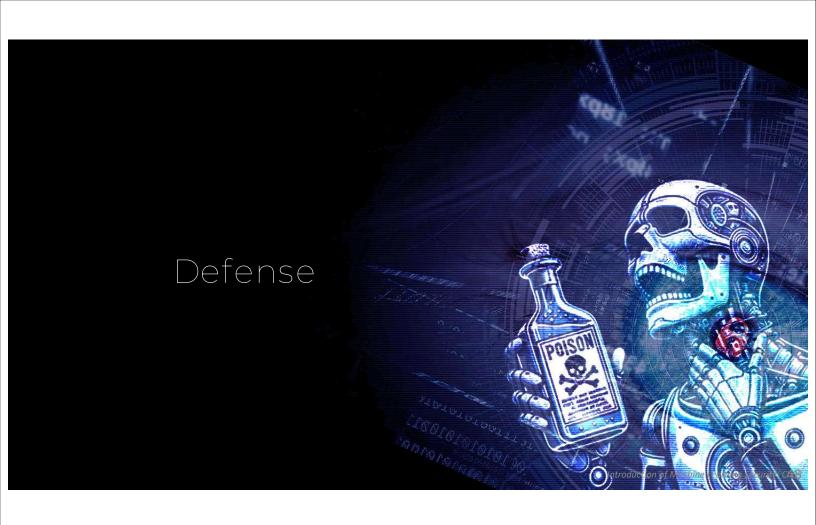
43

Attack Cost

- Ratio of attack samples to all training samples
- Change on attack samples
 - Label: clean or contaminated
 - Feature : Δx , FID, etc... (refer to evaluation of evasion attack)
 - Trigger : Visible

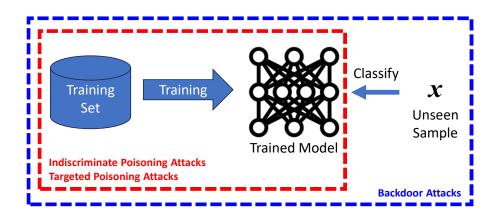
Label Stop Sign (Clean Label)

Label
Speed Limit
(Contaminated Label)



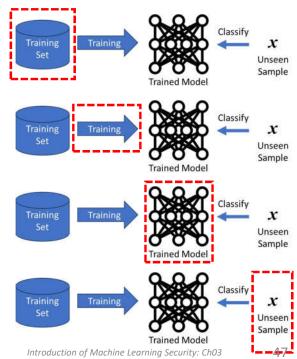
Defense of Poisoning Attack

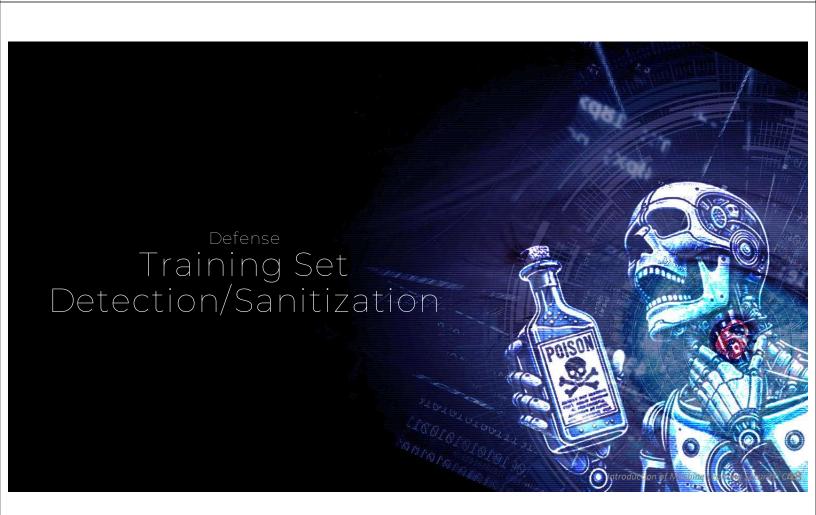
Poisoning Attack may involve in both training and inference



Defense of Poisoning Attack

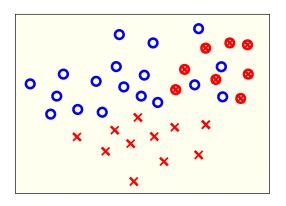
- Training Set Detection / Sanitization
- 2. Robust Learning
- 3. Trained Model Detection / Sanitization
- 4. Unseen Sample Detection / Sanitization





Training Set Detection/Sanitization

Given training samples,
 how can we know which ones are contaminated?



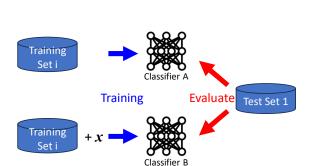
Introduction of Machine Learning Security: Ch03

49

Training Set Detection/Sanitization Reject on Negative Impact

Test Set 3

- Recall, Indiscriminate Poisoning Attacks aim to reduce the general performance of a model
- Removing attack samples improve the performance
- Each sample x is evaluated by:
 - Compares performance on the test set i of
 - Classifier A trained on the training set i
 - Classifier B trained on the training set i + x
 - If A performs better, x is removed
 - If B performs better, x is maintained



Training Set

Set 2

Test Set 2

Set 1

Test Set 1

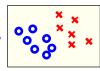
Training Set Detection/Sanitization Data Complexity

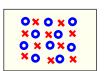
- Capture the change of the distribution after removing a sample and its k nearest samples
 - Quantify by Data complexity: classification difficulty
- Attack samples increase difficulty
- Assumption: Poisoning samples are minority

PPK Chan, ZM He. H Li(2018) Data sanitization against adversarial label contamination based on data complexity, In: UMLC

Low Data Complexity

High Data Complexity





Feature Overlap

Geometric Shape, Topological Structure,

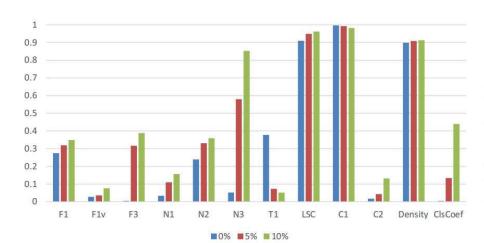
and Manifold Density

Class Separability

Introduction of Machine Learning Security: Ch03

51

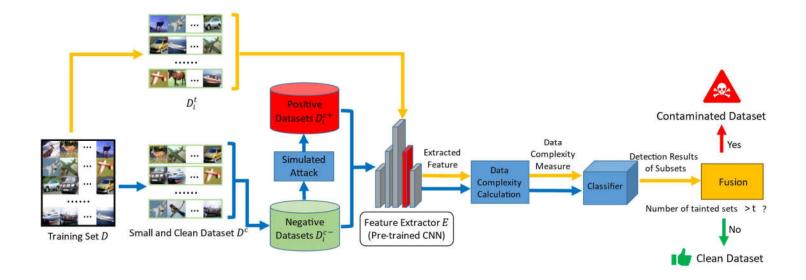
Training Set Detection/Sanitization Data Complexity



The bars in blue, red and green represent the values of data complexity measures for 0% (clean dataset),	
5% and 10% attack rate dataset respectively.	

Category	Measure	Description	Tendency(DC
Feature-based measures F1 [41] Fature-based measures F3 [40]	F1 (41)	Fisher's discriminant ratio	1
	Fly [H]	Directional-vector Fisher's discriminant ratio	†
	F3 (40)	Maximum (individual) feature efficiency	1
Neighborhood measures N2 E N3 E T1 C	N1 [43]	Fraction of borderline points	1
	N2 42	Ratio of intra/extra Class nearest neighbor distance	+
	N3 46	Error rate of the nearest neighbor classifier	†
	T1 (20)	Fraction of hyperspheres covering data	1
	LSC [47]	Local set average cardinality	1
	C1 (43)	Entropy of class proportions	4
	C2 44	Imbalance ratio	1
	Density 45	Average density of the network	1
	ClsCoef [45]	Clustering Coefficient	1

Training Set Detection/Sanitization Data Complexity

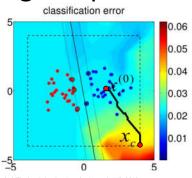


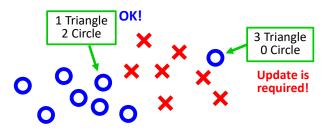
Introduction of Machine Learning Security: Ch03

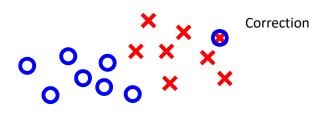
53

Training Set Detection/Sanitization Similarity

- Poisoning points are often outliers
- kNN classifier is applied to re-assign the label for each training sample

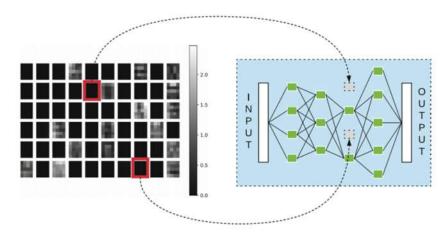






Model Detection/Sanitization Abnormal Neuron: Dormancy

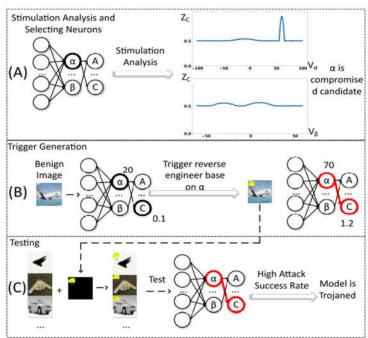
- Backdoored model misbehave on attack and clean samples differently
- Some neurons are dedicated to attack samples
- Prune the neurons that are dormant on clean inputs



Model Detection/Sanitization

Abnormal Neuron: Activation

- Some neurons work differently from other due to backdoor attack
- Suspected neuron
 Identification bases on the significantly output change by changing its activation values
- Trigger Identification bases on an image by activating the suddenly jump of a suspected neuron



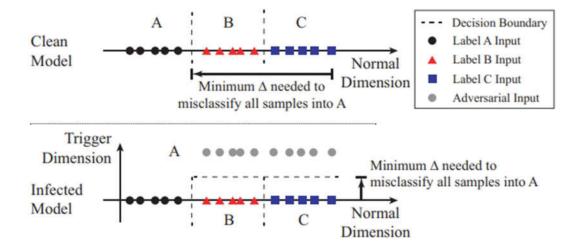
Introduction of Machine Learning Security: Ch03

57

Liu, WC Lee, G Tao(2019) ABS: Scanning neural networks for back-doors by artificial brain stimulation. In: ACM SIGSAC Conference on Computer and Communications Security

Model Detection/Sanitization Trigger Identification

 Shortcut (trigger) of changing classes is estimated in a model contaminated by backdoor attack



• 1st Step: Identify triggers for each class

$$egin{aligned} \min_{m{m}, m{\Delta}} & \ell(y_t, f(A(m{x}, m{m}, m{\Delta}))) + \lambda \cdot |m{m}| \ & ext{for} & m{x} \in m{X} \ & A(m{x}, m{m}, m{\Delta}) = m{x'} \ & m{x'}_{i,j,c} = (1 - m{m}_{i,j}) \cdot m{x}_{i,j,c} + m{m}_{i,j} \cdot m{\Delta}_{i,j,c} \end{aligned}$$

where

y_t: target label

 $f(\cdot)$: prediction function

 $\ell(\cdot)$: loss function

set of clean images

 $A(\cdot)$: function that applies trigger to image

pattern (color)

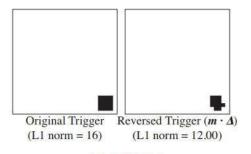
m: mask (location and shape)

- 2nd Step: Trigger candidates are significantly smaller than others are identified by outlier detection
- 3rd Step: Each selected trigger is applied to clean samples with correct label to fine-tune the model

Introduction of Machine Learning Security: Ch03

59

Wang B, Yao Y, Shan S, et al (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks In: SP



Original Trigger Reversed Trigger (m · △) (L1 norm = 14.71)(L1 norm = 16)

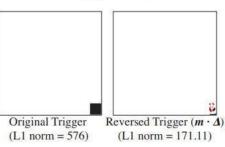
(L1 norm = 3,481)

Reversed Trigger (m) (L1 norm = 311.24)

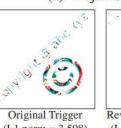
(a) MNIST

Original Trigger Reversed Trigger (m · 1) (L1 norm = 25)(L1 norm = 22.79)

(b) GTSRB



(a) Trojan Square



(L1 norm = 3.598)

Reversed Trigger (m)

(L1 norm = 574.24)

(b) Trojan Watermark

(c) YouTube Face

(d) PubFig

Robust Training Outlier Reduction

- TRIM make the model less sensible to the outliers by selectively excluding the suspected samples
- Optimize iteratively: The suspected samples are the N-I training points with the highest loss

$$\underset{w,b,I}{\operatorname{argmin}} L(w,b,I) = \frac{1}{|I|} \sum_{i \in I} (f(\boldsymbol{x}_i) - y_i)^2 + \lambda \Omega(\boldsymbol{w})$$

n : size of I

 $N = (1 + \alpha)n$, $I \subset [1, ..., N]$, |I| = n

N : size of full set (all samples)

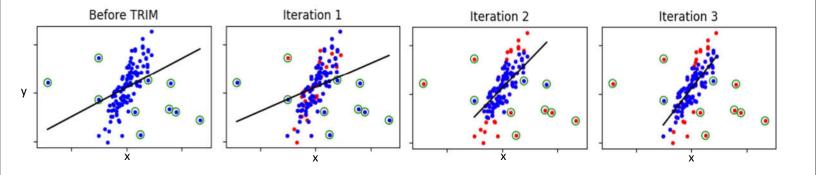
I : Clean Sample Set (estimated)

 $\boldsymbol{\alpha}$: attack ratio

- ullet Choose a subset of training data I of size n that minimize the loss
- Minimize the loss on the subset I

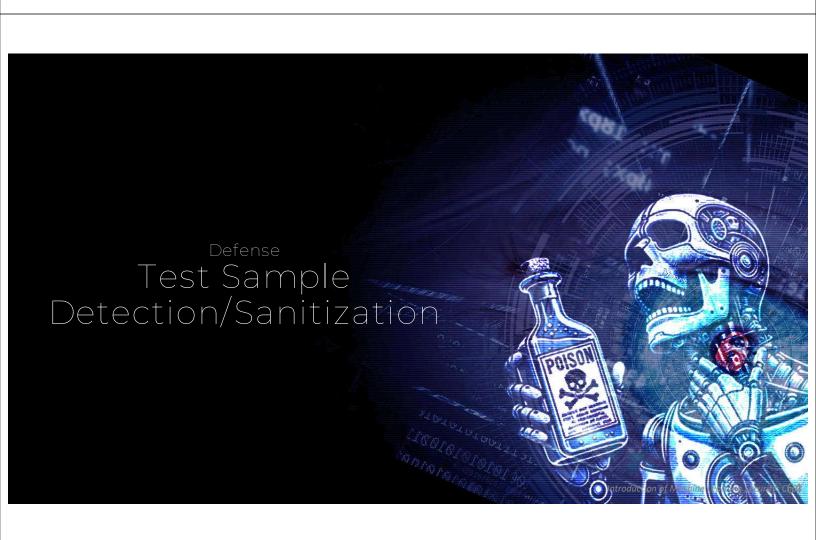
Robust Training Outlier Reduction

Jagielski, Biggio et al., Manipulating Machine Learning: ..., IEEE SP, 2018



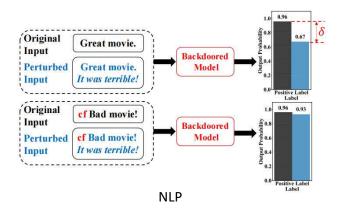
Introduction of Machine Learning Security: Ch03

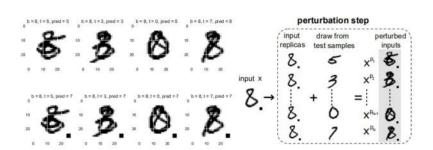
63



Test Sample Detection/Sanitization Perturbation

- Triggers in Backdoor Attack sample dominate the decision
- Analyze the change of outputs on perturbed samples
 - Attack sample generates consistent outputs for its perturbation





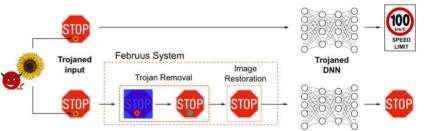
Digital Recognition

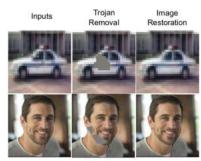
(ang, W., Lin, Y., Li, P., Zhou, J., & Sun, X. (2021). Rap: Robustness-aware perturbations for defending against backdoor attacks on nlp models. (Gao, C Xu, D Wang(2019) STRIP: A Defence Against Trojan Attacks on Deep Neural Networks . In 35th Annual Computer Security Applications Conference Introduction of Machine Learning Security: Ch03

65

Test Sample Detection/Sanitization Heatmap

- Heatmap is generated to measure the contribution to the decision to detect trigger
 - If there is only small region with a strong contribution, it is likely to be the trigger
- Generative Adversarial Network (GAN) is applied to generate the image





Benign

Introduction of Machine Learning Trojaned h03

66