

Agenda

- Formulation: Attack Loss / Attack Cost
- Attack Sample Crafting
- Imperfect Knowledge
 - Surrogate Model
 - Query Attack
- Defense
 - Pre-processing
 - Robust Model

Introduction of Machine Learning Security: Ch02

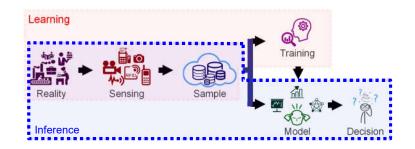
Evasion Attack

- Bypass a defensive system by modifying samples
- General speaking, evasion attack misleads trained systems by camouflaging samples in the inference phase

Introduction of Machine Learning Security: Ch02

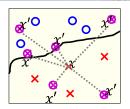
Evasion Attack

• How to mislead a trained model?

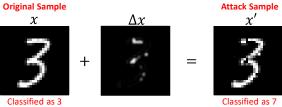


2

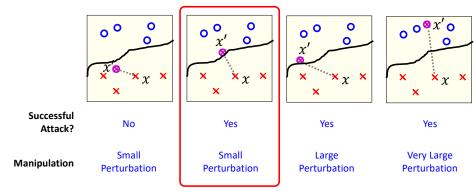
- Mislead the decision of a trained classifier by manipulating a sample in the inference phase
- How to determine Δx ?



3 VS 7 Classification



Which attack is better?



Introduction of Machine Learning Security: Ch02

- Two factors of sample crafting
 - ↑ Attack Impact: Influence to the output
 - ↓ Attack Cost: Change on a sample
- Formulate as a multi-objective optimization

$$\min(L(x + \Delta x, t, f_w), ||\Delta x||)$$

Loss between the output of the target model on attack sample and the target class

Change of a sample

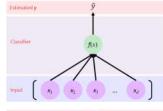
(How close to your expected attack)

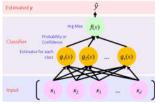
 Δx : manipulation t: the target class f_w : the target model x: the original sample

Introduction of Machine Learning Security: Ch02

 $\min(L(x + \Delta x, t, f_w), ||\Delta x||$

- 2-Class problem
 - The target class is obvious
 - Class 1 > Class 2 or Class 2 > Class 1
- Multi-Class problem
 - Generic Attack
 - Misclassification
 - Any class different from the original one
 - · Usually the class which is most easily misled
 - Class-specific Attack
 - Selected target class





 $\min_{\Delta x}(L(x+\Delta x,t,f_w),\|\Delta x\|)$

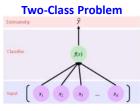
Loss function (L)

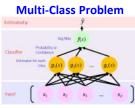
- 1. Confidence value of the target class $-(g_t(x+\Delta x))$
- 2. Difference between the confidence values between the target class and another one with the largest confidence value

$$-\left(g_t(x+\Delta x) - \max_{i\neq t} g_i(x+\Delta x)\right)$$

t: the target class

 g_i : the estimated confidence output of the class i





Introduction of Machine Learning Security: Ch02

 $\min_{\Delta x}(L(x + \Delta x, t, f_w), ||\Delta x||)$

• p-norms $||x||_p$

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}$$

where $p \ge 1$

- $||x||_0$ = number of non-zero elements (not convex)
 - limit the number of attack feature (sparse attack)

•
$$||x||_1 = |x_1| + |x_2| + ... + |x_d|$$

•
$$||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + ... + |x_d|^2}$$

 $\cdot \|x\|_{\infty} = \max_{1 \le i \le d} |x_i|$

· Minimize the maximum change to any features (dense attack)



Introduction of Machine Learning Security: Ch02

 $\min(L(x + \Delta x, t, f_w), ||\Delta x||)$

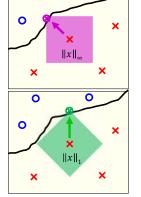
11

• Different p-norm functions on the adversarial noise ($\Delta x =$ $\|x-x'\|$) generate different x'

Image

Attack

Image



Introduction of Machine Learning Security: Ch02

 $\min(L(x + \Delta x, t, f_w), ||\Delta x||)$

One-Pixel / Few-Pixel Attack

min
$$f(x + e(x))$$

s.t. $||e(x)||_0 \le d$

 $||e(x)||_0$: count non-zero elements $e(x) = (e_1, e_2, ..., e_n)$: n is number of features

d: number of modified features

One-Pixel Attack

d = 1

Few-Pixel Attack

d > 1

 $\min(L(x + \Delta x, t, f_w), ||\Delta x||)$

 Control the attack features and their magnitudes separately and precisely

Adversarial Noise
$$(\Delta x = \delta \odot \mathbf{G})$$
 min
$$\delta . \mathbf{G}$$
 || $\delta \odot \mathbf{G}$ || $_2^2 + \lambda \mathcal{L}(f(\mathbf{x} + \delta \odot \mathbf{G}), y_t),$ s. t.
$$\mathbf{1}^{\top} \mathbf{G} = k, \ \mathbf{G} \in \{0,1\}^d$$
 no more than k features

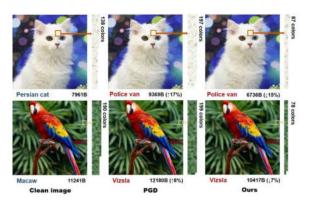
- $\delta \in \mathbb{R}^d$: vector of perturbation magnitudes
- $G \in \{0,1\}^d$: vector of perturbed positions

Benign image Our SAPF Attack

Introduction of Machine Learning Security: Ch02

13

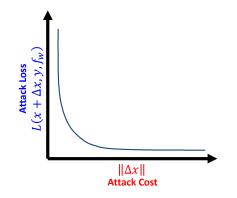
- Most adversarial attacks add extra disturbing information on clean images explicitly
- AdvDrop attacks by dropping existing information of images



Introduction of Machine Learning Security: Ch02

 $\min(L(x + \Delta x, t, f_w), ||\Delta x||)$

- Attack Impact and Attack Cost are correlated
 - Smaller sample change yields larger attack loss, vice versa
 - Smaller attack loss yields larger sample change, vice versa



 $\min(L(x + \Delta x, t, f_w), ||\Delta x||)$

- Multi-objective problem can be formulated as
 - 1. Minimize Attack Loss
 - Maximize damage with a fixed attack cost

min
$$L(x + \Delta x, t, f_w)$$

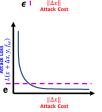
 $\|\Delta x\| \epsilon \geq$ s.t.

2. Minimize Attack Cost

• Minimize the attack cost for an attack damage

min
$$\|\Delta x\|$$

s.t.
$$L(x + \Delta x, t, f_w) \ge e$$



 $\min_{\Delta x}(L(x+\Delta x,t,f_w),\|\Delta x\|)$

• Multi-objective problem can be formulated as

3. Tradeoff Solution

• Maximize damage with a fixed attack cost

$$\min \alpha L(x + \Delta x, t, f_w) + (1 - \alpha) \|\Delta x\|$$

 α : a tradeoff parameter ($0 \le \alpha \le 1$)

- When $\alpha = 1$, only $L(x + \Delta x, t, f_w)$ is focused
- When $\alpha = 0$, only $||\Delta x||$ is focused

 $\alpha_1 \leq \alpha_2$ Attack Cost

Introduction of Machine Learning Security: Ch02

Algorithm

$$\Delta x_0 = 0$$
 Initialize delta x
 $\dot{1} = 0$ Initialize counter i

Do

$$i = i + 1$$
 Counting

$$\Delta x_{i+1} = \Delta x_i - \alpha \nabla L(x + \Delta x_i, t, f_w)$$

$$\Delta x_{i+1} = \text{constraint}(\Delta x_{i+1})$$

$$\text{Update } \Delta x_{i+1} \text{ according to gradient at } x + \Delta x_i$$

$$\text{to gradient at } x + \Delta x_i$$

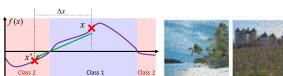
$$\text{Limit } \Delta x_{i+1} \text{ by constraints}$$

to gradient at $x + \Delta x_i$ *Limit* Δx_{i+1} *by constraints*

While i <= n Update n times

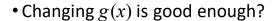
Introduction of Machine Learning Security: Ch02

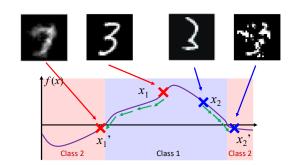
• n = 1 : Cost ↓



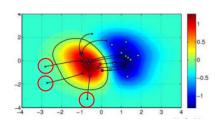
 Multi-Step Method **Projected Gradient** Descent(PGD)

• n > 1 : Cost ↑





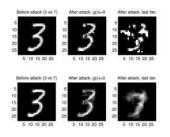
Crafted samples are very different from the real samples of another class

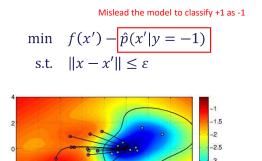


Attack Sample Crafting

ook Natural? Density Estimator

- Not only cross the decision boundary but also close to the target class
 - Penalize x' in low density regions

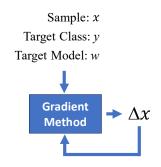




Introduction of Machine Learning Security: Ch02

Limited Knowledge

- Gradient method for crafting is available only if the target model w is known (which is the most secure information)
 - i.e. $\nabla_{\Delta x} L_w(x + \Delta x, t)$
- What can we do when the detail of target model is unknown?
 - No gradient can be computed



Methods

1. Surrogate Model + Attack Transfer

- Assumption: Samples for training can be somehow obtained
- Train a surrogate model to replace the target one

2. Query Attack

- Assumption: the target model can be accessed
- Craft attack samples by querying the target models

Attack Method: Surrogate Model

- Aim to approximate the target model
- The surrogate model should be convenient for crafting
 - i.e. differentiable
- More information yields better approximation
- Key Challenge: Transferability

Collect samples for training

Build a surrogate / substitute model

Attack on the trained surrogate model according to white-box attack methods

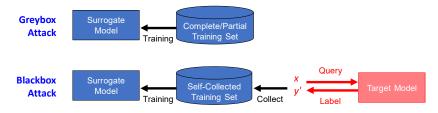
Transfer the attack sample to the target model

Introduction of Machine Learning Security: Ch02

25

Attack Method: Surrogate Model Incomplete Training Set

- Build Surrogate / Substitute model by incomplete training set
 - Greybox Attack: Complete / Partial training set
 - Blackbox Attack: Self-collected data in the same application (but maybe different from the training samples used in target model)
 - · Query of the targeted model is allowed

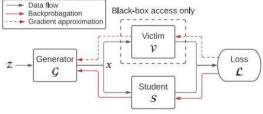


Introduction of Machine Learning Security: Ch02

16

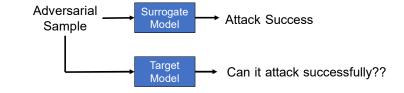
Attack Method: Surrogate Model No Training Set

- Data-Free Model Extraction
 - Student aims to approximate to Victim (target model) : reduce Loss
 - Generator generates samples to increase the difference between victim and student: increase Loss
 - Student and Generator are in opposition



Attack Method: Surrogate Model
Transferability

• Reduce the influence of difference between the real and surrogate models on attack performance



ing, J. B., Malni, P., Walls, R. J., & Papernot, N. (2021). Data-free model extraction. In Proceedings of the IEEE/CVF conference puter vision and pattern recognition.

Introduction of Machine Learning Security: Ch02

27

 Experimental results on attack performance of attack samples generated by Surrogate (Source) model on Target model

• DNN: Deep Neural Network • LR: Linear Regression • SVM: Support Vector Machine

• DT: **Decision Tree**

kNN: k nearest neighborhood

 Different models behave differently

Introduction of Machine Learning Security: Ch02

29

- Transferability Factors
 - Size of Input Gradient (↑)
 - Larger gradient yields large modification, usually generate larger attack impact
 - Gradient Alignment (1)
 - Larger similarity of the input gradients of the loss function of the target and surrogate models is better for attack
 - Variability of the loss landscape (↓)
 - Surrogate loss functions that are stabler and lower variance may find better a local optima (better attack)

Introduction of Machine Learning Security: Ch02

- Model complexity is important to transferability
- Two main factors
 - the complexity of the target model
 - the complexity of the surrogate model

High-complexity Surrogate

Larger ∆x

Low-complexity Surrogate Successful

Red Point: Attack Sample crafted according to High-Complexity Surrogate Blue Point: Attack Sample crafted according to Low-Complexity Surrogate

> Below a certain threshold (i.e., the dotted line), the point is correctly classified, otherwise it is misclassified

Failed Attack

Attack

 Attack Sample crafted according to High-Complexity Surrogate may not able to fool the target model

Red Point: Attack Sample crafted according Successful Blue Point: Attack Sample crafted according

Attack Attack

High-complexity Target

High-complexity Surrogate

Low-complexity Target

High-complexity Surrogate

Introduction of Machine Learning Security: Ch02

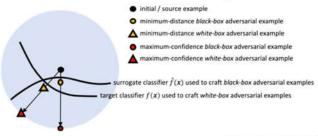
Introduction of Machine Learning Security: Ch02

31

to High-Complexity Surrogate

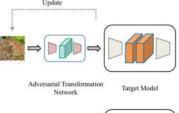
to Low-Complexity Surrogate

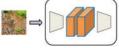
- Maximum Confidence Attacks might better transfer, but more perturbation is needed
- Minimum Distance Attacks are likely to fail because decision boundary is different



- Image transformation of a model may reduce attack ability
- Adversarial Transformation Network (ATN) is built aiming to lose effect of image transformation on sample attack
- Attack sample is crafted to attack a model with / without ATN

$$L_{attack} = J(f(\mathbf{x}^{adv}), y) + \gamma J(f(T(\mathbf{x}^{adv})), y)$$





Introduction of Machine Learning Security: ChO

- Many studies indicate that attention heatmaps of models on an object are similar
- Aim at manipulating the heatmap
 - Magnitude suppression

Distraction

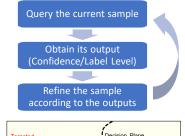
• Decrease the gap between 1st and 2nd largest classes $L_{\text{bdry}}(x) = ||h(x, y_{\text{ori}})||_1 - ||h(x, y_{\text{sec}}(x))||_1$

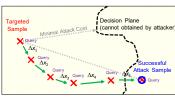
$$L_{\text{supp}}(x) = ||h(x, y_{\text{ori}})||_1$$

$$L_{\text{dstc}}(x) = -\left\|\frac{h(x, y_{\text{ori}})}{max(h(x, y_{\text{ori}}))} - \frac{h(x_{\text{ori}}, y_{\text{ori}})}{max(h(x_{\text{ori}}, y_{\text{ori}}))}\right\|$$

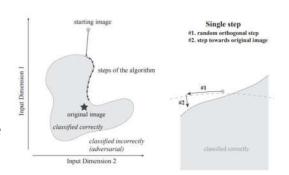
$$L_{\text{bdry}}(x) = ||h(x, y_{\text{ori}})||_1 - ||h(x, y_{\text{sec}}(x))||_1$$

- Assume the target model can be aueried
- More information provided by the model (Confidence output > Label output) enhance the crafting
- Key Challenges:
 - Reduce the guery number
 - Minimize the modification





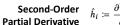
- Start from a randomly selected a point in the target class
- Moving the point toward to the original image until touch the boundary
- Get closer to the original image by searching on the surface of the target class region



37

- Estimate the second-order partial derivative without surrogate
- Querying the model around a very small proximity for each dimension

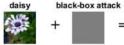
$$\begin{array}{ll} \text{First-Order} & \hat{g_i} \coloneqq \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i)}{2h}, \\ \text{Partial Derivative} & \end{array}$$



Second-Order ritial Derivative
$$\hat{h}_i \coloneqq \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_{ii}^2} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - 2f(\mathbf{x}) + f(\mathbf{x} - h\mathbf{e}_i)}{h^2}$$

h: a small constant (e.g. h = 0.0001) e; a standard basis vector with only the i-th component as 1

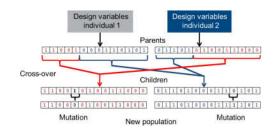
black-box attack

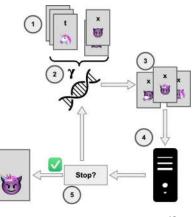


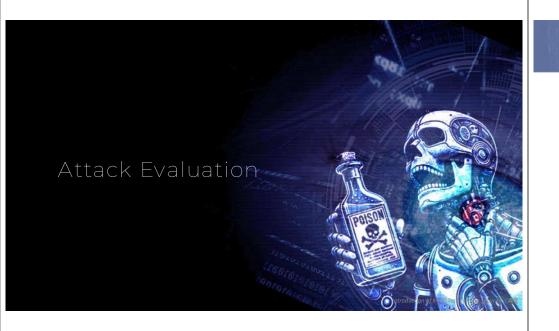
Introduction of Machine Learning Security: Ch02

Maintain M best samples as a pool

- Cross-over two randomly selected samp
- Mutation
- Query scores for new samples
- Stop until a solution is found







Attack success rate (ASR)

- · Ratio of successful evasion when the sample change is fixed
- Larger ASR, better attack performance

$$ASR = \frac{SAN}{AN}$$

SAN: Successful Attack Number AN: Attack Number

- The average probability of all misclassification categories for all samples when the attack is successful
- Larger ACAC, better attack performance

$$ACAC = \frac{1}{n} \sum_{i=1}^{n} P(X_i^a)_{F(X_i^a)}$$

 $F(X_i^a)$: the i-th sample being classified as category a

 $P(X_i^a)$: the probability that the i-th sample is classified as category a

Introduction of Machine Learning Security: Ch02

Peak signal-to-noise ratio (PSNR)

- Calculates the signal-to-noise ratio of original and attack images after successful evasion
- Larger PSNR, better attack performance

$$PSNR = 10 \log_{10} \frac{M^2}{MSE(x, x')}$$

: the maximum pixel value : the clean image : the generated image

MSE: the mean square error

Frechet Inception Distance (FID)

- · Distance between the original and attack image when successful evasion
- Lower FID, better attack performance

Learned Perceptual Image Patch Similarity (LPIPS)

- · Distance between the original and attack image in the feature space at multiple layers of a pretrained network.
- Lower LPIPS, higher perceived similarity, better attack performance

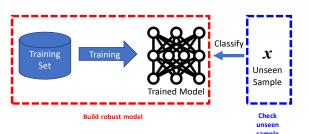
 $FID = \|\mu_x - \mu_{x'}\|_2^2$ $+Tr\left(\Sigma_x + \Sigma_{x'} \pm 2(\Sigma_x \Sigma_{x'})^{\frac{1}{2}}\right)$

> x: the clean image $x^{\prime}\;$: the generated image

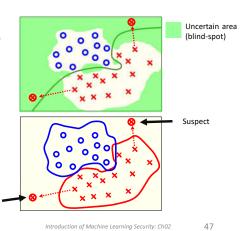
 μ_a : mean of a

 Σ_a : covariance matric of a Tr: sum of the diagonal elements of the matrix

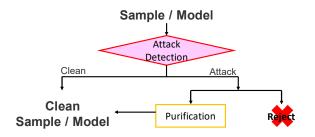
- Pre-processing
 - Detection
 - Cleaning
- Robust Learning
 - Parameter Updating
 - Structure Selection



- Characteristics of clean and adversarial samples should be different
- Adversarial examples tend to occur in uncertain regions
 - Far away from training data
 - No information is provided



- Explicit Method
 - Evaluation criteria
- Implicit Method
 - Rely on a classifier



• Trained Autoencoder (AE) is used to reconstruct a sample by clean samples

Reconstruction Error

- · Reconstruction Error on an adversarial sample is larger
- x is an attack when the error is large

Probability Divergence

- Jensen-Shannon divergence (JSD) quantifies the similarity between x and its reconstruction in the feature space (f)
- x is an attack when JSD is large

 $||x - AE(x)||_p$

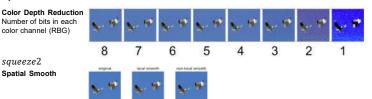
$$JSD\left(f(x) \parallel f(AE(x))\right)$$

$$JSD(P \parallel Q) = \frac{1}{2}D(P \parallel M) + \frac{1}{2}D(M \parallel Q)$$
Kullback-Leibler Divergence D_{KL}(P \mathbb{Q} \mathbb{Q}) = \sum_{x \in X} P(x)log\left(\frac{P(x)}{Q(x)}\right)
a mixture distribution \(M = \frac{1}{2}(P + Q) \)

Introduction of Machine Learning Security: Ch02

- Squeezed Output Difference
 - Difference of output on original and transformed images
 - Two kinds of feature squeeze techniques are considered
 - x is an attack when $\max(d(x, x_{squeeze1}), d(x, x_{squeeze2}))$ is large, where $d(x, x_{squeeze}) = ||f(x) - f(x_{squeeze})||_{1}$

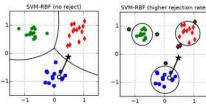
saueeze1

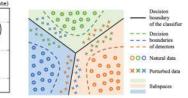


Introduction of Machine Learning Security: ChO

Reject uncertain samples

- · Train a detector
 - For whole model
 - For each class
- · Set confident value thresholds





- Face Liveness Detection
- One camera, no additional hardware
 - No depth information
- Flash is applied to enhance the difference between real and fake persons
- Only available for 2D attack

- Build a model aiming to reduce the influence of attack on decisions
 - Adversarial Learning
 - Evasion: Increase attack cost/difficulty
 - Poisoning: Reduce influence of contaminated samples
 - Structure
 - Feature Selection
 - Ensemble

• Basic idea: Consider additional regularization terms in the objective function

$$E = Err + Adv$$

- Two kinds of regularization:
 - Obfuscated Gradient
 - Adversarial Term (Increase Manipulation Cost)

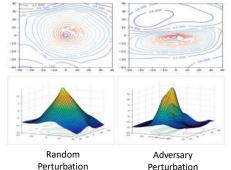
Introduction of Machine Learning Security: Ch02

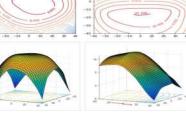
55

Penalizes large gradients

$$\min L(g(x), y) + \lambda ||\nabla f(x)||$$

• Mislead crafting in adversarial attack





Random Perturbation

Adversary Perturbation

• However, obfuscation can be solved easily by training a surrogate model

- A trained model should work well on both clean and attack samples
- Attack samples is generated for each training sample
 - Time complexity of attack sample generation is large

$$\tilde{J}(\boldsymbol{\theta}, \boldsymbol{x}, y) = \alpha J(\boldsymbol{\theta}, \boldsymbol{x}, y) + (1 - \alpha) J(\boldsymbol{\theta}, \boldsymbol{x} + \epsilon \mathrm{sign} \left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y) \right).$$
 Error on clean samples

Introduction of Machine Learning Security: Ch02

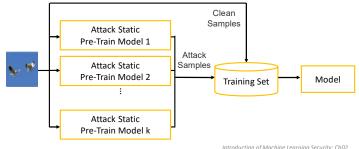
59

• Minimize the error and maximize the manipulation

 $\min_{w} \max_{\|\Delta x\|} L_w(x + \Delta x, y)$

Introduction of Machine Learning Security: Ch02

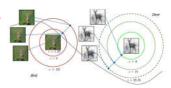
- Increase the diversity of attack samples
- Different views
 - Based on several pre-trained models



Defense: Robust Model: Adversarial Term Diversity of Attack Sam

3

- Increase the diversity of attack samples
- Different attack strengths for samples
 - Avoid pushing an attack sample to another class



- Different attack strengths for training iterations
 - Adversarial term may dominate at beginning
 - Premature model may be evaded easily
 - Increase PGD iterations during training

loji Y, Goldstein T, Hoffman J(2019) Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets. In: arXiv

Introduction of Machine Learning Security: Ch02

61

Defense: Robust Model: Adversarial Term

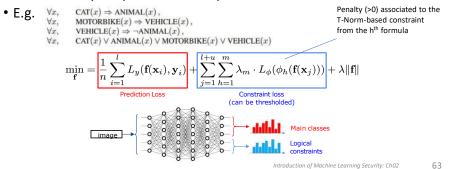
Crafting adversarial samples is time consuming

- Training set is usually large
- Free Adversarial Training
 - Perturbing a sample and updating the model simultaneously
 - Using incompletely crafted samples to update the model

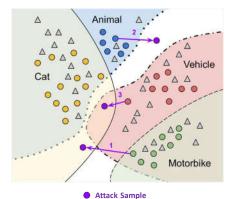
r ChO2

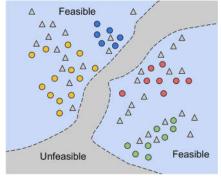
Robust Learning Domain Know

- Improve the model by domain knowledge on the class relationships
 - A natural way to spot incoherent predictions



Robust Learning Domain Knowledge





- Weight evenness increases robustness
 - Influence of feature on decisions should be even
 - More features should be manipulated to change decisions

- Feature selection may reduce robustness
 - Weight of unselected features is 0
 - Feature weights are less even
 - Evasion may requires less modification

- Adversary-aware Feature Selection
 - Maximize error and robustness

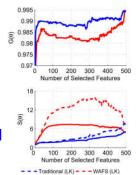
$$\underset{\theta \in \{0,1\}^d}{\operatorname{arg\,max}} \ Acc_{\theta} + \gamma R_{\theta}$$

s.t.
$$\sum_{j=1}^{d} \theta_j = m$$

where d: feature number,

 θ : feature set, m : cardinality of feature subset, Acc: accuracy, R: robustness estimation, γ : tradeoff

- Most discriminative features are not selected
- Variance of discriminative abilities of selected feature decreases.
- i.e. weights more even



Introduction of Machine Learning Security: Ch02

- Weight evenness can be enhanced by ensemble
 - Bagging (Samples) Each base classifier is trained with a bootstrap replication of the original training set
 - Random Subspace method (Features) Each base classifier is trained with different random feature subsets
 - Simple average is used a fusion

