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Evasion Attack . Evasion Attack

* Bypass a defensive system * How to mislead a trained model?

by modifying samples

* General speaking,
evasion attack misleads
trained systems by

Learning ¥

Fo gl s SGE

Training

camouflaging Samples in 3& . lllll!lllllllll.llll:
. = Reality Sensing Sample ﬁﬁﬂ Pera B
the inference phase : . e ??ﬁ" :
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Fvasion Attack

Fvasion Attack

* Mislead the decision of a trained
classifier by manipulating a sample in
the inference phase

* How to determine Ax?

Original Sample

X
3VSs7
Classification +

Classified as 3 Classified as 7
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* Which attack is better?

Successful
Attack?

Manipulation

!
o © o © o 0 0®x o
9 o 97 06 ||2 & S o
‘ X :
Q... %S |l
X X x X X X x X X x X X X x X
X X X X
No Yes Yes Yes
Small Small Large Very Large

Perturbation

Perturbation

Perturbation

Perturbation
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Objective Function

Objective Function

Altaeck THoss

* Two factors of sample crafting
«T Attack Impact: Influence to the output
« | Attack Cost: Change on a sample

* Formulate as a multi-objective optimization
min(L(x + Ax, ¢, fiy), [1Ax]))
X

Loss between the output of the
target model on attack sample and
the target class
(How close to your expected attack)

Change of a sample

Ax : manipulation
t : the target class

fw: the target model
x : the original sample

Introduction of Machine Learning Security: Ch02

* 2-Class problem
* The target class is obvious

¢ Class1>Class2 or

* Multi-Class problem

* Generic Attack
* Misclassification

* Any class different from the original one
* Usually the class which is most easily misled

* Class-specific Attack

* Selected target class

Class 2 > Class 1

Introduction of Machine Learning Security: Ch02 8



Objective Function

AlTtae koSS

* Loss function (L)
1. Confidence value of the target class

—(ge(x + 4x))

2. Difference between the confidence values
between the target class and another one

with the largest confidence value Multi-Class Problem
i g j’

_(gt(x+Ax) _maxgl(x+Ax)) - ;
1#t -

t: the target class
g;: the estimated confidence output of the class i
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Objective Function

Altaek aast

* p-norms ||x||, 1
d 14
”x”p = Z|xl.|p wherep > 1
i=1
* |lx]lo = number of non-zero elements (not convex)

* limit the number of attack feature (sparse attack)

p-05 p-1

*llxlly = | + |xp]+.4 |xq]
* llxllz = V12112 + [zl 2+ 4]xq ]2

os o
;u<> o
os o

R R T

< Ixll, = p;g)élle

* Minimize the maximum change to any features (dense attack)
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Objective Function

Attack Cost

Objective Function

Altack/Gost

* Different p-norm functions on N o o
the adversarial noise (Ax = E——H o .
llx — x'|| ) generate differentx’ =

X X
o o

Original Dense Sparse X X

Original Dense Sparse
Image Attack Attack Image Attack Attack

Introduction of Machine Learning Security: Ch02
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min f(x + e(x))
st Jle()]lp<d

lle(®)llo : count non-zero elements Cup(16.48%)

St Bowl[ 16, 74%)

e(x) = (eq, ey, ..., ey): n is number of features

d: number of modified features

One-Pixel Attack Few-Pixel Attack
d=1 d>1

Introduction of Machine Learning Security: Ch02 12



Objective Function = oy Objective Function

Attack Cost ANy Attack Cost
* Control the attack features and their * Most adversarial attacks i
magnitudes separately and precisely = Benignimoge Our SAPF Attack add extra disturbing g

information on clean
images explicitly

* AdvDrop attacks by
dropping existing
information of images

Adversarial Noise
Mx=8600G6)
—

min 18O G 12 +AL(f(x + 6 O G),y.),

H 3
H (Langur, 46615, 83.908, 0,614, 0.033)

210103 g

s.t. 17G =k, Ge{0,1}¢
H_/

no more than
k features

* § € R%: vector of perturbation magnitudes | — N— et
1 (Maypole, 47222, 71.434, 0.464, 0.

Y "0 ol LB 4 e o it Bl il Macaw 12418 Vizsla 121808 [18%) Vizsla 104178 | T%)
* G € {0,1}%:vector of perturbed positions ' e i el Ot
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Tradeoff min(Lx+ 0x,1.7,),10+1) [EEACN | ISR (Lt ) 151 €

* Attack Impact and Attack Cost * Multi-objective problem can be formulated as

>

are correlated 1. Minimize Attack Loss .
- 1
* Smaller sample change yields 3 * Maximize damage with a fixed attack cost |
larger attack loss, vice versa 2 = min L(x + Ax,t, f,,) £\
* Smaller attack loss yields larger  § & s.t.  ||Ax||e > ——=
sample change, vice versa g j;
3 2. Minimize Attack Cost
* Minimize the attack cost for an attack damage i3
> . 35
l|Ax]| min ||Ax|| i
Attack Cost S.t. L(x + Ax, t, fw) =e e

[|Ax]|
Attack Cost
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Objective Function

Formulation

min(L(x + Ax, t, fi,), [1Ax1) B§

Attack Sample Crafting

Gragient-DescC e

* Multi-objective problem can be formulated as

3. Tradeoff Solution
* Maximize damage with a fixed attack cost

. 3
min o L(x + Ax, t, f,,) ;5 " oy S0y
+(1— o) [|ax] e
3 Ol
o : a tradeoff parameter (0 < o < 1)
o st

* Whena = 1, only L(x + Ax, t, f,,,) is focused
* When o = 0, only ||Ax|| is focused

Introduction of Machine Learning Security: Ch02
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* Algorithm
Ax, = 0 Initialize delta x
i =0 Initialize counter i
Do

i =1+ 1 Counting
Axi,, = Ax; - oaVL(x+Ax,,t, f,)
Ax;,, = constraint (Ax;,,)

While i <= n Update n times

Update Ax;,; according
to gradient at x + Ax;

Limit Ax,,, by constraints

Introduction of Machine Learning Security: Ch02 18

Attack Sample Crafting

Gragienttese orrs

Attack Sample Crafting

ook Natura

%)
1

* One-Step Method o
Fast Gradient Sign |
Method (FGSM) g

en=1:Cost+ I\ﬁ

* Multi-Step Method {/®

Projected Gradient ,;ea‘ae(\
Descent(PGD) : g

en>1:CostT

Introduction of Machine Learning Security: Ch02
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* Changing g(x) is good enough?

Crafted samples are very different
from the real samples of another class

Class 1

Class 2

Introduction of Machine Learning Security: Ch02 20



Attack Sample Crafting

Look Natural? Density Estimator

* Not onIy Cross the decision Mislead the model to classify +1 as -1
boundary but also close to the ,
. 12 n
target class min  f(x") —{[p(x'ly = —-1)
. Per!alize x"in low density st |lx=x||<e
regions

Befweatinok (1vn ) Ater attack, =0

Limited Knowledge T Methods
* Gradient method for crafting is 1. Surrogate Model + Attack Transfer
available only if the target model w Sample: x * Assumption: Samples for training can be somehow obtained
is known (which is the most secure Target Class: y * Train a surrogate model to replace the target one
information) Target Model: w
cie. Vy L, (x+Ax, 1) ] 2. Query Attack
. Gradient * Assumption: the target model can be accessed
* What can we do when the detail of Method [REAY g e

target model is unknown? * Craft attack samples by querying the target models

* No gradient can be computed
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Attack Method: Surrogate Model

Incomplete Training Set

« Aim to approximate the target
model

* The surrogate model should be

* Build Surrogate / Substitute model by incomplete training set
* Greybox Attack: Complete / Partial training set
* Blackbox Attack: Self-collected data in the same application

. . Build a surrogate / substitute (but maybe different from the training samples used in target model)
convenient for crafting model * Query of the targeted model is allowed
* i.e. differentiable
. . . Attack on the trained Greybox Complete/Partial
* More information ylEldS better surrogate model according to Attack el Training CRUEILY set
approximation white-box attack methods
oy Query
o .
Key Challenge: Transferability Transfer the attack sample to Blackbox Self-Collected B W mm—— 7.t Model
Attack Trainin Training Set Collect re
the target model 9 Label
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Surrogate Model J Attack Method: Surrogate Model

No Training Set Transferability

* Data-Free Model Extraction * Attack Transferability is important requirement
* Student aims to apprOXimate to Victim (target mOdeI) : reduce Loss * Reduce the |nﬂuence Of dlfference between the real and
* Generator generates samples to increase the difference between surrogate models on attack performance

victim and student : increase Loss
* Student and Generator are in opposition

Attack Success
— gﬁgﬂa{gazion Black-box access only Sample Model

-~ - = Gradient approximation

k I Victim I
: v Target .
5 |Generatorie--d | | e Model Can it attack successfully??
G
Student
S
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Attack Method: Surrogate Model =y Attack Method: Surrogate Model

Transferability e Transferability

* Experimental results on attack * Transferability Factors
performance of attack samples : . Size of Input Gradient (1)

generated by Surrogate (Source) . . T
model on Target model * Larger gradient yields large modification, usually generate larger
attack impact

* DNN: Deep Neural Network R R
* Gradient Alignment (T)

* LR: Linear Regression
* SVM:  Support Vector Machine * Larger similarity of the input gradients of the loss function of the
8.85 : . target and surrogate models is better for attack

* DT: Decision Tree
* Variability of the loss landscape (i)

DN

-
=

v
<
z

=]
.y

* KNN: k nearest neighborhood

Source Machine Learning Technique

kNN| £ ) . .
. * Surrogate loss functions that are stabler and lower variance may
* Different models behave . : .
. TR I find better a local optima (better attack)
dlfferently arget Machine Learning Technique

=thod: Surrogate Model =y Attack Method: Surrogate Model

Transferability Transferability
* Model complexity is important to transferability * Attack Sample crafted R s .
. i ich- ” IV g [V
« Two main factors according to High L e
* the com pIexity of the ta rget model Red Point: Attack Sample crafted according Compbllexrty fsurlrohgate may pi i o
. igh-Complexi ’ ;
* the complexity of the surrogate model Blue Point Adtack Soramle crateed seeorcing nOtda | e to fool the target Lon-complextty Sumogate fowecompleitty Surapate
to Low-Complexity Surrogate mode /.\ /.0\
High-complexity Surrogate Low-complexity Surrogate £ .
~ Successful g ; - =
/ elow a certain threshold x *
§ ﬂ /\’ % /.\ } Attack (i.e., the dotted line), the
™\ 7\ ~ . int i tly classified,
| \J "\/\' / } E\zlzfcdk g:}l\zr;isc::ﬁ; nriscal‘::;ilf?ed Red Point: Attack Sample crafted according SUCCESSka|
to High-Complexity Surrogate Attac
" " Blue Point: Attack Sample crafted according Failed
> to Low-Complexity Surrogate Attack
Larger Ax
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Attack Method: Surrogate Model

Transferability

Attack Method: Surrogate

Model: Transferabilit

Enhance Transferability

* Maximum Confidence Attacks
might better transfer, but more perturbation is needed

* Minimum Distance Attacks
are likely to fail because decision boundary is different

@ initial / source example

© minii distance black-bax i pl
A mini o b ok 1 ol
(-] { i black-box example

A\ maximum-confidence white-box adversarial example

surrogate classifier f(x) used to craft block-box adversarial examples
target classifier f{x) used to craft white-box adversarial examples

Introduction of Machine Learning Security: Ch02
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* Image transformation of a model may

reduce attack ability

e Adversarial Transformation Network

(ATN) is built aiming to lose effect of
image transformation on sample
attack

* Attack sample is crafted to
attack a model with / without ATN

Lattack = J(f(x*"),y) + I (F(T(x"")).y)

Adversarinl Transformation

el Target Model
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od: Surrogate Model. Transferabilit

Enhance Transferability

* Many studies indicate that attention
heatmaps of models on an object .

are similar [

Inpit VG619 ResNet30) DenseNec2ih|
N n \
0 (s !b

* Aim at manipulating the heatmap
* Magnitude suppression
* Distraction

Lsupp(i‘) = ”h(-l:« yori}”l

h(-"-'f yori) _

h l:3'7011 s Yori )

Lanel®) = = | ez (b, you)

* Decrease the gap between
1stand 2" |argest classes

Lbdry('r) = ”h(x!yori)lll - ”h(‘raysec(m))”l

inn ~f04nrhine Learning Security: Ch02

max (h(Tori, Yori))
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* Assume the target model can be
queried

* More information provided by the
model (Confidence output > Label
output) enhance the crafting

* Key Challenges:
* Reduce the query number
* Minimize the modification

Query
X
Craft f

— |
Target Model
V' —

Query Result

Query the current sample
Obtain its output
(Confidence/Label Level)
Refine the sample
according to the outputs

’

I3
: Decision Plane

Targeted
(cannot obtained by attacker)

t .yl
Sample inima! Attack COst..pd,

.....
X iy 38
\ \
Query H
X Ax, Asuccessful
N Ouexx Sy M:Anack Sample
x\ix SV —:—»@Query

'I
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* Start from a randomly
selected a point in the
target class (

* Moving the point toward
to the original image until
touch the boundary

siarting anage Single step
1 #1. random arthogomal step
#2. step towards original image

steps of the algonthm
#1
IQ-'—_ -

Tnpuit Thimenswon |

. . "y
* Get closer to the original .. S
image by searching on the ghviel comcty
classified incorvectly
surface of the target class P
regio n Input Dimension 2
Wiekand Brendel fonos Rauber, Matthios Bethge(2017)Decison-Based Adversorial Attocks: Relloble Attacks Against Black-Box Mochine Leorniog Modeks, i arkly Introduction of Machine Learning Security: Ch02 37

Wieland Brendel

Attack Method: Query Attacl

Decision-Based Adversa

80 calls 454 calls 711 calls

rial-Attacks

1053 calls 1228 calls 1828 calls

1.4e-01 5.6e-0Z 1.8e-02 1.7e-02 8.0e-03  21e03 56804

2476 calls 3470 calls 4513 calls 5601 calls 8272 calls 42213 calls

1.7e-04 1.1e-04 7. 7e-05 4.4e-05 6. 1e-06

18184 cails 20813 calls #7519 caity

1.2e-06

200667 calls  Original

# cally 13 cliv #1329 caily 5455 calis 1230 colix 15981 caily

38

Query Attacl

‘7 ; folN @r ek Sl |

Attack Method: Query Attacl

GenellCAlgarbnRge

* Estimate the second-order partial derivative without
surrogate

* Querying the model around a very small proximity for
each dimension

grand piano  black-box attack  Dutch oven

First-Order  _ 9f() _ flx-+hep) = f(x~ hei) 3 = n

. e e gi =
Partial Derivative % 2h
daisy black-box attack cup
Second-Order

P 0% f(x) ~f(x+he,*)—Zf(x)+f(x—hei) - -
Partial Derivative he = ax?, - h2 : - . = {3;;:'

h: asmall constant (e.g. h =0.0001)
e;: a standard basis vector with only
the i-th component as 1
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* Maintain M best samples as a pool
* Cross-over two randomly selected samp
* Mutation
* Query scores for new samples
* Stop until a solution is found

Parents

E.k.L.' .L?J.“J.'.},“J.EL".L.’JJ l,“,LJ.L"-.J.lJI B e

Olf 4| e

o,

—— @
ek

Cross-over
Children

[lifofofzjofaJoJe]a]s]e]o]e] [efs]afoftJoJoJo]ajaefa]ef1]}

[IaTelefofealefeafaoao] [ofafafelalelelefzlafa]a]o]1]

% <: Stop? <,:|i
®

Mutation New ation Mutation
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Evaluation

Attack Loss

* Attack success rate (ASR)

* Ratio of successful evasion when the
sample change is fixed

* Larger ASR, better attack performance

* Average Confidence for Adversarial Class
(ACAC)
* The average probability of all
misclassification categories for all samples
when the attack is successful

* Larger ACAC, better attack performance

ASR = SAN
T AN

SAN: Successful Attack Number
AN : Attack Number

n
1
ACAC = ;Z P(XO)p(xe)
i=1

F(X?) : the i-th sample being classified
as category a

P(X{) : the probability that the i-th
sample is classified as category a
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Evaluation

Altack oSS

* Peak signal-to-noise ratio (PSNR)

* Calculates the signal-to-noise ratio of original and attack
images after successful evasion

* Larger PSNR, better attack performance

2
PSNR = 10 log;y ———
910 USE (x, x)
M :the maximum pixel value
X : the clean image
X" :the generated image

MSE : the mean square error

Introduction of Machine Learning Security: Ch02

43

Evaluation

Altack Qost

* Frechet Inception Distance (FID)

FID = — |13
* Distance between the original and i = kel L
attack image when successful evasion +Tr (Ex +3,+ Z(szxl)i)
* Lower FID, better attack performance ,
X :the clean image
x’ :the generated image
: f
* Learned Perceptual Image Patch £ | covariance matric of a
Slmllarlty (LP'PS) Tr : sum of the diagonal

* Distance between the original and
attack image in the feature space at
multiple layers of a pretrained network.

* Lower LPIPS, higher perceived similarity,
better attack performance

elements of the matrix
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Defense

* Pre-processing
* Detection

. oo L] -
* Cleaning I : :
. 1 | CIaSS|fy| 1
* Robust Learning ! m | 4— :
et
. U
s Parameter Updating | : :S:,fsz !
. 1 T d Model
* Structure Selection L e e Trained Model ¥ ]
Build robust model Check
sample
Introduction of Machine Learning Security: Ch02 46

Defense. Pre-Processing

Defense: Pre-RProcessing

Detecmom. Sample

* Characteristics of clean and
adversarial samples should be
different

* Adversarial examples tend to
occur in uncertain regions

Uncertain area ¢ EXpIICIt MethOd
(blind-spot) . Evaluat|on criteria

* Implicit Method
* Rely on a classifier

Sample / Model

Clean

* Far away from training data
* No information is provided

Suspect ]

mem  Suspect

Clean e
Sample / Model Purification th

Introduction of Machine Learning Security: Ch02 a7 Introduction of Machine Learning Security: Ch02 48




Refehse Pre-Rie sing: ‘Evasion = Refehse Pre- e sing: ‘Evasion

EADMFWIDetgctmww Sample By AphgmlDQtwgtmww Sample
* Trained Autoencoder (AE) is used to reconstruct a * Squeezed Output Difference
Samp|e by clean Samp|es * Difference of output on original and transformed images
« Reconstruction Error AE * Two kinds of feature squeeze techniques are considered
« Reconstruction Error on an llx = (x)”p * X is an attack when max (d(x, xsqueezel),d(x, xsqueezez)) is large, where
adversarial sample is larger d(x' xsqueeze) = ”f(x) - f(xsqueeze)||1

* x is an attack when the error is large squeezel

* Probability Divergence JSD (f ) Il f(AE (x))) Color Depth Reduction
* Jensen-Shannon divergence (JSD) 1 1 ?c:glb:t:;:nzrs(g;g‘:h .... ....
quantifies the similarity between x JSDPQ) =5 DPIM)+5D(M 1 Q)

and its reconstruction in the feature Kullback-Leibler 1y (p || 9) = Z P(x)log( (x )) squeeze?
space (f) Divergence oy Q(x) Spatial Smooth g sl ot raniseal smseth
H H a mixture distribution _1
* x is an attack when JSD is large ofP and O M=2(P+Q) .
Chen 12017, ; s Introduction of Machine Learning Security: Ch02 49 [ o Introduction of Machine Learning Security: Ch02 50

Defense: Pre-Rrocessing: Evasion S L' fense: Pre-RProcessing: Ex
MT“)MCw[i~T@ct\rw Sample Pavge 7ﬂ>hcw[letec
* Reject uncertain samples N e N * Face Liveness Detection = 20 Spoofing Altack
* Train a detector -_’ okt (s [ oo " " I—ﬁ'm Photo Attack)
3 I N o * One camera, no additional . ) s

* For whole model

Wi Atk hardware \ '
* For each class o o[> e * No depth information . .
* Set confident value thresholds . . "
* Flash is applied to enhance the -

SVM-RBF (no reject) SWVM-RBF (higher rejection rate) H
- - ' PR i difference between real and
of the clussifier
I v fake persons
= = = bousdaries
"0 * Only available for 2D attack
000 Natural data 3 . il
2 M XX Perurbed data |
Subspaces
i) [ i
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Defense: Robust Model

Defense: Robust Model Swq | Adversarial Learning
* Build a model aiming to reduce the influence of attack * Basic idea: Consider additional regularization terms in
on decisions the objective function
* Adversarial Learning E = Err + Adv

* Evasion: Increase attack cost/difficulty

* Poisoning: Reduce influence of contaminated samples ) o
« Structure * Two kinds of regularization:

* Feature Selection * Obfuscated Gradient
* Ensemble * Adversarial Term (Increase Manipulation Cost)

Introduction of Machine Learning Security: Ch02 53 Introduction of Machine Learning Security: Ch02 54

Defense: Robust Model = Defense: Robust Model
54 4 . . e p! & > A ~
Obfuscated Gradient B vg Obfuscated Gradient
* Penalizes Iarge gradients Normal model (Adversarial accuracy: 0.3%) Defended model (Adversarial accuracy: 44.7%)
= S ——N 2
minL(g(x),y) + A||Vf ()] i (RGN
gradient Adversarial ,; e :.'.' =t 2, , \ & __\\1) ))

Training

* Mislead crafting in adversarial \ > e I e e e m T R A e i, e o

attack J
Ax Traditional il .
Training il

Random Adversary Random Adversary
Perturbation Perturbation Perturbation Perturbation
ne Learning Security: Ch02 55 Introduction of Machine Learning Security: Ch02 56
o (op. 274283 PMIR Vo et a, Iteroreting and Evaluaing NN Robustness, ICAI 2019




Defense: Robust Model
Muq aTed Cradient

Defense: Robust Model

* However, obfuscation can be solved easily by training a
surrogate model

fx) e

flx)
' Generate Retrain
1 ﬁ ﬁ
Self-Collected
Training Set

X X X

Model with gradient
penalty

Surrogate model

 simon-Gabril, Y Olvir L et
roiye, N Caring D Wagner (3015)0bfu

ne Learning Security: Ch02 57
examples. I: nternationa conference on machine learning (pp. 274-283). PMLR

Ad\/ewmm\ Paye e

* A trained model should work well on both clean and attack
samples

* Attack samples is generated for each training sample
* Time complexity of attack sample generation is large

j(&, z,y) =alJ(@,z,y)+ (1 - af){(ﬂ,m + esign (V. J(0, x, yD ;

Y
Error on attack samples

Error on clean samples

Bai T, Luo |, Zhao J (2023) Recent Advances in Adversari
Goodfellow 1, Shiens J, Szegedy C (2015) Explaining anc
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= Rc st Model: Adversarial Term

DQ} Jst ULUW\W%UQD

Defense: Robust Model: Adversarial Term

* Minimize the error and maximize the manipulation

minmax L, (x + Ax, y)
w o |[Ax]|

Madry et ol ICLR 2018 (https:/;

Fast AT (NeurlPS 2020, htps://t
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Feaﬂ lm el w@ﬂ g

* Increase the diversity of attack samples
* Different views
* Based on several pre-trained models

Clean
S I

Attack Static amples

I~ Pre-Train Model 1
l‘_. Atta(.:k Static
Pre-Train Model 2 TrainingSet > Model

Attack Static

N

Pre-Train Model k

Xu W, Evans D, Qi ¥(2017) Feature squeezing: Detecting adversarial

Introduction of Machine Learning Security: Ch02 60
examptes in deep neural networks. I: NDSS




Defenst el: Adversarial Term

Dli\/;er}“‘rty of Attack Samples

* Increase the diversity of attack samples

* Different attack strengths for samples g |[& -

* Avoid pushing an attack sample
to another class

.l-" = \"‘\Iiﬂ
.*\g,)/@
* Different attack strengths for training iterations

* Adversarial term may dominate at beginning
* Premature model may be evaded easily
* Increase PGD iterations during training

nets. In: arXiv Introduction of Machine Learning Security: Ch02 61

Shafahi A, Nojibi M, Ghiasi A(2019) Adversarial training

Adversarial Tern

< Obt Peducﬂo

* Crafting adversarial samples is time
consuming
* Training set is usually large

* Free Adversarial Training

* Perturbing a sample and updating the
model simultaneously

* Using incompletely crafted
samples to update the model

g for freel. In: arkiv

o

\,
~—=

-

:_da_‘:n

Geners(e

| Update

Geners(e

, Update

Generate

Update

Generate
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Robust Learning

Domain Knowledge

* Improve the model by domain knowledge on the class
relationships
* A natural way to spot incoherent predictions

. E_g_ ¥r,  CAT(x) = ANIMAL(z),
Yz, MOTORBIKE(z) = VEHICLE(z) ,
W,  VEHICLE(xr) = —ANIMAL(x),
We,  CAT(r)\ ANIMAL(r)V MOTORBIKE(x) \ VEHICLE(x)

Penalty (>0) associated to the
T-Norm-based constraint
from the hth formula

) 1 l l+u m
min = - 37 Ly (600, ¥4 D2 D" A Lo(on(E0x)| Al
=1 j=1h=1

Constraint loss
(can be thresholded)

}_’ ml Main classes
g "I
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Prediction Loss

Logical
constraints

Robust Learning
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Defense: Robust Model

Structure: Feature Selection

Defense: Robust Model

Structure: Feature Selection

* Weight evenness increases robustness
* Influence of feature on decisions should be even
* More features should be manipulated to change decisions
0.8
drug

discount &b

* Feature selection may reduce robustness
* Weight of unselected features is 0
* Feature weights are less even
* Evasion may requires less modification
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* Adversary-aware Feature Selection
* Maximize error and robustness

argmax Accg+ YRp
ac{o.1}d
st XY 8 =m

where d: feature number, 0 : feature set,

0 100 200 300 400 500

Number of Selected Features

m : cardinality of feature subset, Acc : accuracy, 12 == " T,
R : robustness estimation, y : tradeoff z '." .';
. . . . B
* Most discriminative features are not selected
. . . . . opeg e T s
* Variance of discriminative abilities of PR R
selected feature decreases, L o 0 — wars
i.e. weights more even
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Defense: Robust Model

Structure: Ensemble

* Weight evenness can be enhanced
by ensemble
* Bagging (Samples)
Each base classifier is trained
with a bootstrap replication of
the original training set

* Random Subspace method (Features)

Each base classifier is trained wors-case aiack

with different random feature pe N [

subsets 21\ -
* Simple average is used a fusion T N

attack stangh
Non worst-case attack
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