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• Formulation: Attack Loss / Attack Cost

• Attack Sample Crafting

• Imperfect Knowledge
• Surrogate Model
• Query Attack

• Defense
• Pre-processing
• Robust Model
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Evasion Attack

• Bypass a defensive system 
by modifying samples

• General speaking, 
evasion attack misleads 
trained systems by 
camouflaging samples in 
the inference phase
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Evasion Attack

• How to mislead a trained model?

Introduction of Machine Learning Security: Ch02 4

Training

Model Decision

Reality SampleSensing

Inference

Learning



Evasion Attack

• Mislead the decision of a trained 
classifier by manipulating a sample in 
the inference phase

• How to determine ?
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3 VS 7
Classification

Classified as 3

Original Sample

Classified as 7

Attack Sample

Evasion Attack

• Which attack is better?
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Objective Function

• Two factors of sample crafting
•  Attack Impact: Influence to the output
•  Attack Cost: Change on a sample

• Formulate as a multi-objective optimization
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Loss between the output of the 
target model on attack sample and 

the target class
(How close to your expected attack)

Change of a sample

: the original sample: the target class

: manipulation �: the target model

Objective Function

Attack Loss

• 2-Class problem 
• The target class is obvious

• Class 1 > Class 2 or    Class 2 > Class 1

• Multi-Class problem
• Generic Attack

• Misclassification
• Any class different from the original one 
• Usually the class which is most easily misled

• Class-specific Attack
• Selected target class
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Objective Function

Attack Loss

• Loss function (L)
1. Confidence value of the target class

2. Difference between the confidence values 
between the target class and another one 
with the largest confidence value
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Two-Class Problem 

Multi-Class Problem 

�: the estimated confidence output of the class i

: the target class

��
�

Objective Function

Attack Cost

• -norms 

• � number of non-zero elements (not convex)
• limit the number of attack feature (sparse attack)

• � � � +…+ �

• � �
�

�
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�

•
∞ �����

�

• Minimize the maximum change to any features (dense attack)
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Objective Function

Attack Cost

• Different p-norm functions on 
the adversarial noise (

) generate different 
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Objective Function

Attack Cost

• One-Pixel / Few-Pixel Attack
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�(�) � : count non-zero elements

� � = ��, ��, … , �� : n is number of features

�: number of modified features

J Su, DV Vargas, K Sakurai(2019) One pixel attack for fooling deep neural networks. In: IEEE Transactions on Evolutionary Computation 
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Objective Function

Attack Cost

• Control the attack features and their 
magnitudes separately and precisely

• � vector of perturbation magnitudes

• � vector of perturbed positions

Introduction of Machine Learning Security: Ch02 13
Y Fan, B Wu, T Li(2020) Sparse Adversarial Attack via Perturbation Factorization. In: ECCV
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no more than 
k features

Adversarial Noise
(∆� = � ⊙ �)
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Objective Function

Attack Cost

• Most adversarial attacks 
add extra disturbing 
information on clean 
images explicitly

• AdvDrop attacks by 
dropping existing 
information of images

Introduction of Machine Learning Security: Ch02 14Duan, R., Chen, Y., Niu, D., Yang, Y., Qin, A. K., & He, Y. (2021). Advdrop: Adversarial attack to dnns by dropping information. In Proceedings of the IEEE/CVF 
International Conference on Computer Vision (pp. 7506-7515)
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Objective Function

Tradeoff

• Attack Impact and Attack Cost 
are correlated

• Smaller sample change yields 
larger attack loss, vice versa

• Smaller attack loss yields larger 
sample change, vice versa
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Objective Function

Formulation

• Multi-objective problem can be formulated as
1. Minimize Attack Loss

• Maximize damage with a fixed attack cost

2. Minimize Attack Cost
• Minimize the attack cost for an attack damage
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Objective Function

Formulation

• Multi-objective problem can be formulated as
3. Tradeoff Solution

• Maximize damage with a fixed attack cost

• When  , only is focused

• When  , only is focused
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Attack Sample Crafting

Gradient Descent

• Algorithm

Δ 0 = 0
i = 0
Do

i = i + 1
Δ i+1 = Δ i -  i

Δ i+1 = constraint(Δ i+1)
While i <= n

Initialize delta x

Initialize counter i

Counting

Limit i+1 
by constraints

Update i+1 
according 

to gradient at i

Update n times
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Attack Sample Crafting

Gradient Descent

• One-Step Method
Fast Gradient Sign 
Method (FGSM)

• n = 1 : Cost 

• Multi-Step Method
Projected Gradient 
Descent(PGD)

• n > 1 : Cost 

Introduction of Machine Learning Security: Ch02 19IJ Goodfellow, J Shlens, C Szegedy(2014) Explaining and harnessing adversarial examples. In: arXiv
A Madry, A Makelov, L Schmidt(2017) Towards Deep Learning Models Resistant to Adversarial Attacks. In: arXiv 

Class 1Class 2 Class 2

f (x) x

x’

x

Class 1Class 2 Class 2

x

f (x) x

x’

Attack Sample Crafting

Look Natural?

• Changing g(x) is good enough?
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Class 1Class 2 Class 2

f (x)
x1

x1’

x2

x2’

Crafted samples are very different 
from the real samples of another class



Attack Sample Crafting

Look Natural? Density Estimator

• Not only cross the decision 
boundary but also close to the 
target class

• Penalize x’ in low density 
regions

Introduction of Machine Learning Security: Ch02 21
B Biggio, I Corona, D Maiorca(2013) Evasion Attacks against Machine Learning at Test Time. In: ECML

Mislead the model to classify +1 as -1 

Attack with 
Limited Knowledge

22



Limited Knowledge

• Gradient method for crafting is 
available only if the target model w 
is known (which is the most secure 
information)

• i.e.  w( + , t)

• What can we do when the detail of 
target model is unknown?

• No gradient can be computed
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Sample: 

Target Class: y

Target Model: w

Gradient 
Method

Methods

1. Surrogate Model + Attack Transfer
• Assumption: Samples for training can be somehow obtained
• Train a surrogate model to replace the target one

2. Query Attack
• Assumption: the target model can be accessed
• Craft attack samples by querying the target models
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Attack Method: Surrogate Model

Procedure

• Aim to approximate the target 
model

• The surrogate model should be 
convenient for crafting

• i.e. differentiable 

• More information yields better 
approximation

• Key Challenge: Transferability
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Collect samples for training

Build a surrogate / substitute 
model 

Attack on the trained 
surrogate model according to 

white-box attack methods

Transfer the attack sample to 
the target model

Attack Method: Surrogate Model

Incomplete Training Set

• Build Surrogate / Substitute model by incomplete training set
• Greybox Attack: Complete / Partial training set

• Blackbox Attack:  Self-collected data in the same application 
(but maybe different from the training samples used in target model)

• Query of the targeted model is allowed
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Self-Collected 
Training Set

Surrogate 
Model

Training

Target Model

Query

Label

x
y'

Collect
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Surrogate 
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Greybox
Attack
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Attack Method: Surrogate Model

No Training Set

• Data-Free Model Extraction 
• Student aims to approximate to Victim (target model) : reduce Loss

• Generator generates samples to increase the difference between 
victim and student : increase Loss

• Student and Generator are in opposition

Introduction of Machine Learning Security: Ch02 27Truong, J. B., Maini, P., Walls, R. J., & Papernot, N. (2021). Data-free model extraction. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition.

Attack Method: Surrogate Model

Transferability

• Attack Transferability is important requirement
• Reduce the influence of difference between the real and 

surrogate models on attack performance
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Surrogate 
Model

Target 
Model

Adversarial 
Sample

Attack Success

Can it attack successfully??



Attack Method: Surrogate Model

Transferability

• Experimental results on attack 
performance of attack samples 
generated by Surrogate (Source) 
model on Target model

• DNN: Deep Neural Network
• LR: Linear Regression
• SVM: Support Vector Machine
• DT: Decision Tree
• kNN: k nearest neighborhood 

• Different models behave 
differently

Papernot et al., Practical Black-box Attacks against Machine Learning, AsiaCCS 2017
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Attack Method: Surrogate Model

Transferability

• Transferability Factors 
• Size of Input Gradient ()

• Larger gradient yields large modification, usually generate larger 
attack impact

• Gradient Alignment ()
• Larger similarity of the input gradients of the loss function of the 

target and surrogate models is better for attack

• Variability of the loss landscape ()
• Surrogate loss functions that are stabler and lower variance may 

find better a local optima (better attack) 

Introduction of Machine Learning Security: Ch02 30
Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019



Attack Method: Surrogate Model

Transferability

• Model complexity is important to transferability

• Two main factors
• the complexity of the target model

• the complexity of the surrogate model
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Below a certain threshold 
(i.e., the dotted line), the 
point is correctly classified, 
otherwise it is misclassified

Successful 
Attack

Failed 
Attack

Red Point: Attack Sample crafted according 
to High-Complexity Surrogate

Blue Point: Attack Sample crafted according 
to Low-Complexity Surrogate

Larger x

Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019

Attack Method: Surrogate Model

Transferability

• Attack Sample crafted 
according to High-
Complexity Surrogate may 
not able to fool the target 
model
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Red Point: Attack Sample crafted according 
to High-Complexity Surrogate

Blue Point: Attack Sample crafted according 
to Low-Complexity Surrogate

Successful 
Attack

Failed 
Attack

Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019



Attack Method: Surrogate Model

Transferability

• Maximum Confidence Attacks 
might better transfer, but more perturbation is needed

• Minimum Distance Attacks 
are likely to fail because decision boundary is different

Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019
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Attack Method: Surrogate Model: Transferability

Enhance Transferability

• Image transformation of a model may 
reduce attack ability

• Adversarial Transformation Network 
(ATN) is built aiming to lose effect of 
image transformation on sample 
attack

• Attack sample is crafted to 
attack a model with / without ATN
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Attack Method: Surrogate Model: Transferability

Enhance Transferability

• Many studies indicate that attention 
heatmaps of models on an object 
are similar 

• Aim at manipulating the heatmap
• Magnitude suppression
• Distraction
• Decrease the gap between 

1st and 2nd largest classes
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Sizhe Chen, Zhengbao He, Chengjin Sun(2020) Universal adversarial attack on attention and the resulting dataset damagenet.  In: IEEE Transactions on Pattern Analysis and Machine Intelligence

Attack Method: Query Attack

Procedure
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• Assume the target model can be 
queried

• More information provided by the 
model (Confidence output > Label 
output) enhance the crafting

• Key Challenges: 
• Reduce the query number
• Minimize the modification

Query the current sample

Obtain its output 
(Confidence/Label Level)

Refine the sample 
according to the outputs

Decision Plane
(cannot obtained by attacker)

Successful 
Attack Sample

Targeted 

Sample

x1

x2

x3
x4

Target Model

Query

Query Result

x

y'

Craft

Query

Query

Query
Query

Query

x5
Query



Attack Method: Query Attack

Decision-Based Adversarial Attacks

• Start from a randomly 
selected a point in the 
target class

• Moving the point toward
to the original image until 
touch the boundary

• Get closer to the original 
image by searching on the 
surface of the target class 
region
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Wieland Brendel, Jonas Rauber, Matthias Bethge(2017)Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models. In: arXiv

Attack Method: Query Attack

Decision-Based Adversarial Attacks
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Wieland Brendel, Jonas Rauber, Matthias Bethge(2017)Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models. In: arXiv



Attack Method: Query Attack

ZOO: Zeroth order attack

• Estimate the second-order partial derivative without 
surrogate

• Querying the model around a very small proximity for 
each dimension
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h : a small constant (e.g. h = 0.0001)
ei : a standard basis vector with only 

the i-th component as 1

Second-Order 
Partial Derivative

First-Order
Partial Derivative

Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models, AISec 2017

Attack Method: Query Attack

Genetic Algorithms

• Maintain M best samples as a pool
• Cross-over two randomly selected samples

• Mutation

• Query scores for new samples

• Stop until a solution is found
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Attack Evaluation
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Evaluation

Attack Loss 

• Attack success rate (ASR)
• Ratio of successful evasion when the 

sample change is fixed
• Larger ASR, better attack performance

• Average Confidence for Adversarial Class 
(ACAC)

• The average probability of all 
misclassification categories for all samples 
when the attack is successful

• Larger ACAC, better attack performance
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�(��
�) : the i-th sample being classified 

as category a
�(��

�) : the probability that the i-th 
sample is classified as category a
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���: Successful Attack Number
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Evaluation

Attack Loss 

• Peak signal-to-noise ratio (PSNR)
• Calculates the signal-to-noise ratio of original and attack 

images after successful evasion
• Larger PSNR, better attack performance
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M : the maximum pixel value
x : the clean image
X’ : the generated image
MSE : the mean square error

Evaluation

Attack Cost

• Frechet Inception Distance (FID)
• Distance between the original and 

attack image when successful evasion
• Lower FID, better attack performance

• Learned Perceptual Image Patch 
Similarity (LPIPS)

• Distance between the original and 
attack image  in the feature space at 
multiple layers of a pretrained network.

• Lower LPIPS, higher perceived similarity, 
better attack performance
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x : the clean image
x’ : the generated image

� : mean of a

� : covariance matric of a
Tr : sum of the diagonal 

elements of the matrix



Defense Methods
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Defense

• Pre-processing
• Detection
• Cleaning

• Robust Learning
• Parameter Updating
• Structure Selection

Introduction of Machine Learning Security: Ch02 46

Training 
Set

Training

Trained Model

Unseen 
Sample

Classify

x

Check 
unseen 
sample

Build robust model



Defense: Pre-Processing

• Characteristics of clean and 
adversarial samples should be 
different

• Adversarial examples tend to 
occur in uncertain regions

• Far away from training data
• No information is provided
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Uncertain area
(blind-spot)

Suspect

Suspect

Defense: Pre-Processing

Detection: Sample 

• Explicit Method
• Evaluation criteria

• Implicit Method
• Rely on a classifier
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Attack
Detection

Clean Attack

Clean 
Sample / Model Purification Reject

Sample / Model



Defense: Pre-Processing: Evasion

Explicit Detection: Sample 

• Trained Autoencoder (AE) is used to reconstruct a 
sample by clean samples
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Meng D, Chen H(2017) Magnet: a two-pronged defense against adversarial examples. In: ACM SIGSAC conference on computer and communications security 

• Reconstruction Error
• Reconstruction Error on an 

adversarial sample is larger

• is an attack when the error is large

• Probability Divergence
• Jensen-Shannon divergence (JSD) 

quantifies the similarity between x 
and its reconstruction in the feature 
space ( )

• is an attack when JSD is large

Kullback–Leibler 
Divergence

��� � ∥ � =
1

2
� � ∥ � +

1

2
� � ∥ �

� =
�

�
� + �

��� � ∥ � = � � � ���
�(�)

�(�)
�∈�

a mixture distribution 
of P and Q

Defense: Pre-Processing: Evasion

Explicit Detection: Sample 

• Squeezed Output Difference
• Difference of output on original and transformed images

• Two kinds of feature squeeze techniques are considered

• is an attack when �������� �������� is large, where 

������� ������� �

Color Depth Reduction
Number of bits in each 
color channel (RBG)

Spatial Smooth

Introduction of Machine Learning Security: Ch02 50
Xu W, Evans D, Qi Y(2017) Feature squeezing: Detecting adversarial examples in deep neural networks. In: NDSS 
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Defense: Pre-Processing: Evasion

Implicit Detection: Sample 

• Reject uncertain samples
• Train a detector

• For whole model

• For each class

• Set confident value thresholds
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Model

Class 1

Class 3

Attack 
Class

Detector
(Class 1)

Detector
(Class 2)

Detector
(Class k)

Classifier

…

Attack / 
Clean

Attack / 
Clean

Attack / 
Clean

Predicted 
Class

Grosse, Kathrin, et al(2017) On the (statistical) detection of adversarial examples. In: arXiv
Yin, Xuwang, Soheil Kolouri, Gustavo K. Rohde(2019) Adversarial example detection and classification with asymmetrical adversarial training. In: arXiv
Melis M, Demontis A, Biggio B, et al. (2017)Is Deep Learning Safe for Robot Vision? Adversarial Examples Against the iCub Humanoid. In: ICCV Workshops

Defense: Pre-Processing: Evasion

Implicit Detection: Sample

• Face Liveness Detection

• One camera, no additional 
hardware

• No depth information

• Flash is applied to enhance the 
difference between real and 
fake persons

• Only available for 2D attack

Introduction of Machine Learning Security: Ch02 52
PPK Chan, W Liu, D Chen(2017) Face liveness detection using a flash against 2D spoofing attack. In: IEEE Transactions on Information Forensics and Security, 13(2), 521-534 



Defense: Robust Model

• Build a model aiming to reduce the influence of attack 
on decisions

• Adversarial Learning 
• Evasion: Increase attack cost/difficulty

• Poisoning: Reduce influence of contaminated samples

• Structure
• Feature Selection

• Ensemble
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Defense: Robust Model

Adversarial Learning

• Basic idea: Consider additional regularization terms in 
the objective function

• Two kinds of regularization:
• Obfuscated Gradient
• Adversarial Term (Increase Manipulation Cost)

Introduction of Machine Learning Security: Ch02 54Bai T, Luo J, Zhao J (2023) Recent Advances in Adversarial Training for Adversarial Robustness. In: IJCAI
Goodfellow I J, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR



Defense: Robust Model

Obfuscated Gradient

• Penalizes large gradients

• Mislead crafting in adversarial 
attack

Introduction of Machine Learning Security: Ch02 55CJ Simon-Gabriel, Y Ollivier, L Bottou (2018)Adversarial Vulnerability of Neural Networks Increases with Input Dimension. In: ICLR
A Athalye, N Carlini, D Wagner (2018)Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International conference on machine learning (pp. 274-283). PMLR

gradient Adversarial
Training

 Traditional
Training

Large 

Gradient

Small

Gradient

Defense: Robust Model

Obfuscated Gradient
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Random
Perturbation

Adversary
Perturbation

Normal model (Adversarial accuracy: 0.3%) Defended model (Adversarial accuracy: 44.7%)

Random
Perturbation

Adversary
Perturbation

Yu et al., Interpreting and Evaluating NN Robustness, IJCAI 2019



Defense: Robust Model

Obfuscated Gradient

• However, obfuscation can be solved easily by training a 
surrogate model

Introduction of Machine Learning Security: Ch02 57

x'

f (x)

x
xx'

f (x)

x
x

CJ Simon-Gabriel, Y Ollivier, L Bottou (2018)Adversarial Vulnerability of Neural Networks Increases with Input Dimension. In: ICLR
A Athalye, N Carlini, D Wagner (2018)Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International conference on machine learning (pp. 274-283). PMLR

Model with gradient 
penalty

Surrogate model

Self-Collected 
Training Set

RetrainGenerate

Defense: Robust Model

Adversarial Term

• A trained model should work well on both clean and attack
samples

• Attack samples is generated for each training sample
• Time complexity of attack sample generation is large

Introduction of Machine Learning Security: Ch02 58Bai T, Luo J, Zhao J (2023) Recent Advances in Adversarial Training for Adversarial Robustness. In: IJCAI
Goodfellow I J, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR

Error on clean samples Error on attack samples



Defense: Robust Model: Adversarial Term

Robust Optimization

• Minimize the error and maximize the manipulation 

Madry et al., ICLR 2018 (https://arxiv.org/pdf/1706.06083.pdf)

Fast AT (NeurIPS 2020, https://arxiv.org/abs/2007.02617)

Successful 
Attack

Introduction of Machine Learning Security: Ch02 59

Defense: Robust Model: Adversarial Term

Feature squeezing

• Increase the diversity of attack samples

• Different views
• Based on several pre-trained models

Introduction of Machine Learning Security: Ch02 60

Attack 
Samples

…

Clean 
Samples

Training Set Model

Attack Static 
Pre-Train Model 1

Attack Static 
Pre-Train Model 2

Attack Static 
Pre-Train Model k

Xu W, Evans D, Qi Y(2017) Feature squeezing: Detecting adversarial examples in deep neural networks. In: NDSS 



Defense: Robust Model: Adversarial Term

Diversity of Attack Samples

• Increase the diversity of attack samples

• Different attack strengths for samples
• Avoid pushing an attack sample 

to another class

• Different attack strengths for training iterations
• Adversarial term may dominate at beginning

• Premature model may be evaded easily

• Increase PGD iterations during training

Introduction of Machine Learning Security: Ch02 61Balaji Y, Goldstein T, Hoffman J(2019) Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets. In: arXiv
Zhang J, Xu X, Han B(2020) Attacks which do not kill training make adversarial learning stronger. In: PMLR 

Defense: Robust Model: Adversarial Term

Cost Reduction

• Crafting adversarial samples is time 
consuming

• Training set is usually large

• Free Adversarial Training
• Perturbing a sample and updating the 

model simultaneously

• Using incompletely crafted 
samples to update the model

Introduction of Machine Learning Security: Ch02 62
Shafahi A, Najibi M, Ghiasi A(2019) Adversarial training for free!. In: arXiv 
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Robust Learning

Domain Knowledge

• Improve the model by domain knowledge on the class 
relationships

• A natural way to spot incoherent predictions

• E.g.
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Constraint loss 
(can be thresholded)

image
Main classes

Logical 
constraints

Prediction Loss

Penalty (>0) associated to the 
T-Norm-based constraint 
from the hth formula

Robust Learning

Domain Knowledge

Introduction of Machine Learning Security: Ch02 64

Attack Sample



Defense: Robust Model

Structure: Feature Selection

• Weight evenness increases robustness
• Influence of feature on decisions should be even
• More features should be manipulated to change decisions

• Feature selection may reduce robustness
• Weight of unselected features is 0
• Feature weights are less even
• Evasion may requires less modification

Introduction of Machine Learning Security: Ch02 65
Kolcz A, Teo CH (2009) Feature weighting for improved classifier robustness. In: 6th conference on Email and Anti-Spam (CEAS)
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0.4
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-0.2
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discount

thanks

0.4

0.3

-0.4

-0.3

Defense: Robust Model

Structure: Feature Selection

• Adversary-aware Feature Selection
• Maximize error and robustness

• Most discriminative features are not selected
• Variance of discriminative abilities of 

selected feature decreases, 
i.e. weights more even
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where d : feature number, : feature set,
m : cardinality of feature subset, Acc : accuracy,
R : robustness estimation, : tradeoff

Fei Zhang, Patrick PK Chan, Battista Biggio, Daniel S Yeung, Fabio Roli(2015) Adversarial feature selection against evasion attacks. In: IEEE transactions on cybernetics



Defense: Robust Model

Structure: Ensemble

• Weight evenness can be enhanced 
by ensemble

• Bagging (Samples)
Each base classifier is trained 
with a bootstrap replication of 
the original training set

• Random Subspace method (Features)
Each base classifier is trained 
with different random feature 
subsets

• Simple average is used a fusion
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x

f1 f2 fL
…

Fusion

result

B Biggio, G Fumera, F Roli(2010) Multiple classifier systems for robust classifier design in adversarial environments. In: Journal of Machine Learning and Cybernetics 

Non worst-case attack

worst-case attack


