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* Formulation: Attack Loss / Attack Cost
» Attack Sample Crafting

* Imperfect Knowledge
* Surrogate Model
* Query Attack

* Defense

* Pre-processing
* Robust Model
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* Bypass a defensive system
by modifying samples

* General speaking,
evasion attack misleads
trained systems by
camouflaging samples in
the inference phase
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e How to mislead a trained model?

Learning
(1)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

IO Y

Training

%

E Reallty Sensing Sample galll E
. = :f we ' % 3
s Inference Model Decision _
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* Mislead the decision of a trained
classifier by manipulating a sample in
the inference phase

e How to determine Ax?

Original Sample

X

3VS7
Classification

Classified as 3 Classified as 7
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e Which attack is better?

Successful

Attack? No Yes Yes Yes
oulati Small Small Large Very Large
Manipulation Perturbation Perturbation Perturbation Perturbation
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Opjective Function

* Two factors of sample crafting
« T Attack Impact: Influence to the output
« | Attack Cost: Change on a sample

* Formulate as a multi-objective optimization
min(L(x + Ax, t, f,), [|Ax]1)
X

Loss between the output of the Change of a sample
target model on attack sample and
the target class
(How close to your expected attack)

Ax : manipulation fw: the target model
t : the target class x : the original sample
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Obpjective Function

Altaek/ eSS

* 2-Class problem 7
* The target class is obvious [
*Class1>Class2 or Class2>Class1 o
* Multi-Class problem By /‘\ ]
* Generic Attack A
* Misclassification i 7
* Any class different from the original one wemsx  fix)

* Usually the class which is most easily misled coes”
* Class-specific Attack
* Selected target class [ T ) ]
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Objective Function

Altaek/NeSS

* Loss function (L)

Estimated y ¥
1. Confidence value of the target class I
—(g:(x + 4x)) iy
2. Difference between the confidence values | [ /‘\ ]
between the target class and another one T\ - S
with the largest confidence value Multi-Class Problem
— (gt(x + Ax) — max g;(x + Ax)) f}

Probability or
Classifier Confidence ﬂ\

Estimates for each

t: the target class « (0l (@) . (e

gi: the estimated confidence output of the class i [ m
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Obpjective Function

Altae kRS

* p-norms |[x||,, 1 1
d p
”x”p — zlxilp wherep > 1 0
=1
* ||x||o = number of non-zero elements (not convex)
* limit the number of attack feature (sparse attack) 4 t

05 0 05
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10 10 10 10
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x|ly = lxg| + |x2[+..4 |x4] T
lxll, = 12012 + |z |2 4.+ x4 |2 H>
x|l = fgl.asglxil B N —

* Minimize the maximum change to any features (dense attack)
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Objective Function

Altae kKRS

* Different p-norm functions on
the adversarial noise (Ax =

Ix — x'|| ) generate different x"

Lo

B BER [

-
& EE

L, L, Ly L,
Original Dense Sparse Original Dense Sparse
Image Attack Attack Image Attack Attack
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Objective Function

Altae kRS

min  f(x +e(x))
st lle@llp <d

Cup(16.48%)
Soup Bowl[16.74%)

[le()]lo : count non-zero elements
e(x) = (e, ey, ..., €,): nis number of features

d: number of modified features

Teapot(24.99%)
Joystick(37.39%)

One-Pixel Attack
d=1

Nipple(

J Su, DV Vargas, K Sakurai(2019) One pixel attack for fooling deep neural networks. In: IEEE Transactions on Evolutionary Computation

Bassinet(16.59%)

Paper Towel(16.21%)

Hamster(35.79%)
42.365%)

Few-Pixel Attack
d>1

Introduction of Machine Learning Security: Ch02
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Objective Function

Altae kKRS

* Control the attack features and their
magnitudes separately and precisely  Benign image Our SAPF Attack

Adversarial Noise
Ax=8600G)
—

min 18O GIZ+AL(f(x+ 80 G),yy),
s.t. 1TG=k, Ge€ {0,1}¢
W_J

no more than
k features

« § € R%: vector of perturbation magnitudes
« G € {0,1}%:vector of perturbed positions
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Y Fan, B Wu, T Li(2020) Sparse Adver Attack via Perturbation Fact tion. In: ECCV

Obpjective Function

Altae kRS

 Most adversarial attacks

add extra disturbing
. ; g :
information on clean :
images explicitly

° AdVDrop attaCkS by Police van  6736B (|15%)
dropping existing g i 3

information of images

Macaw 11241B Vizsla 12180B (18%) Vizsla 104178 ([ 7%)

Clean image PGD Ours
Duan R, Chen, ¥, Niu D, Yan Y, Qi A. Ky & He, Y (2021) Advalrop: Adversarial attack todns by dropping information In Proceedings of the IEEE/CUF Introduction of Machine Learning Security: Ch02 14

Internation /C nf ren n Computer V n (pp. 7506 7515)



Objective Function
. min(L(x + Ax, t, f,,,), || Ax|[)
Tradeolt

 Attack Impact and Attack Cost

are correlated
* Smaller sample change yields 2
larger attack loss, vice versa 2 :
* Smaller attack loss yields larger '§ b
sample change, vice versa & g
~J

|| Ax]|
Attack Cost

15
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Objective Function )
' min(L(x + Ax, ¢, fi,), [1Ax[])

Formulation

* Multi-objective problem can be formulated as

1. Minimize Attack Loss 1
* Maximize damage with a fixed attack cost :::
min L(x + Ax, t, f,,) 5
s.t. ||Ax]|| e > =
2. Minimize Attack Cost ‘
* Minimize the attack cost for an attack damage fi
min |[|Ax]|| £
s.t. L(x+ Ax,t,f,) =e c =

16
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Objective Function

Formulation

* Multi-objective problem can be formulated as
3. Tradeoff Solution

* Maximize damage with a fixed attack cost 1
min o L(x + Ax, t, f;,) 1 | A
+(1 — o) 1 Ax] 1
=
e Ol
o : a tradeoff parameter (0 < o < 1) -
AttlLelftlilost

* Whena = 1, only L(x + Ax, t, f,,) is focused

* When o = 0, only ||Ax|| is focused
17
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Attack Sample Crafting

Cradient Descent

* Algorithm

Axo = 0 Initialize delta x

1 = 0 Initialize counter i

Do
1 =1 + 1 Counting

Update Ax..; according

AX; ., = AXy - OLVL('X + Axi' t, fw) to gradient at x + Ax,
AX;,, = constraint (Ax;, ;) Limit Ax,., by constraints

While 1 <= n Update n times

18
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Attack Sample Crafting

Oragtenteseonie

* One-Step Method
Fast Gradient Sign
Method (FGSM)

*N= 1 : Cost ¢ Class 2 Class 1 Class 2

* Multi-Step Method {p®
Projected Gradient
Descent(PGD)

en>1:Cost T

S —

Class 2 Class 1 Class 2

U Goodellow, J hiens, C Szegedy(2014) xplaining and har il examples n: oy Introduction of Machine Learning Security: Ch02 19
AMd , A Makelov, LShmd(ZOl7)Tw d Deep Leal gMd/ R 0 Advel ial Attacks. In: arXiv

Attack Sample Crafting

Look Natural?

* Changing g(x) is good enough?

Crafted samples are very different
from the real samples of another class

Class 2 Class 1 Class 2

Introduction of Machine Learning Security: Ch02 20



Attack Sample Crafting

Look Natural? Density Estitnator

* Not Only cross the decision Mislead the model to classify +1 as -1
boundary but also close to the
. ! N !
target class min f(x") —|p(x'|ly = —1)
. Pen_alize X" in low density st. |lx=x|| <e
regions

Belore attack (3 vs 7) After attack, g{x)=0 After attack, last iter.

; " 2 I i
10 10 10
15 15 i 15 ., s -
5 10 15 20 25 5 10 1520 25 5 10 15 20 25
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Attack with
Limited Knowledge-




Limited Knowledge

* Gradient method for crafting is

available only if the target model w Sample: x
is known (which is the most secure Target Class: y
information) Target Model: w
*i.e.V, L (x+Ax,t) ]
Gradient
* What can we do when the detail of Method [Reatd

target model is unknown?
* No gradient can be computed

Introduction of Machine Learning Security: Ch02 23

Methods

1. Surrogate Model + Attack Transfer
* Assumption: Samples for training can be somehow obtained
* Train a surrogate model to replace the target one

2. Query Attack
* Assumption: the target model can be accessed
* Craft attack samples by querying the target models

Introduction of Machine Learning Security: Ch02 24



Attack Method: Surrogate Model

Procegure

*Aim to apprOXimate the ta rget Collect samples for training
model

*The surrogate model should be Build a surrogate / substitute
convenient for crafting model
* i.e. differentiable

Attack on the trained

* More information yields better surrogate model according to
approximation white-box attack methods

. . .
Key Cha”enge' TranSferablllty Transfer the attack sample to
the target model

Introduction of Machine Learning Security: Ch02 25

Attack Method: Surrogate Model

Incomplete Training Set

* Build Surrogate / Substitute model by incomplete training set
» Greybox Attack: Complete / Partial training set

* Blackbox Attack: Self-collected data in the same application
(but maybe different from the training samples used in target model)

* Query of the targeted model is allowed

Greyboz ST\;?f;te Complete/Partial
Attac Training Training Set
Query

Blackbox Surrogate X —
Attack - STe'f‘,C,O"egtetd L g Y mm— T:rget Model
Training raining se Collect Label

Introduction of Machine Learning Security: Ch02 26



Attack Method: Surrogate Model

NoO Tralning set

 Data-Free Model Extraction
 Student aims to approximate to Victim (target model) : reduce Loss

* Generator generates samples to increase the difference between
victim and student : increase Loss

* Student and Generator are in opposition

—= [ata flow
—— Backprobagation
- - = CGradient approximation

z Generator f= - - -
G

Truong, J. B., Maini, P., Walls, R. J., & Papernot, N. (2021). Data-free model extraction. In Proceedings of the IEEE/CVF conference on Introduction Of Machine Learning SE’CUI’fI'y: Ch0o2 27
computer vision and pattern recognition.

Black-box access only

Attack Method: St

Tra mgfera b| \|ty |

* Attack Transferability is important requirement

e Reduce the influence of difference between the real and
surrogate models on attack performance

Adversarial Surrogate
Sample Attack Success
‘ I Target . r
' Can it attack successfully?”

Introduction of Machine Learning Security: Ch02 28




Attack Method: Surrogate Model

Transterapility

* Experimental results on attack
performance of attack samples
generated by Surrogate (Source)
model on Target model

* DNN: Deep Neural Network

o
=
=

- 38.27 836 20.72 -

'_
=

- 6.31 11.29 44.14

* LR: Linear Regression svml 251 519 15.67 4
* SVM: Support Vector Machine
* DT: Decision Tree

8.85

o
]

+ 0.82 3.31 5.11 4

* KNN: k nearest neighborhood

Source Machine Learning Technique

KNN} B 8216 82.95

* Different models behave ST .
d iffe re ntly Target Machine Learning Technique

Introduction of Machine Learning Security: Ch02 29

Papernot et al., Practical Black-box Attacks against Machine Learning, AsiaCCS 2017

Attack Method: Surrogate Model

Transterapility

* Transferability Factors

« Size of Input Gradient (T)

* Larger gradient yields large modification, usually generate larger
attack impact

« Gradient Alignment (T)

* Larger similarity of the input gradients of the loss function of the
target and surrogate models is better for attack

* Variability of the loss landscape (\L)

* Surrogate loss functions that are stabler and lower variance may
find better a local optima (better attack)

Introduction of Machine Learning Security: Ch02 30

Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019



Attack Metho

1ra mgferéb|\|ty

* Model complexity is important to transferability

* Two main factors
* the complexity of the ta rget model Red Point: Attack Sample crafted according

. to High-Complexity Surrogate
* the compIeX|ty of the Surrogate model Blue Point: Attack Sample crafted according

to Low-Complexity Surrogate

High-complexity Surrogate Low-complexity Surrogate

Successful )
} Attack Below a certain threshold

) - Failed point is correctly classified,
Attack otherwise it is misclassified
X x
>
Larger Ax
Introduction of Machine Learning Security: Ch02 31

Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019

Attack Metho

Tra mgfeké b| | |ty

High-complexity Surrogate High-complexity Surrogate

 Attack Sample crafted
according to High- b
Complexity Surrogate may AWAVAS
not able to fool the target -
model

Loss

Loss

°
[\ N\

Low-complexity Surrogate Low-complexity Surrogate

Loss
Loss
» \\\\\\

High-complexity Target Low-complexity Target

Red Point: Attack Sample crafted according ~ Successful
Attack

A

to High-Complexity Surrogate L 7l - 2l el
Blue Point: Attack Sample crafted according Failed e~ / \/J - B /
to Low-Complexity Surrogate Attack

Introduction of Machine Learning Security: Ch02 32

Demontis, Biggio et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019



Attack Method: Surrogate Model

Tramgferathty#

* Maximum Confidence Attacks
might better transfer, but more perturbation is needed

* Minimum Distance Attacks
are likely to fail because decision boundary is different

@ initial / source example

© minimum-distance black-box adversarial example
A minimum-distance white-box adversarial example
@ maximum-confidence black-box adversarial example
A maximum-confidence white-box adversarial example

surrogate classifier f (x) used to craft black-box adversarial examples

target classifier f(x) used to craft white-box adversarial examples

Introduction of Machine Learning Security: Ch02 33
Demontis, Biggio et al,, Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019

Attack Method: Surrogate Model. Transferability

Enhance Transferapility

* Image transformation of a model may e
reduce attack ability E ‘

* Adversarial Transformation Network v = (D)=
(ATN) is built aiming to lose effect of ‘ D | D

image transformation on sample

Adversarial Transformation Target Model

attack et
 Attack sample is crafted to P4
attack a model with / without ATN !':' DD
Lattack = J(f(x""),y) + vJ (f(T(x"")),y) Target Model

Introduction of Machine Learning Security: Ch02 34



Attack Method: Surrogate Model: Transferability

Enhance Transferapility

* Many studies indicate that attention

heatmaps of models on an object U

are similar
Gy

* Aim at manipulating the heatmap
* Magnitude suppression Lsupp(2) = ||A(, Yori) |1

b DiStraCtIOn . h(ﬁ{?, 'yori) h(wori)yori)
Ldstc(m) = &= ‘ R _ — A -
* Decrease the gap between maz(h(z, yori)  maw(h(Tor, Yori)

15t and 2" |argest classes

T
Liary (%) = ||h(2, Yori) ll1 — [[h(2, Ysec ()11

35

Intendictine ~EM~chine | eqrning Security: Ch02
attern Analysis and Machine Intelligence

Sizhe Chen, Zhengbao He, Chengjin Sun(2020) Universal adversarial attack on attention and the resulting dataset damagenet. In: IEEE Tra

Attack Method: Query Attack

Procegure

* Assume the target model can be
queried
* More information provided by the S s G
(Confidence/Label Level) '

model (Confidence output > Label

output) enhance the crafting
Refine the sample

* Key Challenges:

* Reduce the query number %
« . . . o . I i
T, d Decision Plane
° M Inimize th em Od |f| Cat Ion ;;gqei N Cost i(cannot obtained by attacker
N waeee®® S m——
x Query ‘s\
Query \ ‘\‘
— ue
X X QAxrzy successful
Craft * Target Model \ Query Qisry M’Attack Sample
x AX3 Query AX, 5,
y’ — \x/yx —|—>| GQUETV
Al
36

Query Result
Introduction of Machine Learning Security: Ch02



e Start from a randomly
selected a point in the
target class

* Moving the point toward
to the original image until
touch the boundary

* Get closer to the original
image by searching on the
surface of the target class

Input Dimension 1

starting image

region

Wieland Brendel, Jonas Rauber, Matthias Bethge(2017)Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models. In: arXiv

Single step
#1. random orthogonal step
#2. step towards original image

steps of the algorithm
/‘//
{ #1 _ et
. o
* == i \ ;ﬂl //,—f"'
ginal image P
\ classified correctly ~
classified incorrectly
(adversarial) classified correcily
Input Dimension 2

Intradurtion of Machine Learning Security: Ch02 37

80 calls 454 calls 711 calls 1053 calls 1229 calls

. 1.4e-01
2476 calls

EEN i _fhd)
8.0e-03 2.1e-03

8272 calls

5.6e-02
3470 calls

1.8e-02
4513 calls

1.7e-02
5601 calls

3.3e-04 1.7e-04 1.1e-04 7.7e-05 4.4e-05 6.1e-06

613 calls 2449 calls 4039 calls 5433 calls 13301 calls

18184 cails

20813 calls 23292 calls 56630 calls 67519 calls 155433 calis

Wieland Brendel, Jonas Rauber, Matthias Bethge(2017)Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models. In: arXiv

1828 calls

i b |
5.6e-04
42213 calls 200667 calls

Original

1.2e-06

Input Dememsicn |

15981 cails

416094 calls original

Single step
41, rundlum orthegemal stop
#2. step tuwands uriginal image

Introdurtion of Machine Learning Security: Ch02 38
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700 Zeerh<mxﬁ9rattack

* Estimate the second-order partial derivative without
surrogate

* Querying the model around a very small proximity for
each dimension

grand piano  black-box attack  Dutch oven

First-Order ;. () _ f(x+he) = f(x = he) n " . _ “
i = ~ >
Partial Derivative 0x; 2h - _

daisy black-box attack cup

Second-Order . 3% f(x) L fOxthe) —2f() + fx - hez) 70, i,
Partial Derivative %, h2 . - . =

h : asmall constant (e.g. h =0.0001)
e;: a standard basis vector with only
the i-th component as 1

Introduction of Machine Learning Security: Ch02 39
Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models, AlSec 2017

Attack Method: Query Attack

Gemenc/ﬂgoﬂthWB

* Maintain M best samples as a pool
* Cross-over two randomly selected samp
* Mutation
* Query scores for new samples
* Stop until a solution is found

Design variables

individual 2
Parents
[ATxJofoTaJoTo o aTaTelaof1] [eft2Jo]aof1TofoT1Ts]o o]o]
‘ l (1 A J
Cross-over ‘/
Children e <{——| stop? |[<——
[(1f1fofoJafof1fofofs]aofofo] [of1]2]ofafofoJof1]2]o]2]0]1] g
i s
[x]xfoJoJoTosJoJo aTsTofoJo] [ofafafofafofofoTa]afaTa]oTa]

Mutation . Mutation
New population Introduction of Machine Learning Security: Ch02 40



Attack Evaluation

Fvaluation

Attack LLoss

* Attack success rate (ASR) SAN
* Ratio of successful evasion when the ASR =
sample change is fixed

SAN: S ful Attack Numb
e Larger ASR, better attack performance N A et

* Average Confidence for Adversarial Class 1% i
(ACAC) ACAC = ;Z P(XD)p(xp)
* The average probability of all =1
misclassification categories for all samples  F(x{): the i-th sample being classified
H as category a
when the attack is successful P(X?) : the probability that the i-th
 Larger ACAC, better attack performance sample is classified as category a

Introduction of Machine Learning Security: Ch02 42



Evaluation

Altaek/NeSS

* Peak signal-to-noise ratio (PSNR)

* Calculates the signal-to-noise ratio of original and attack
images after successful evasion

 Larger PSNR, better attack performance

MZ
PSNR = 10 log,
91035 (x, x")
M :the maximum pixel value
X : the clean image
X" :the generated image

MSE : the mean square error

Introduction of Machine Learning Security: Ch02 43

Evaluation

Altae kRS

* Frechet Inception Distance (FID)

FID = ||pty — py 113
* Distance between the original and et = bz )
attack image when successful evasion LTy (Zx 43,4 Z(sz:x,)i)

* Lower FID, better attack performance _
x :the clean image

x" :the generated image
Uq : mean of a

* Learned Perceptual Image Patch S . covariance matric of
Slmllarlty (LPIPS) Tr :sum of the diagonal
* Distance between the original and elements of the matrix

attack image in the feature space at
multiple layers of a pretrained network.

* Lower LPIPS, higher perceived similarity,
better attack performance

Introduction of Machine Learning Security: Ch02 44



Detense Methods

Dertense

* Pre-processing

* Detection L.
* Cleaning i 'f i i
. assify
* Robust Learning g Trinive <« x 1
(]
* Parameter Updating E i;’;:;g :
e Structure Selection L e
Build robust model Check
sample

Introduction of Machine Learning Security: Ch02 46



Defense:; Pre-Processing

e Characteristics of clean and
adversarial samples should be
different

* Adversarial examples tend to
occur in uncertain regions
* Far away from training data
* No information is provided

Uncertain area
(blind-spot)

e Suspect

Introduction of Machine Learning Security: Ch02 47

Defense: Pre-Processing

Detection: Sample

* Explicit Method
e Evaluation criteria

* Implicit Method
* Rely on a classifier

Sample / Model

1Clean Attack
Clean 1 1
Purification t

Sample / Model

Introduction of Machine Learning Security: Ch02 48



Defense: Pre-Pr« iNng: Evasion

Explicit Detection; Sample

* Trained Autoencoder (AE) is used to reconstruct a
sample by clean samples

* Reconstruction Error lx — AE (),

e Reconstruction Error on an
adversarial sample is larger

* x is an attack when the error is large
* Probability Divergence JSD (f(x) I f(AE(X)))

* Jensen-Shannon divergence (JSD)

1 1
quantifies the similarity between x JSD(P Q) =5 DI M) +5DM I Q)

and its reconstruction in the feature -
Kullback—Lelbler DKL(P I Q) — Z P(x)log ( )
space (f) Divergence Q( )
 x is an attack when JSD is large a mixture di(j;"lib;;;"g M=1(P+0Q)
Introduction of Machine Learning Security: Ch02 49

Meng D, Chen H(2017) Magnet: a two-pronged defense against adversarial examples. In: ACM SIGSAC conference on computer and communications security

Defense: Pre-Pr« ing: Evasion

Explicit Detection; Sample

e Squeezed Output Difference
* Difference of output on original and transformed images
* Two kinds of feature squeeze techniques are considered

* x is an attack when max (d(x, xsqueezel), d(x, xsqueezez)) is large, where
d(x, xsqueeze) = ”f(x) - f(xsqueeze)”1

squeezel

Color Depth Reduction
Number of bits in each
color channel (RBG)

squeeze?
Spatial Smooth

Introduction of Machine Learning Security: Ch02 50
Xu W, Evans D, Qi Y(2017) Feature squeezing: Detecting adversarial examples in deep neural networks. In: NDSS



iymphcm Det\ectwom Sample

Predicted Detector Attack /

* Reject uncertain samples
. ll,! - = Class 1 Class Class 1 Clean
e Train a detector . —
— Model — Class 3 - Classifier

* For whole model n o |
—_— - Attacl '
* For each class Class Detector | accks

(Class k) Clean

Detector Attack /
->
(Class 2) Clean

* Set confident value thresholds

SVM-RBF (no reject) SVM-RBF (higher rejection rate)
T T

T TS
\0pgo00OO0 O Decision

x % \\O - 1, ——— boundary
X of the classifier

= = = Decision
= = = boundaries
~ = — of detectors

Q0O Natural data

X XK Perturbed data

Subspaces

Grosse, Kathrin, et al(2017) On the (statistical) detection of adversarial examples. In: arXiv . . . o
Yin, Xuwang, Soheil Kolouri, Gustavo K. Rohde(2019) Adversarial example detection and classification with asymmetrical adversarial training. In: arXiv Introduction of Machine Learning Security: Ch02 51
Melis M, Demontis A, Biggio B, et al. (2017)ls Deep Learning Safe for Robot Vision? Adversarial Examples Against the iCub Humanoid. In: ICCV Workshops

imp!mt Det\ectwom Sample

* Face Liveness Detection ——Egonepae

2D Spoofing Attack

. mcl%r:ﬁ-'.ae.?m (Photo Attack)
* One camera, no additional i = | [

hardware '
* No depth information ! l
4
* Flash is applied to enhance the
difference between real and _
fake persons : '
* Only available for 2D attack " I )

(dy

Introduction of Machine Learning Security: Ch02 52

PPK Chan, W Liu, D Chen(2017) Face liveness detection using a flash against 2D spoofing attack. In: IEEE Transactions on Information Forensics and Security, 13(2), 521-534



Dertense: Robust Model

* Build a model aiming to reduce the influence of attack
on decisions
* Adversarial Learning

* Evasion: Increase attack cost/difficulty
 Poisoning: Reduce influence of contaminated samples

e Structure
e Feature Selection
* Ensemble

Introduction of Machine Learning Security: Ch02 53

Defense: Robust Model

Adversarial Learning

* Basic idea: Consider additional regularization terms in
the objective function

E = Err + Adv

* Two kinds of regularization:
* Obfuscated Gradient
» Adversarial Term (Increase Manipulation Cost)

’hao J (2023) Recent Adva in Adversarial Training for Adversarial Robustness. In: 1JCAI Introduction Of Machine Learning Security: Cho2 54



Qbfugcatéd Craalent

* Penalizes large gradients

min L(g(x),y) + A||VF(x)]| t

gradient Adversarial

Training

* Mislead crafting in adversarial
attack

Traditional
Training

CJ Simon-Gabriel, Y Ollivier, L Bottou (2018)Adversarial Vulnerability of Neural Networks Increases with Input Dimension. In: ICLR ne Learning Security: Ch02
A Athalye, N Carlini, D Wagner (2018)Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International conference on machine learning (pp. 274-283). PMLR
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Defended model (Adversarial accuracy: 44.7%)

e =
o — = =~
o0
o T
o (&Y
-0 =
—20
30 —_— .
. — L —s0 —40 P . —a0
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* However, obfuscation can be solved easily by training a

surrogate model

f0 e i
I Generate Retrain
1 — —
Self-Collected /\\
Training Set X
x x' I x
Model with gradient Surrogate model
penalty
¢ Simon-Gabriel, Y Ollivier, L Bottou (2018)Adve /v/ rabilty of Neural Networks ncreases with Inut Dirension n:ICLR ne Learning Security: Ch02 57
A Athalye, N Carlin DW g r (2018)Obfuscate: dg d nts a false sense of security: C c m enting defenses to ad ersarial examples. In: International confere, on machine learning (pp. 274-283). PMLR

Defense: Robust Model

Acnersaral e

e A trained model should work well on both clean and attack
samples

 Attack samples is generated for each training sample
* Time complexity of attack sample generation is large

J(0,z,y) = aJ(0,,y) + (1 - a)J (6, + esign (Vo J (0,2, 1))

Error on clean samples Error on attack samples
Bai T, Luo  Zhao | (2023) Recent Advances in Adversarial Traning for Adversaril Robustness. In: UCAI Introduction of Machine Learning Security: Ch02 58

Goodfellow 1, Shlens J, Szegedy C (2015) Explaini g d hari g advel / examples. / :ICLR



Defense: Robust Model: Adversarial Term

Robust Optimization

* Minimize the error and maximize the manipulation

min max L, (x + Ax, y)
w o |[Ax|

° .. # successful
° [~ Attack

»

Madry et al., ICLR 2018 (https://arxiv.org/pdf/1706.06083.pdf) Introduction Of Machine Learning Security' Cho2 5 9
Fast AT (NeurlPS 2020, https://arxiv.org/abs/2007.02617)

Defense: Robust Model: Adversarial Term

Feg e squUee Aieg

* Increase the diversity of attack samples

e Different views
* Based on several pre-trained models

Clean

Samples
Attack Static P

Pre-Train Model 1
Attack
|, Attack Static | Samples
Pre-Train Model 2 — Training Set ——  Model

Attack Static
— Pre-Train Model k i

Introduction of Machine Learning Security: Ch02 60

Xu W, Evans D, Qi Y(2017) Feature squeezing: Detecting adversarial examples in deep neural networks. In: NDSS



Defense: Robust Model: Adversarial Term

Diversity of Attack Samples

* Increase the diversity of attack samples

* Different attack strengths for samples

* Avoid pushing an attack sample ]
to another class

e Different attack strengths for training iterations
* Adversarial term may dominate at beginning
* Premature model may be evaded easily
* Increase PGD iterations during training

Balaji Y, Goldstein T, Hoffman J(2019) Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets. In: arXiv Introduction Of Machine Learning Security: Cho2 6 1
Zhang J, Xu X, Han B(2020) Attacks which do not kill training make adversarial learning stronger. In: PMLR

Defense: Robust Model: Adversarial Term

COSTREAUCTION

* Crafting adversarial samples is time e o 7_»!
consuming
* Training set is usually large =
XX === +... Update
¥ 3| o pa /|
* Free Adversarial Training -
* Perturbing a sample and updating the = l'._‘ osse
model simultaneously \x:‘;"ém “. iiii;?;ﬂ
* Using incompletely crafted ]
samples to update the model = g;
Yo} ® =
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Shafahi A, Najibi M, Ghiasi A(2019) Adversarial training for free!. In: arXiv



Robust Learning

Domain Knowledge

* Improve the model by domain knowledge on the class
relationships

* A natural way to spot incoherent predictions

° Eg Ve, CAT(x) = ANIMAL(z) Penalty (>0) associateq to the
Ve,  MOTORBIKE(z) = VEHICLE(x), T-Norm-based constraint
Ve, VEHICLE(z) = —=ANIMAL(z) , from the ht" formula
¥z,  CAT(x)V ANIMAL(z)V MOTORBIKE(x) V VEHICLE(x)

1 l 4+u m
min =|— > Ly (£x:), )| H D D Am - La(bn(£(x;) |+ Al
Prediction Loss Constraint loss
(can be thresholded)

nh e bl vano

M ain classes
Cimage }— 00 . Locical
O , ogica

° -0 |I|II|IIL constraints
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Robust Learning

Domain Knowledge
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Defense: Robust Model

Struetre. FeahukralSe eatitgn

* Weight evenness increases robustness
* Influence of feature on decisions should be even
* More features should be manipulated to change decisions
drug LP
discount &b
thanks ib
school LV

* Feature selection may reduce robustness
* Weight of unselected features is 0

* Feature weights are less even
* Evasion may requires less modification

Introduction of Machine Learning Security: Ch02 65

Kolcz A, Teo CH (2009) Feature weighting for improved classifier robustness. In: 6th conference on Email and Anti-Spam (CEAS)

Defense: Robust Model

Struetre. FeahukralSe eatitga

* Adversa ry-aware Feature Selection 0.995
* Maximize error and robustness oo
aremax Accg + YRg oo
0c{0,1}4 s
d _ 0-9?0 100 200 300 400 500
S.L. ZJ:I 9 =m Number of Selected Features
where d:feature number, 0 : feature set, 18
m : cardinality of feature subset,  Acc: accuracy, . )
R : robustness estimation, y : tradeoff s ,,‘ ";.
* Most discriminative features are not selected 6_

0
0 100 200 300 400 500

* Variance of discriminative abilities of G0 om e o
selected feature decreases, = = = Tl () - - ~WAFS 10
i.e. weights more even

Traditional (PK)
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Fei Zhang, Patrick PK Chan, Battista Biggio, Daniel S Yeung, Fabio Roli(2015) Adversarial feature selection against evasion attacks. In: IEEE transactions on cybernetics



Defense: Robust Model

Structure: Ensemple

* Weight evenness can be enhanced
by ensemble

* Bagging (Samples) - Fogon

Each base classifier is trained | result

with a bootstrap replication of Rl =

—— def. weights

the original training set

* Random Subspace method (Features) R
Each base classifier is trained worsccase atack
with different random feature TN [

Su bsetS % ‘\\i .jdef, weights
* Simple average is used a fusion N

10 15
attack strength
Non worst-case attack

o ~
0 5
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B Biggio, G Fumera, F Roli(2010) Multiple classifier systems for robust classifier design in adversarial environments. In: Journal of Machine Learning and Cybernetics




