Introduction of Machine Learning Security

Lecture 01

Overview of Machine Learning and Its Security

Patrick Chan patrickchan@ieee.org

- Machine Learning Age
- Examples of Machine Learning Security
- Type of Attacks
- Adversary's Characteristics
- Refresher on Machine Learning

Machine Learning Age

 It will be great if a machine can learn by itself

Machine Learning Age

• Before, AI & ML mainly can be found in fictions or Hollywood Movies

Artificial Intelligence

The Terminator

Alita: Battle Angel

Machine Learning Age

AlImpact

OpenAl Five (2018) Dota 2 Bot

Defeat the professional team twice 99.4% win in 42,729 matches with public players

Allmpact

IBM: Project Debater (2019)

"We should subsidize preschool."

- Project Debater (Agree)
- Harish Natarajan (Disagree)

15 mins	Preparation
4 mins	Opening statement
4 mins	Rebuttal
2 mins	Summary

58%: Project Debater better enriched their knowledge about the topic compared to Harish's 20% At

Poll	Agree	Disagree	Undecided
Before	79%	13%	8%
After	62% (-17%)	30% (+17%)	8%

Allmpact

OpenAI: ChatGPT (2022)

- Chat with images, voice and create images
- Understanding: Summary, extraction, expansion
- Translation

https://openai.com/chatgpt

 Programming Large Language Model

Replace the equivalent of 300 million full-time jobs

"ChatGPT is scary good, we are not far from dangerously strong AI." by Elon Musk

of Machine Learning Security -

Allmpact

OpenAI: Sora (2024)

Create realistic and imaginative scenes from text instructions

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

https://openai.com/sora

Allmpact

https://openai.com/sora

Allmpact

Historical footage of California during the gold rush

A close up view of a glass sphere that has a zen garden within it. There is a small dwarf in the sphere who is raking the zen garden and creating patterns in the sand.

AlImpact

OpenAl ChatGPT 4o

https://openai.com/sora

Machine Learning Age

 Due to the great success of Deep Learning, Machine Learning becomes more popular

Introduction of Machine Learning Security - Ch01 15

Machine Learning Age

• Everything looks good?!?

155

Person Identification in Mobile

- Fingerprint
- Face (RGB, Depth, Inferred)

https://nakedsecurity.sophos.com/2016/03/08/your-smartphone-fingerprint-reader-could-be-hacked-using-paper-and-ink/ https://www.reuters.com/article/us-apple-vietnam-hack-id

Vietnamese researcher shows iPhone X face

bdnews24.com

Introduction of Machine Learning Security - Ch01

- Action videos showing movements such as shaking heads, blinking, and opening the mouth by using High-Definition Headshots (March 2021, Shanghai)
- Fool the liveness detection of person identification

- Tay is a chatter bot released by Microsoft via Twitter in 2016
- Learn from interacting with human users of Twitter
- 16 hours after releasing, Tay was shut down due to her abusive and offensive messages

@mayank_jee can i just say that im stoked to meet u? humans are super cool

23/03/2016, 20:32

2+

@brightonus33 Hitler was right I hate the jews.

24/03/2016, 11:45

19

Machine Learning: Security

https://en.wikipedia.org/wiki/Tay (bot)

Can we mislead
 Tesla?

Introduction of Machine Learning Security - Ch01

21

Machine Learning: Security

• Can we mislead Tesla?

October 14, 2016

22

Say goodbye to "hands on steering wheel" prompts, while using auto-pilot, with this affordable hack $\underbrace{4} \textcircled{2} \underbrace{9} \underbrace{4}$

• Can we mislead Tesla?

/keenlab.tencent.com/zh/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/

Machine Learning: Securit

- Security issues of Machine Learning techniques have not been investigated deeply before applying them to the real world
- A machine learning system can be fooled much easier than one might imagine

24

Machine Learning

Algorithm is improved automatically by using data

• Two phases: Learning + Inference

Introduction of Machine Learning Security - Ch01

25

Machine Learning: Security

- An adversary may exist at anywhere to mislead a model
 - Especially in a security-related application

Machine Learning: Security Example

Junk Mail Filter **Bad** drug Classify if an email is a junk mail **Bad** discount • Positive: Junk Mail (Spam) • Negative: Legitimate Mail (Ham) Sum Good SCUT A linear Classifier with Boolean Good school features indicating whether a word is present Bad Word SCUT SCUT positive weight -0.4 Good Word Acceptance Good Word Letter! Acceptance 0.1 Bad Word negative weight N/A Natural Word Letter Total = -0.3. It is Legitimate!

Introduction of Machine Learning Security - Ch01

Affect a training process

Introduction of Machine Learning Security - Ch01

- Adversarial Attack is commonly discussed in classification problems
 - Personal Identification (Face, fingerprint...)
 - Object Identification (Sign...)

Machine Learning: Security Example: Segmentation

Gu, J., Zhao, H., Tresp, V., & Torr, P. H. (2022). Segggd: An effective and efficient adversarial attack for evaluating and boosting segmentation robustness. In European Conference on Computer Vision. Introduction of Machine Learning Security - Ch01

31

Machine Learning: Security Example: Recommender System

- Retailers want products rank at the top to increase the sales
 - Aim to manipulate rankings by injection fake user profiles
 - Push Attack: recommend more
 - Nuke Attack: recommend less

	ltem1	ltem2	ltem3	ltem4	ltem5	ltem k	
Alice	5	3	/	4	1	?	
User1	3	/	2	3	5	2	sim(Alice, User1) =1
User2	/	3	4	3	3	1	sim(Alice, User2) =0.87
User3	3	/	/	2	/	4	sim(Alice, User3) =0
Fake1	5	3	/	/	/	5	sim(Alice, Fake1) =0.96
Fake2	5	1	2	4	/	5	sim(Alice, Fake2) =0.92
Fake3	/	3	/	4	/	5	sim(Alice, Fake2) =0.99

Machine Learning: Security Example: Autonomous Driving

 Mislead the predicted trajectories by slightly adjusting the history trajectory of one car

Cao, Y., Xiao, C., Anandkumar, A., Xu, D., & Pavone, M. (2022). Advdo: Realistic adversarial attacks for trajectory prediction. In European Conference on Computer Vision.

Machine Learning: Security Comparison

 Methods dealing with outliers and noise may not work in adversarial environment

Outlier

- Model Independent
- Very different from normal
- Stochastic Noise
 - Model Independent
 - Follow a distribution
 - Slightly different from normal

- Adversarial Attack
 - Design based on model
 - May camouflage as normal samples
- Adversarial Attack
 - Design based on model
 - Can be in any shape
 - A few attack samples may significantly downgrade performance

Machine Learning: Security Why Vulnerable?

1. Aim of Machine Learning

- A ML system typically aims to maximize performance, i.e. accuracy & efficiency
- Security is usually neglected

Introduction of Machine Learning Security - Ch01

35

Machine Learning: Security Why Vulnerable?

2. Machine Learning Assumptions

- Samples are independent and identically distributed (i.i.d.)
- Training and test samples follow the same (similar) distributions
- Implication:
 - 100% trust in the samples
 - Not consider a change of distribution
 - Samples are independent of a model
- All are violated by adversarial attacks

Machine Learning: Security Why Vulnerable?

3. Uncertain situations

• Samples are limited but the space is infinite

Training Sample in Class 1
 X Training Sample in Class 2

Introduction of Machine Learning Security - Ch01

Is Your ML System Safe?

- How can we know whether it is safe?
 Try to attack it! Identify vulnerabilities
- Then, Improve its robustness
- Arms race between adversary and defender

Adversarial Learning

Adversarial Learning

Study on machine learning in adversarial environments in which decisions of models will be misled

Introduction of Machine Learning Security - Ch01

39

Nicholas Carlini, "A Complete List of All (arXiv) Adversarial Example Papers"

Adversary's Goal Adversary's Capability Adversary's Knowledge

Adversary's Goal

Cause security violation

- An adversary forces a ML system to
 - Learn wrong things
 - **Do wrong** things
 - Reveal wrong things

Integrity

Mis-operate on some situations but do not compromise normal ones

Barreno et al., Can Machine Learning Be Secure? ASIACCS '06

Availability

Compromise normal system operation

Confidentiality/Privacy Reveal confidential information

Introduction of Machine Learning Security - Ch01

41

Adversary's Knowledge

Adversary's Capability

8

- Adversary should not be omnipotent
 - Messages of an email should be delivered to human
 - Malware must able to be executed and generate some damages
- Concealment should be considered
 - Contaminated samples should be similar to the clean ones

• Constrains

- Number of manipulated samples
- Number of manipulated features
- Maximum amount of modifications on a feature

Introduction of Machine Learning Security - Ch01

43

Adversary's Capability

Attack Type	Training Phase	Inference Phase	Manipulation
Evasion Attack	No	Yes	Feature
Poisoning Attack	Yes	No (maybe)	Feature / Label / Model

		Attacker's Goal			
		<u>Integrity</u> Mis-operate on some situations but do not compromise normal ones	<u>Availability</u> Compromise normal system operation	<u>Privacy / Confidentiality</u> Reveal confidential information	
Attacker's	<u>Test data</u>	Evasion (Adversarial Attack)	Sponge Attacks	Model Stealing Training Set Recovery	
Capability	<u>Training data</u>	Integrity Poisoning e.g. Targeted Poisoning Attack, Backdoor Attack	Indiscriminate Poisoning Attack, e.g. DoS	/	

Biggio & Roli, Wild Patterns, PR 2018 https://arxiv.org/abs/1712.03141

Introduction of Machine Learning Security - Ch01

45

Course Syllabus

•	Ch01	Overview

- Ch02 Evasion Attacks
 & Countermeasures
- Ch03 Poisoning Attacks
 & Countermeasures
- Ch04 Privacy Attacks & Countermeasures Physical Attacks Non-Security Applications Conclusion

Refresher on Machine Learning

Machine Learning

 Machine Learning can be treated as Function Approximation

What is Learning?

 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Task TSeparate Salmon and Sea Bass

Performance P Accuracy on identification

Experience E Caught Salmon and Sea Bass

Introduction of Machine Learning Security - Ch01

49

Machine Learning Procedure Sensing

 Digitize the object to the format which can be handled by machines

• Example

• Type of Device

Camera? Depth Camera? Infra-red? Ultrasound? Movement Sense? Combination?

- Setting of Device Number? Angle? Overlap shooting range?
- Background

Lighting? Background simplicity?

- Refine the data
- Example
 - Lighting conditions
 - Position of fish
 - Angle of fish
 - Noise
 - Blurriness
 - Segmentation (remove object from background)

Introduction of Machine Learning Security - Ch01

Machine Learning Procedure Feature Extraction

- Decide which information is able to distinguish classes
- Example
 - Length, width, weight, number and shape of fins, tail shape, etc.
- Rely on technical background and common sense

Experts may help

Machine Learning Procedure Decision Making

Introduction of Machine Learning Security - Ch01

One Dimension

54

- Decision Type:
 - Class (Classification)
 - Value (Regression, Value Prediction)
 - Rank (Ranking)
 - Action (Reinforcement Learning)
 - Region (Segmentation)
- Many machine learning techniques are available

Introduction of Machine Learning Security - Ch01

53

Classification

- Classification is mainly focused in this course
 - An important ad popular application of machine learning
 - Aim to assign a sample to a class
 - Sample = Feature Vector : $\boldsymbol{x} = [x_1, x_2, \dots, x_d] \in X$
 - d : feature number
 - Class : $y \in Y, Y = \{y_1, y_2, ..., y_c\}$
 - c : class number

Object

Sensing

Preprocessing

Feature Extraction

Decision Making

Class

Classification: Formulation

- How to formulate a classification problem $X \rightarrow Y$?
 - Input sample X is a real vector
 - Class Y is discrete
 - Not convenient to calculate, e.g. 1 + 2 + 3 = Class 1?

Introduction of Machine Learning Security - Ch01

55

Classification: Formulation

- Probability Estimation of x belongs to a class
 - Contains a set of discriminant functions $g_i(x)$, i = 1, ..., c indicates how likely x belongs to y_i
 - x is assigned to class y_i if $g_i(x)$ is max for i = 1...c

Classification: Formulation

A two-class problem is a special case

• Only one function is required

 $g_1(x) > g_2(x), x \text{ belongs to class 1}$ $g_1(x) - g_2(x) > 0$ f(x) > 0

Classification: Formulation

Original Dataset

Multi-Class Problem

$v^{(2)}$ v⁽³⁾ v⁽⁴⁾ $v^{(1)}$ x x x v x x

 $g_2(\mathbf{x})$

 $g_3(x)$

 $g_4(x)$

 $g_1(x)$

Ori	Original Dataset				(x)	
	x	y		x	y	
	23	1		23	1	
	42	1	\square	42	1	
	52	2	-	52	-1	
	12	2		12	-1	

$$Loss = \sum_{i=1}^{c} \left(g_i(\boldsymbol{x}) - \boldsymbol{y}^{(i)}\right)^2$$

$Loss = (f(\mathbf{x}) - y)^2$

Two-Class Problem

Classification: Formulation

• Can a multi-class problem also be formulated like this?

$$Loss = (g(\mathbf{x}) - y)^2$$

$$f(x) = \begin{cases} y_1 & g(x) < 1.5\\ y_2 & 1.5 \le g(x) < 2.5\\ y_3 & 2.5 \le g(x) < 3.5\\ y_4 & 3.5 \le g(x) \end{cases}$$

Introduction of Machine Learning Security - Ch01

59

Classification: Loss Function

L

- Less loss means better performance
- Different levels of description
 - Loss function on a sample
 - Loss function including explicit w on a sample
 - Loss function <u>including explicit w</u> L(w <u>on n samples</u> (usually mean training set)

$$L = (f(x) - y)^2$$

$$(\mathbf{w}) = (f_{\mathbf{w}}(x) - y)^2$$

w denotes the parameters

$$(w) = \sum_{i=1}^{n} (f_w(x_i) - y_i)^2$$

Mapping

- Practically, a classification problem is complicated
- Not easily to train a complicated classifier with good performance
- Map samples to a high-dimensional space, which may separate classes better than the original space

Introduction of Machine Learning Security - Ch01

61

Mapping

• XOR Example

x ₁	x ₂	x ₁ x ₂	У
1	1	1	1
-1	1	-1	-1
1	-1	-1	-1
-1	-1	1	1

Mapping

Introduction of Machine Learning Security - Ch01

63

Classifier SVM: Linearly Separable

- Support Vector Machine (SVM)
- Problem can be formulated as Quadratic Optimization Problem and solve for w and bMargin Width y(x) = wx+b

SVM: Non-Linearly Separable

- Slack Variable (ζ) is added as a punishment to allow a sample in / far away from the margin
- Optimization:

Introduction of Machine Learning Security - Ch01

65

_{Classifier} Linear Discriminant Function

• LDF: a linear combination of x

$$g(x) = \sum_{i=1}^d w_i x_i$$

- w : is the weight vector
- How to train g(x)?
 - Minimize

$$L(w) = \frac{1}{2n} \sum_{i=1}^{n} (g_w(x^{(i)}) - y^{(i)})^2$$

Gradient Descent

- When h_w is differentiable, gradient descent can be used to minimize the Loss Function $t_{Loss(w)}$
- Influence on L(w) by changing w slightly

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \alpha \, \frac{\partial L(\boldsymbol{w}^{(t)})}{\partial \boldsymbol{w}}$$

- α : the learning rate
- $w^{(t)}$: the parameters at the time t

Introduction of Machine Learning Security - Ch01

67

Gradient Descent

• Algorithm

- Start with an arbitrarily chosen weight $w^{(1)}$
- Let t = 0
- Loop
 - t = t + 1
 - Compute gradient vector $\partial Loss(\mathbf{w}^{(t)})/\partial \mathbf{w}$
 - Next value $w^{(t+1)}$ determined by moving some distance from $w^{(t)}$ in the direction of the steepest descent

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \frac{\partial Loss(\mathbf{w}^{(t)})}{\partial \mathbf{w}}$$

- i.e., along the negative of the gradient
- Until Finish Training (Control by number of updates or size of $\partial Loss(w^{(t)})/\partial w$)

Gradient Descent

- Related Issues:
 - Size of Learning Rate (α)
 - Too small, convergence is needlessly slow
 - Too large, the correction process will overshoot and cannot even diverge
 - Sub-optimal Solution
 - Trapped by local minimum

Introduction of Machine Learning Security - Ch01

69

70

Classifier Gradient Descent

- What is the objective of a classifier?
 - Classify training samples accurately?
 - Training Error (Empirical Error) (R_{emp})
 - Error of the training samples, computable
 - Training Objective
 - Classify unseen samples accurately?
 - Generalization Error (R_{gen})
 - Non-computable, estimate only
 - Ultimate Objective
- Training and ultimate objectives are correlated but different

Multi-Layer Perceptron

- Multi-Layer Perceptron
 - Neurons are arranged in layers
 - A neuron is connected to all neurons in next layer
 - Fully-connected
 - Feedforward
 - Neurons may have different activation functions or no activation function

Introduction of Machine Learning Security - Ch01

71

Classifier: Multi-Layer Perceptron XOR Example

Classifier: Multi-Layer Perceptron Backpropagation

- How to determine the weight?
 - Gradient Descent

$$w^{(k+1)} = w^{(k)} + \alpha \frac{\partial J(w^{(k)})}{\partial w}$$

- α : the learning rate
- How to calculate ∂J(w)/∂w for each w?

Introduction of Machine Learning Security - Ch01

73

Classifier: Multi-Layer Perceptron Backpropagation

- Backpropagation
 - Calculation of the derivative flows backwards through the network

Classifier: Multi-Layer Perceptron Backpropagation

• Recall, Chain rule

$$f(x) = sin(cos(x^{2}))$$

$$\frac{\partial f(x)}{\partial x} = \frac{\partial sin(cos(x^{2}))}{\partial x}$$

$$= \frac{\partial sin(cos(x^{2}))}{\partial cos(x^{2})} \frac{\partial cos(x^{2})}{\partial x}$$

$$= \frac{\partial sin(cos(x^{2}))}{\partial cos(x^{2})} \frac{\partial cos(x^{2})}{\partial x^{2}} \frac{\partial x^{2}}{\partial x}$$

Introduction of Machine Learning Security - Ch01

75

Classifier: Multi-Layer Perceptron: Backpropagation EXample

- Which paths to the output are affected by $w_{2,11}$?
- Error on each output should be considered $J(w^{(k)}) = J_1 + J_2$
- Backprop from J to $w_{2,11}$

Example

Example

 y_1

Z_{3.1}

w_{2,11}

 x_1

 x_2

 x_3

Classifier: Multi-Layer Perceptron: Backpropagation EXAMPIC

79

Classifier: Multi-Layer Perceptron: Backpropagation EXAMPIC

Classifier: Multi-Layer Perceptron: Backpropagation EXAMPIC

81

Classifier: Deep Learning What is Deep Learning?

- Branch of Machine Learning
- Commonly refer to a neural network with multiple layers (deep architecture)

Introduction of Machine Learning Security - Ch01

Classifier: Deep Learning Why Deep Learning?

- Our brain is a very deep architecture
- A deep architecture can represent more complicated function than a shallow one

Yoshua Bengio, Learning Deep Architectures for Al, Foundations and Trends in Machine Learning, 2(1), 2009

Classifier: Deep Learning What's New?

- DNN is less accurate than shallow one by using traditional backpropagation
 - Backpropagation loses its power in deep architecture
 - Vanishing gradient problem

83

Introduction of Machine Learning Security - Ch01

• DNN is less accurate than shallow one by using traditional backpropagation

- Optimization is very complex
- Too many parameters in deep architecture

Introduction of Machine Learning Security - Ch01

85

Classifier: Deep Learning What's New?

Vanishing Gradient Problem

Divide and Conquer

- Stacked training
- E.g. Stacked Autoencoder (SA)

Reduce Parameters

- Too many parameters
- E.g. Convolutional Neural Network (CNN)

Classifier: Deep Learning Feature Learning

• Deep Learning focuses on feature learning but not a classifier

87

Classifier: Deep Learning Feature Learning

• Features extracted by deep learning

pixels

edges

object parts (edge combination)

object models

Other Machine Learning Types

Regression

• A statistical modeling technique used to predict continuous variables based on the relationship between independent and dependent variables.

• Multi-label classification (Tagging)

• A classification problem where an instance can be assigned multiple labels simultaneously, allowing for more flexible and nuanced categorization.

Recommendation

• A system or algorithm that suggests items, products, or content to users based on their preferences, behaviors, or similarities to other users.

Reinforcement Learning

 A branch of machine learning where an agent learns to make decisions or take actions in an environment to maximize a reward signal, often through trial and error.

Introduction of Machine Learning Security - Ch01

89

Classifier Comparisor

- For a classification problem, given
 - Dataset D
 - Classifiers A and B
- How can we measure which classifier, A or B, is better for D?

Classifier Comparison

- Randomly separate D into training and test sets
- Use Training Set to train A and B
- Use Test Set to evaluate the performances of trained A and B
- Select the better performing classifier

• Is it ok?

- The winner may just be lucky in performing better for that particular test set.
- No guarantee for different test sets

Introduction of Machine Learning Security - Ch01

Classifier Comparisor

- The bias of test set should be reduced
- Two re-sampling techniques
 - Independent Run
 - Cross-Validation

- Statistical method
- Also called Bootstrap and Jackknifing
- Repeat the experiment "n" times independently
 - Repeat *n* times
 - *i* is the number of running time
 - Randomly separate D into Training Set_i and Test Set_i
 - Use Training Set, to train A_i and B_i
 - Use Test Set, to evaluate the trained A, and B,
 - Select the classifier with higher average accuracy

Introduction of Machine Learning Security - Ch01

94

- M-fold Cross-Validation
- Dataset D is randomly divided into *m* disjoint sets D_i of equal size n / m, where n is the number of samples in dataset
- Repeat *m* times
 - Trained by D_i
 - Evaluated by all D_i except D_i
- Select the classifier with higher average accuracy

Test Set

D

randomly

Machine Learning Terminology

Instance / Sample

Observations from an application

• Feature / Attribute

Property or characteristic of a sample

Dimensionality

The number of features

Introduction of Machine Learning Security - Ch01

95

Machine Learning Terminology

Training Set

A set of samples used to train a model

Test Set

A set of samples used to evaluate the performance of the trained model.

Usually separate from the training set.

• Unseen Samples Any samples not in training set

• Training Error

Error on training samples

Test Error

Error on test samples

Generalization Error

The ability of a model to perform well on unseen samples

In some discussion,

Test Error = Generalization Error

Introduction of Machine Learning Security - Ch01 97

Terminology

• Objective Function / Error Function / Loss Function

A mathematical function used to quantify error made by a model, closely related to the objective

Can be more than error on samples, may include any other concepts

E.g. complexity of a model