Chapter 9: Graphs

9.5 Euler and Hamilton Paths

9.7 Planar Graphs 9.8 Graph Coloring

Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Euler and Hamiltonian Path

Euler Path

a path visits every edge exactly once

Hamiltonian Path

a path visits every vertex exactly once

Agenda

- Euler Path
- Hamilton Path
- Planar Graph
- Coloring

Ch. 9.5, 9.7 & 9.8

2

Euler Path

- Seven Bridges of Königsberg
 - Königsberg is built on both banks of the Preger river
 - Now a city in Russia called Kaliningrad

 Is it possible to walk through the city that would cross each of bridges once

з

Euler Path

- Leonhard Euler, the Swiss mathematician, was also unable to find such a route
- Euler figured out how to show for certain that no such route existed

5

Euler Path

- Euler Path: a path visits every edge exactly once
- Euler Cycle: Euler path which starts and stops at the same vertex
- A connected graph G is called Eulerian if it contains an Euler path

Euler Path

Ch. 9.5, 9.7 & 9.8

a > c > b > a > d > f > aEuler Cycle

- deg(a) = 4 (E) Starting / Intermediate / End
- deg(b) = 2 (E) Intermediate
- deg(c) = 2 (E) Intermediate
- deq(d) = 2 (E) Intermediate

deg(e) = 2 (E) Intermediate

Euler Path

- Observation from an Euler path,
 - Intermediate vertex
 - Degree must be even (Entrance and exist connection)
 - Starting and end vertices
 - If the same (cycle), degree are even
 - If different (non-cycle), degrees are odd (in or out)

Ch. 9.5, 9.7 & 9.8

Euler Path

Theorem 1

A connected multigraph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree

Theorem 2

A connected multigraph has Euler path but not an Euler circuit if and only if it has exactly two vertices of odd degree

Ch. 9.5, 9.7 & 9.8

Euler Path

How to identify an Euler Path / Cycle?

Euler Path
 Fleury's Algorithm

Euler Cycle
 Hierholzer's Algorithm

Euler Path

Euler Path Fleury's Algorithm

- Identify Euler Path
 - 1. If there are 0 odd vertices, start anywhere. If there are 2 odd vertices, start at one of them
 - 2. Follow edges one at a time. If you have a choice between a bridge and a non-bridge, always choose the non-bridge
 - 3. Stop when you run out of edges
- "Don't burn bridges" so that we can come back to a vertex and traverse remaining edges

11

Euler Path Hierholzer's Algorithm

Identify Euler Cycle

- 1. Select a node v as a starting node
- 2. Form a cycle using non-traveled edges and end at v (remove the visited edges)
- 3. While all edges have been traversed, stop
 - a) Find a node u on the previous cycles that's connected to a non-traveled edge
 - b) Form a cycle using non-traveled edges and end at u (remove the visited edges)
 - c) Merge both tours at the node u

Euler Path Example 1

Is it possible to begin in a room or the outside and take a walk that goes through each door exactly once? If yes, how?

Ch. 9.5, 9.7 & 9.8

Euler Path Example 1

Euler Path Example 2

Is it possible to walk through and around this building passing through each and every doorway exactly once?

Euler Path
Example 2

Ch. 9.5, 9.7 & 9.8

Ch. 9.5, 9.7 & 9.8

17

Ch. 9.5, 9.7 & 9.8

Hamiltonian Path

Icosian game

- Invented by an Irishman named Sir William Rowan Hamilton (1805-1865)
- Is there a cycle in the dodecahedron puzzle that passes through each vertex exactly once?

Dodecahedron puzzle

Ch. 9.5, 9.7 & 9.8

Hamilton Path Dirac's Theorem

Theorem: If each vertex of a simple graph with n vertices and n ≥ 3 has degree ≥ n/2, there is Hamilton circuit

Hamilton Path

- Hamilton Path: a path visits every vertex exactly once
- Hamilton Cycle: Hamilton path which starts and stops at the same vertex
- Self-loop and multiple edges can be ignored

Hamilton Path Ore's Theorem

 Theorem: If every pair of non-adjacent vertices u and v in a simple graph with n vertices and n ≥ 3 has deg(u)+deg(v) ≥ n, there is a Hamilton circuit

3

Ch. 9.5, 9.7 & 9.8

21

Ch. 9.5, 9.7 & 9.8

24

Hamilton Path Dirac's and Ore's Theorem

- Be noted Dirac's and Ore's Theorem is a sufficient condition but not necessary one
 - A graph with a vertex degree < n/2 may have a</p> Hamilton circuit
 - A graph with a pair of non-adjacent vertices deg(u)+deg(v) < n may have a Hamilton circuit

Hamilton Path

- Unfortunately, no good algorithm to find the Hamilton path or cycle
- Just "trial and error" (and good luck!)

Ch. 9.5, 9.7 & 9.8

Euler Path VS Hamilton Path

- Euler Path
 - a path uses every edge exactly once
- Euler Cycle
 - Euler path which starts and stops at the same vertex

- Hamilton Path
 - a path uses every vertex exactly once
- Hamilton Cycle
 - Hamilton path which starts and stops at the same vertex

Planar Graph

- Planar Graph is a graph can be drawn in the plane without edges crossing
- A planar graph drawn in the plane without edges crossing is called **Plane Graph**
 - Plane graph is also called a planar representation

Ch. 9.5, 9.7 & 9.8

27

25

Ch. 9.5, 9.7 & 9.8

Planar Graph

- A graph that is drawn in the plane is also said to be embedded (or imbedded) in the plane
- A planar graph can generate different plane graphs
- Application: Circuit Layout Problems

Planar Graph: Region

- A plane graph splits the plane into regions
 - Including the unbounded (exterior) region

Planar Graph: Region

 The vertices and edges of G that are incident with a region R form a subgraph of G called the boundary of R

Planar Graph: Region

- Observation on boundary
 - Cycle edge belongs to the boundary of two regions
 - Bridge is on the boundary of only one region (unbounded region)

a > b > c > e > a is a cycle

(a,b), (b,c), (a,e) belongs to R_1 and R_4 (c,e) belongs to R_1 and R_2

(e,b) is not a cycle, just a bridge(e,b) belongs to R₄ only

Planar Graph Planar Graph Euler's Formula Is K_{3.3} a planar graph? Not planar If G be a connected planar simple graph with e edges, v vertices, and r regions, then 1) Focus on a, e, d, b 2) c connect to d, e, f 3) f connects to a. b. c r = e - v + 2f in R₁₁: cross when connect to b C in R₁ • MI is used in the proof f in R₁₂: cross when connect to a R_2 f in R₂: cross when connect to c f in R1: cross when connect to c f in R₂₁: cross when connect to a C in R₂ f in R₂₂: cross when connect to b Ch. 9.5, 9.7 & 9.8 33 Ch. 9.5, 9.7 & 9.8 34 **Planar Graph Planar Graph** r = e - v + 2r = e - v + 2**Euler's Formula: Proof Euler's Formula: Proof** For a connected planar graph G For G₁, ■ e₁ = 1 ■ Let a sequence of subgraphs G₁, G₂, ..., G_i, ..., G_{a} of G, and $G_{a} = G$, ■ V₁ = 2 • $G_1 \subset G_2 \subset \ldots \subset G_a$ In r₁ = 1 G_i contains i edges • Therefore, $r_1 = e_1 - v_1 + 2$ G_n is obtained from G_{n-1} by arbitrarily adding an edge Be noted that all G_i are planar (as subgraph of • Assume $r_n = e_n - v_n + 2$ is true planar graph must be planar)

Ch. 9.5, 9.7 & 9.8

Planar Graph Euler's Formula: Corollary

- If a connected planar simple graph, then G has a vertex of degree not exceeding 5.
- If a connected planar simple graph has e edges and v vertices with v ≥ 3, then e ≤ 3v - 6
- If a connected planar simple graph has e edges and v vertices with v ≥ 3 and no circuits of length three, then e ≤ 2v - 4

Ch. 9.5, 9.7 & 9.8

Planar Graph Euler's Formula: Example 2

Show that K_{3,3} is nonplanar

41

- K_{3,3} has no circuit of length three, 6 vertices and 9 edges
- As e = 9 and 2v 4 = 8, $e \le 2v 4$ is false
- Therefore, K_{3,3} is nonplanar

If a connected planar simple graph has e edges and v vertices with $v \ge 3$ and no circuits of length three, then $e \le 2v - 4$

Planar Graph

Euler's Formula: Example 1

Show that K₅ is nonplanar

- K₅ has circuit of length three, 5 vertices and 10 edges
- As e = 10 and 3v 6 = 9, $e \le 3v 6$ is false
- Therefore, K₅ is nonplanar

If a connected planar simple graph has e edges and v vertices with $v \ge 3$, then $e \le 3v - 6$

Ch. 9.5, 9.7 & 9.8

Planar Graph Homeomorphic

- The graphs are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision
 - If a graph is planar, it will be any graph obtained by removing an edge {u,v} and adding a new vertex w with edges {u,w} and {w,v}

Obtain G from H Remove {a, b}, Add {a, **e**}, {**e**, b} Remove {a, c}, Add {a, **f**}, {**f**, c} Remove {f, c}, Add {f, **c**}, {**c**, g}

43

Planar Graph Kuratowski's Theorem

- A graph is not planar if it contains a nonplanar subgraph
- Kuratowski's Theorem A graph is nonplanar iif it contains a subgraph homeomorphic to $K_{3,3}$ or K_5
- Proof is neglected

Ch. 9.5, 9.7 & 9.8

Coloring

- Two regions sharing a border are assigned different colors
- Represent a map by a graph (called **Dual Graph**)
 - Vertex: Region
 - Edge: Constraint
 - the color cannot be the same for adjacent regions

45

Planar Graph: Kuratowski's Theorem Example

Determine whether the following graph is planar

H can be obtained from K_5 by removing {g,e} and adding {g,f} and {f,e}

H and K₅ are homeomorphic

 K_5 , it is not planar

Map Coloring

Ch. 9.5, 9.7 & 9.8

What is the largest complete graph represented by a map?

Coloring

Graph Coloring Problem

Given a graph, assign all the vertices with the minimum number of colors so that no two adjacent vertices gets the same color

Coloring

Ch. 9.5, 9.7 & 9.8

 Chromatic number (χ(G)) The smallest number of colors needed to produce a proper coloring of G

Coloring: Example

Cycle Graph (C)

 $\chi(C_{even})=2$ $\chi(C_{odd})=3$

Wheel Graph (W)

Coloring: Example

Complete Graph (K)
 Tree (T)

51

Coloring: Example

Bipartite Graph

- Recall... a graph is bipartite if all vertices can be partitioned into two partitions, so that any two adjacent vertices are in different partitions
- Obviously, χ = 2

Ch. 9.5, 9.7 & 9.8

Coloring: Application 1

- A flight need a gate in an airport
- How many gates needed for this flight schedule? 3

Vertex: Flight Edge: Share the same time slot

В

А

53

Coloring

- No formula for Chromatic number χ
- Discussion
 - Given a graph of size k
 - $\chi > k$: not possible

- $\chi = k$: for a complete graph
- = χ < k: other graphs except the complete one
- Analyzing a subgraph of a graph may be helpful
 - If a subgraph is complete of size k, $\chi \ge k$

Coloring: Application 2

- Examination of subject conflicts if student takes both subjects
- S1
 S2
 S3
 S4

 Al
- How many different time slots?

Coloring: Application 3

- Suppose an university offers seven courses. Students can take more than one course.
- Pairings of courses:
 - Course 1 : 2, 3, 4, 7
 - Course 1 has a student in common with courses 2, 3, 4, 7
 - Course 2 : 3, 4, 5, 7
 - Course 3 : 4, 6, 7
 - Course 4 : 5, 6
 - Course 5 : 6, 7
 - Course 6 : 7

Ch. 9.5, 9.7 & 9.8

 Find the fewest number of final exam slots that are needed to avoid any conflicts

