Chapter 9: Graphs

9.5
 Euler and Hamilton
 Paths

9.7

Planar Graphs
9.8

Graph Coloring
Dr Patrick Chan
School of Computer Science and Engineering South China University of Technology

Agenda

- Euler Path
- Hamilton Path
- Planar Graph
- Coloring

Euler Path

- Seven Bridges of Königsberg
- Königsberg is built on both banks of the Preger river
- Now a city in Russia called Kaliningrad
- Is it possible to walk through the city that would cross each of bridges once

Ch. $9.5,9.7 \& 9.8$

Euler Path

- Leonhard Euler, the Swiss mathematician, was also unable to find such a route
- Euler figured out how to show for certain that no such route existed

Euler Path

- Observation from an Euler path,
$a>c>a>d>e>a>b$ Euler Path

Starting / Intermediate $\operatorname{deg}(\mathrm{a})=5(0)$
End $\operatorname{deg}(\mathrm{b})=1$ (O)
Intermediate $\operatorname{deg}(C)=2$ (E)
Intermediate $\operatorname{deg}(\mathrm{d})=2$ (E)
Intermediate $\operatorname{deg}(e)=2$ (E)
$a>c>b>a>d>f>a$

deg(a) = 4 (E) Starting / Intermediate / End
deg(b) $=2$ (E) Intermediate
deg(C) $=2$ (E) Intermediate
$\operatorname{deg}(\mathrm{d})=2$ (E) Intermediate
deg(e) $=2$ (E) Intermediate

Euler Path

- Euler Path: a path visits every edge exactly once
- Euler Cycle: Euler path which starts and stops at the same vertex
- A connected graph G is called Eulerian if it contains an Euler path

Euler Path
Euler Cycle YES
Eulerian YES

Euler Path YES
Euler Cycle NO
Eulerian YES

Euler Path NO
Euler Cycle NO
Eulerian NO

Euler Path YES
Euler Cycle NO
Eulerian YES

Euler Path

- Observation from an Euler path,
- Intermediate vertex
- Degree must be even (Entrance and exist connection)
- Starting and end vertices
- If the same (cycle), degree are even
- If different (non-cycle), degrees are odd (in or out)

Euler Path

- Theorem 1

A connected multigraph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree

- Theorem 2

A connected multigraph has Euler path but not an Euler circuit if and only if it has exactly two vertices of odd degree

Euler Path

- How to identify an Euler Path / Cycle?
- Euler Path

Fleury's Algorithm

- Euler Cycle

Hierholzer's Algorithm

Euler Path

Euler Path YES
Euler Cycle YES Eulerian YES

Odd Degree 0
Even Degree 5

Euler Path YES Euler Cycle NO Eulerian YES

Odd Degree 2
Even Degree 3
Starting/End Vertices must be
a and c

Euler Path NO Euler Cycle NO Eulerian NO Odd Degree 4 Even Degree 1

Euler Path YES Euler Cycle NO Eulerian YES

Odd Degree 2
Even Degree 3
Starting/End
Vertices must be a and d

Euler Path

Fleury's Algorithm

- Identify Euler Path

1. If there are 0 odd vertices, start anywhere. If there are 2 odd vertices, start at one of them
2. Follow edges one at a time. If you have a choice between a bridge and a non-bridge, always choose the non-bridge
3. Stop when you run out of edges

- "Don't burn bridges" so that we can come back to a vertex and traverse remaining edges

Euler Path

Fleury's Algorithm
The bridge will be burnt if we choose this!

Euler Path

Hierholze

1. Select a node v as a starting node
2. Form a cycle using non-traveled edges and end at v
(remove the visited edges)
3. While all edges have been traversed, stop
a) Find a node v on the previous cycles that's connected

to a non-traveled edge
b) Form a cycle using non-traveled edges and end at v (remove the visited edges)
c) Merge both tours at the node v
$a>d>f>a$
$d>b>e>c>d$
$f>b>c>g>e>f$

$a>d>b>e>c>d>f>b>c>g>e>f>a$

Euler Path

Hierholzer's Algorithm

- Identify Euler Cycle

1. Select a node v as a starting node
2. Form a cycle using non-traveled edges and end at v (remove the visited edges)
3. While all edges have been traversed, stop
a) Find a node u on the previous cycles that's connected to a non-traveled edge
b) Form a cycle using non-traveled edges and end at u (remove the visited edges)
c) Merge both tours at the node u

Euler Path

Example 1

- Is it possible to begin in a room or the outside and take a walk that goes through each door exactly once? If yes, how?

Euler Path

Example 1

Euler Path

Example 2

Euler Path

Example 2

- Is it possible to walk through and around this building passing through each and every doorway exactly once?

Ch. $9.5,9.7$ \& 9.8

Euler Path Example 2

Hamiltonian Path

- Icosian game
- Invented by an Irishman named Sir William Rowan Hamilton (1805-1865)
- Is there a cycle in the dodecahedron puzzle that passes through each vertex exactly once?

Dodecahedron puzzle

Hamilton Path

Dirac's Theorem

- Theorem: If each vertex of a simple graph with n vertices and $n \geq 3$ has degree $\geq n / 2$, there is Hamilton circuit

Hamilton Path

- Hamilton Path: a path visits every vertex exactly once
- Hamilton Cycle: Hamilton path which starts and stops at the same vertex
- Self-loop and multiple edges can be ignored

Ham. Path YES
Ham. Cycle YES

Ham. Path YES
Ham. Cycle YES

Ham. Path NO
Ham. Cycle NO

Ham. Path YES
Ham. Cycle NO

Hamilton Path
 Ore's Theorem

- Theorem: If every pair of non-adjacent vertices u and v in a simple graph with n vertices and $n \geq 3$ has $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$, there is a Hamilton circuit

Ham. Path NO
Ham. Cycle NO

Ham. Path YES
Ham. Cycle NO

All $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$
NO

Hamilton Path

Dirac's and Ore's Theorem

- Be noted Dirac's and Ore's Theorem is a sufficient condition but not necessary one
- A graph with a vertex degree $<\mathrm{n} / 2$ may have a Hamilton circuit
- A graph with a pair of non-adjacent vertices $\operatorname{deg}(u)+\operatorname{deg}(v)<n$ may have a Hamilton circuit

Euler Path VS Hamilton Path

- Euler Path
- a path uses every edge exactly once
- Euler Cycle
- Euler path which starts and stops at the same vertex
- Hamilton Path
- a path uses every vertex exactly once
- Hamilton Cycle
- Hamilton path which starts and stops at the same vertex

Hamilton Path

- Unfortunately, no good algorithm to find the Hamilton path or cycle
- Just "trial and error" (and good luck!)

Planar Graph

- Planar Graph is a graph can be drawn in the plane without edges crossing
- A planar graph drawn in the plane without edges crossing is called Plane Graph
- Plane graph is also called a planar representation

Planar Graph Plane Graph

Planar Graph \boldsymbol{x} Plane Graph \boldsymbol{x}

Planar Graph

- A graph that is drawn in the plane is also said to be embedded (or imbedded) in the plane
- A planar graph can generate different plane graphs
- Application: Circuit Layout Problems

Not Plane Graph Planar Graph

Plane Graph Planar Graph

Plane Graph Planar Graph

Planar Graph: Region

- The vertices and edges of G that are incident with a region R form a subgraph of G called the boundary of R

Boundary of $R_{1} \quad$ Boundary of R_{3}

Boundary of R_{2}

Boundary of R_{4}

Planar Graph: Region

- A plane graph splits the plane into regions
- Including the unbounded (exterior) region

Ch. $9.5,9.7$ \& 9.8

Planar Graph: Region

- Observation on boundary
- Cycle edge belongs to the boundary of two regions
- Bridge is on the boundary of only one region (unbounded region)
$a>b>c>e>a$ is a cycle
 (c,e) belongs to R_{1} and R_{2}
(e, b) is not a cycle, just a bridge (e,b) belongs to R_{4} only

Planar Graph

- Is $\mathrm{K}_{3,3}$ a planar graph? Not planar

1) Focus on a, e, d, b

2) c connect to d, e, f

f in R_{11} : cross when connect to b f in R_{12} : cross when connect to a f in R_{2} : cross when connect to c
f in R_{1} : cross when connect to c
f in R_{21} : cross when connect to a
f in R_{22} : cross when connect to b

3) f connects to a, b, c

Planar Graph

Euler's Formula

- If G be a connected planar simple graph with e edges, v vertices, and r regions, then

$$
r=e-v+2
$$

- MI is used in the proof

Planar Graph

$r=e-v+2$

Euler's Formula: Proof

- For G_{1},
- $e_{1}=1$
- $\mathrm{v}_{1}=2$
- $r_{1}=1$
- Therefore, $r_{1}=e_{1}-v_{1}+2$
- Assume $r_{n}=e_{n}-v_{n}+2$ is true

Planar Graph

Euler's Formula: Proof

- Let $\left\{a_{n+1}, b_{n+1}\right\}$ be the edge that is added to G_{n} to obtain $\mathrm{G}_{\mathrm{n}+1}$
- Case 1: a_{n+1}, b_{n+1} are in G_{n}
- Case 2: one of a_{n+1} and b_{n+1} is not in G_{n}

Planar Graph
 Euler's Formula: Proof

- Case 2: one of a_{n+1} and b_{n+1} is not in G_{n}
- $e_{n+1}=e_{n}+1$
- $v_{n+1}=v_{n}+1$
- No new region is generated, $r_{n+1}=r_{n}$
- Given $r_{n}=e_{n}-v_{n}+2$

$$
\begin{aligned}
\left(r_{n+1}\right) & =\left(e_{n+1}-1\right)-\left(v_{n+1}-1\right)+2 \\
r_{n+1} & =e_{n+1}-v_{n+1}+2
\end{aligned}
$$

Euler's Formula: Proof

- Case 1: a_{n+1} and b_{n+1} are in G_{n}
- $e_{n+1}=e_{n}+1$, and $v_{n+1}=v_{n}$
- If a_{n+1} and b_{n+1} are not on the boundary of a common region R, two edges cross. This violates G_{n+1} is planar

a_{n+1} and b_{n+1} are not on the boundary of a common region R
- Therefore, a_{n+1} and b_{n+1} must be on the boundary of a common region R
- The new edge splits R into two regions

a_{n+1} and b_{n+1} are on the boundary of a common region R

$$
\text { - Given } \begin{aligned}
& r_{n+1}=r_{n}+1 \\
& =e_{n}-v_{n}+2 \\
\left(r_{n+1}-1\right) & =\left(e_{n+1}-1\right)-\left(v_{n+1}\right)+2 \\
r_{n+1} & =e_{n+1}-v_{n+1}+2
\end{aligned}
$$

Ch. $9.5,9.7$ \& 9.8
38

Planar Graph
 Euler's Formula: Example

- Suppose that a connected planar simple graph has 20 vertices, each of degree 3. Into how many regions does a representation of this planar graph slit the plane?
- $\mathrm{v}=20$
- Sum of degree $=20 \times 3=60=2 e$
- e = 30
- $\mathrm{r}=\mathrm{e}-\mathrm{v}+2=30-20+2=12$

Planar Graph

Euler's Formula: Corollary

- If a connected planar simple graph, then G has a vertex of degree not exceeding 5.
- If a connected planar simple graph has e edges and v vertices with $v \geq 3$, then $e \leq 3 v-6$
- If a connected planar simple graph has e edges and v vertices with $v \geq 3$ and no circuits of length three, then $e \leq 2 v-4$

Planar Graph

Euler's Formula: Example 2

- Show that $\mathrm{K}_{3,3}$ is nonplanar

- $\mathrm{K}_{3,3}$ has no circuit of length three, 6 vertices and 9 edges
- As $e=9$ and $2 v-4=8, e \leq 2 v-4$ is false
- Therefore, $\mathrm{K}_{3,3}$ is nonplanar

[^0]
Planar Graph

Euler's Formula: Example 1

- Show that K_{5} is nonplanar

- K_{5} has circuit of length three, 5 vertices and 10 edges
- As e = 10 and $3 v-6=9$, $e \leq 3 v-6$ is false
- Therefore, K_{5} is nonplanar

```
If a connected planar simple graph has e edges
and v vertices with v\geq3, then e \leq 3v-6
```

Ch. $9.5,9.7 \& 9.8$

Planar Graph

Homeomorphic

- The graphs are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision
- If a graph is planar, it will be any graph obtained by removing an edge $\{u, v\}$ and adding a new vertex w with edges $\{u, w\}$ and $\{w, v\}$

G

H

Obtain G from H
Remove $\{\mathrm{a}, \mathrm{b}\}$, Add $\{\mathrm{a}, \mathbf{e}\},\{\mathbf{e}, \mathrm{b}\}$
Remove $\{\mathrm{a}, \mathrm{c}\}$, Add $\{\mathrm{a}, \mathbf{f}\},\{\mathbf{f}, \mathrm{c}\}$
Remove $\{\mathbf{f}, \mathrm{c}\}$, Add $\{\mathrm{f}, \mathbf{c}\},\{\mathbf{c}, \mathrm{g}\}$

Planar Graph

Kuratowski's Theorem

- A graph is not planar if it contains a nonplanar subgraph
- Kuratowski's Theorem

A graph is nonplanar iif it contains a subgraph homeomorphic to $\mathrm{K}_{3,3}$ or K_{5}

- Proof is neglected

Coloring

- Two regions sharing a border are assigned different colors

- Represent a map by a graph (called Dual Graph)
- Vertex: Region
- Edge: Constraint
- the color cannot be the same for adjacent regions

Map Coloring

- What is the largest complete graph represented by a map?

Coloring

- Graph Coloring Problem

Given a graph, assign all the vertices with the minimum number of colors so that no two adjacent vertices gets the same color

4
max

3

2

1
min

Coloring: Example

- Cycle Graph (C)

$\chi\left(\mathrm{C}_{\text {even }}\right)=2 \quad \chi\left(\mathrm{C}_{\text {odd }}\right)=3$
- Wheel Graph (W)

$\chi\left(W_{\text {even }}\right)=3 \quad \chi\left(W_{\text {odd }}\right)=4$

Coloring

- Chromatic number ($\chi(\mathrm{G})$)

The smallest number of colors needed to produce a proper coloring of G

Coloring: Example

- Complete Graph (K) - Tree (T)

Coloring: Example

- Bipartite Graph
- Recall... a graph is bipartite if all vertices can be partitioned into two partitions, so that any two adjacent vertices are in different partitions
- Obviously, $\chi=2$

Coloring: Application 1

Coloring

- No formula for Chromatic number χ
- Discussion
- Given a graph of size k - $\chi>$ k: not possible - $\chi=\mathrm{k}$: for a complete graph

- $\chi<\mathrm{k}$: other graphs except the complete one
- Analyzing a subgraph of a graph may be helpful - If a subgraph is complete of size $\mathrm{k}, \chi \geq \mathrm{k}$

$\chi=4$
Ch. 9.5, $9.7 \& 9.8$

$\chi=4$

$\chi=4$

Coloring: Application 2

- Examination of subject conflicts if student takes both subjects
- How many different time slots?

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
Al				
C++				
DisMaths				
Java				

Coloring: Application 3

- Suppose an university offers seven courses. Students can take more than one course.
- Pairings of courses:
- Course 1:2,3,4, 7
- Course 1 has a student in common with courses $2,3,4,7$
- Course 2 : 3, 4, 5, 7
- Course 3 : 4, 6, 7
- Course 4 : 5, 6
- Course 5 : 6, 7
- Course 6:7
- Find the fewest number of final exam slots that are needed to avoid any conflicts

Answer is 4

Coloring: Application 3

Bipartite

7 is not connected to 4

[^0]: If a connected planar simple graph has e edges and v vertices with $v \geq 3$ and no circuits of length three, then $e \leq 2 v-4$

