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Ch. 9.5, 9.7 & 9.8

Euler and Hamiltonian Path

 Euler Path
a path visits every edge exactly once

 Hamiltonian Path
a path visits every vertex exactly once
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Ch. 9.5, 9.7 & 9.8

Euler Path

 Seven Bridges of Königsberg

 Königsberg is built on both banks of the Preger river

 Now a city in Russia called Kaliningrad

 Is it possible to walk through the city that would 
cross each of bridges once
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Ch. 9.5, 9.7 & 9.8

Euler Path

 Leonhard Euler, the Swiss mathematician, 
was also unable to find such a route

 Euler figured out how to 
show for certain that 
no such route existed
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Euler Path

 Euler Path: a path visits every edge exactly once

 Euler Cycle: Euler path which starts and stops at 
the same vertex

 A connected graph G is called Eulerian if it contains 
an Euler path
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Euler Path

 Observation from an Euler path, 
a > c > a > d > e > a > b
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Euler Path

 Observation from an Euler path, 

 Intermediate vertex 

 Degree must be even
(Entrance and exist connection)

 Starting and end vertices

 If the same (cycle), 
degree are even

 If different (non-cycle), 
degrees are odd (in or out)
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Euler Path

 Theorem 1
A connected multigraph with at least two 
vertices has an Euler circuit if and only if 
each of its vertices has even degree

 Theorem 2
A connected multigraph has Euler path but 
not an Euler circuit if and only if it has exactly
two vertices of odd degree
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Euler Path
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Euler Path

 How to identify an Euler Path / Cycle?

 Euler Path
Fleury’s Algorithm

 Euler Cycle
Hierholzer’s Algorithm
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Euler Path

Fleury’s Algorithm
 Identify Euler Path

1. If there are 0 odd vertices, start anywhere. If 
there are 2 odd vertices, start at one of them

2. Follow edges one at a time. If you have a 
choice between a bridge and a non-bridge, 
always choose the non-bridge

3. Stop when you run out of edges

 “Don’t burn bridges” so that we can come 
back to a vertex and traverse remaining 
edges
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Euler Path

Fleury’s Algorithm
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Euler Path

Hierholzer’s Algorithm
 Identify Euler Cycle

1. Select a node v as a starting node

2. Form a cycle using non-traveled edges and end 
at v (remove the visited edges)

3. While all edges have been traversed, stop

a) Find a node u on the previous cycles that’s 
connected to a non-traveled edge

b) Form a cycle using non-traveled edges and 
end at u (remove the visited edges)

c) Merge both tours at the node u
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Euler Path

Hierholzer’s Algorithm
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d f

g

ec

b
a > d > f > a

d > b > e > c > d

f > b > c > g > e > f

1. Select a node v as a starting node
2. Form a cycle using non-traveled edges and end at v 

(remove the visited edges)
3. While all edges have been traversed, stop

a) Find a node v on the previous cycles that’s connected 
to a non-traveled edge

b) Form a cycle using non-traveled edges and end at v 
(remove the visited edges)

c) Merge both tours at the node v

a > d > f > a

d > b > e > c > d f > b > c > g > e > f

a > > > ad > b > e > c > d f > b > c > g > e > f

d f
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Euler Path

Example 1
 Is it possible to begin in a room or the outside 

and take a walk that goes through each door 
exactly once? If yes, how?
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Euler Path

Example 1
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Euler Path

Example 2
 Is it possible to walk through and around this 

building passing through each and every 
doorway exactly once?
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Euler Path

Example 2
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Euler Path

Example 2
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Hamiltonian Path

 Icosian game 

 Invented by an Irishman named Sir William 
Rowan Hamilton (1805-1865)

 Is there a cycle in the dodecahedron puzzle 
that passes through each vertex exactly once?

Dodecahedron puzzle 
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Hamilton Path

 Hamilton Path: a path visits every vertex exactly 
once

 Hamilton Cycle: Hamilton path which starts and 
stops at the same vertex

 Self-loop and multiple edges can be ignored
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Ch. 9.5, 9.7 & 9.8

Hamilton Path

Dirac’s Theorem
 Theorem: If each vertex of a simple graph with n 

vertices and n  3 has degree  n/2, there is 
Hamilton circuit
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Ch. 9.5, 9.7 & 9.8

Hamilton Path

Ore’s Theorem
 Theorem: If every pair of non-adjacent vertices u 

and v in a simple graph with n vertices and n  3
has deg(u)+deg(v)  n, there is a Hamilton circuit
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Hamilton Path

Dirac’s and Ore’s Theorem
 Be noted Dirac’s and Ore’s Theorem is a 

sufficient condition but not necessary one

 A graph with a vertex degree < n/2 may have a 
Hamilton circuit

 A graph with a pair of non-adjacent vertices 
deg(u)+deg(v) < n may have a Hamilton circuit
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Hamilton Path

 Unfortunately, no good algorithm to find the 
Hamilton path or cycle

 Just “trial and error” (and good luck!)
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Euler Path VS Hamilton Path

 Euler Path

 a path uses every 
edge exactly once

 Euler Cycle

 Euler path which 
starts and stops at 
the same vertex

 Hamilton Path

 a path uses every 
vertex exactly once

 Hamilton Cycle

 Hamilton path which 
starts and stops at 
the same vertex
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Planar Graph

 Planar Graph is a graph can be drawn in the plane 
without edges crossing

 A planar graph drawn in the plane without edges 
crossing is called Plane Graph

 Plane graph is also called a planar representation
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Ch. 9.5, 9.7 & 9.8

Planar Graph

 A graph that is drawn in the plane is also said to be 
embedded (or imbedded) in the plane

 A planar graph can generate different plane graphs

 Application: Circuit Layout Problems
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Ch. 9.5, 9.7 & 9.8

Planar Graph: Region

 A plane graph splits the plane into regions

 Including the unbounded (exterior) region
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Ch. 9.5, 9.7 & 9.8

Planar Graph: Region

 The vertices and edges of G that are incident
with a region R form a subgraph of G called 
the boundary of R
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Planar Graph: Region

 Observation on boundary

 Cycle edge belongs to the boundary of two 
regions

 Bridge is on the boundary of only one region 
(unbounded region)
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a > b > c > e > a is a cycle

(a,b), (b,c), (a,e) belongs to R1 and R4
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(e,b) is not a cycle, just a bridge

(e,b) belongs to R4 only
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Planar Graph

 Is K3,3 a planar graph?
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f in R11: cross when connect to b
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f in R22: cross when connect to b

C in R1
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1) Focus on a, e, d, b 2) c connect to d, e, f 3) f connects to a, b, c
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Planar Graph

Euler’s Formula
 If G be a connected planar simple graph with 

e edges, v vertices, and r regions, then

 MI is used in the proof

r = e – v + 2
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Planar Graph

Euler’s Formula: Proof
 For a connected planar graph G

 Let a sequence of subgraphs G1, G2, …Gi, …, 
Ge of G, and Ge = G, 

 G1  G2  …  Ge

 Gi contains i edges

 Gn is obtained from Gn-1 by arbitrarily adding an 
edge

 Be noted that all Gi are planar (as subgraph of 
planar graph must be planar)

r = e – v + 2
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Planar Graph

Euler’s Formula: Proof
 For G1, 

 e1 =

 v1 =

 r1 =

 Therefore, r1 = e1 – v1 + 2

 Assume rn = en – vn + 2 is true

2

1

1
b1a1

r = e – v + 2
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Planar Graph

Euler’s Formula: Proof
 Let {an+1, bn+1} be the edge that is added to 

Gn to obtain Gn+1

 Case 1: an+1, bn+1 are in Gn

 Case 2: one of an+1 and bn+1 is not in Gn

b
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Gn Gn+1

r = e – v + 2

Add {an+1, bn+1}

b

a

Case 1

a

b

Case 2
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Planar Graph

Euler’s Formula: Proof
 Case 1: an+1 and bn+1 are in Gn

 en+1 =           , and vn+1 =

 If an+1 and bn+1 are not on the boundary 
of a common region R, two edges cross. 
This violates Gn+1 is planar

 Therefore, an+1 and bn+1 must be 
on the boundary of a common region R

 The new edge splits R into two regions

 rn+1 = rn + 1

 Given rn = en – vn + 2

(rn+1 – 1) = (en+1 – 1) – (vn+1) + 2

rn+1 = en+1 – vn+1 + 2

r = e – v + 2

en + 1 vn

an+1 and bn+1 are 
not on the 
boundary of a 
common region R

b

a

an+1 and bn+1 are 
on the boundary 
of a common 
region R
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Planar Graph

Euler’s Formula: Proof
 Case 2: one of an+1 and bn+1 is not in Gn

 en+1 =

 vn+1 =

 No new region is generated, rn+1 = rn

 Given rn = en – vn + 2

(rn+1) = (en+1 – 1) – (vn+1 – 1) + 2

rn+1 = en+1 – vn+1 + 2

a
b

r = e – v + 2

en + 1

vn + 1
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Planar Graph

Euler’s Formula: Example
 Suppose that a connected planar simple 

graph has 20 vertices, each of degree 3. Into 
how many regions does a representation of 
this planar graph slit the plane?

 v =

 Sum of degree =

 e = 30

 r = e – v + 2

20 x 3 = 60

20

= 2e

= 30 – 20 + 2 = 12

40



Ch. 9.5, 9.7 & 9.8

Planar Graph

Euler’s Formula: Corollary
 If a connected planar simple graph, then G has a 

vertex of degree not exceeding 5.

 If a connected planar simple graph has e edges and 
v vertices with v ≥ 3, then e ≤ 3v – 6

 If a connected planar simple graph has e edges and 
v vertices with v ≥ 3 and no circuits of length three, 
then e ≤ 2v – 4
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Planar Graph

Euler’s Formula: Example 1
 Show that K5 is nonplanar

 K5 has circuit of length three, 5 vertices and 
10 edges

 As e = 10 and 3v – 6 = 9, e ≤ 3v – 6 is false

 Therefore, K5 is nonplanar

d

c

a

b

e

If a connected planar simple graph has e edges 
and v vertices with v ≥ 3, then e ≤ 3v – 6
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Planar Graph

Euler’s Formula: Example 2
 Show that K3,3 is nonplanar

 K3,3 has no circuit of length three, 6 vertices 
and 9 edges

 As e = 9 and 2v – 4 = 8, e ≤ 2v – 4 is false

 Therefore, K3,3 is nonplanar

b

e

a

d

c

f

If a connected planar simple graph has e edges and
v vertices with v ≥ 3 and no circuits of length three, 
then e ≤ 2v – 4
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Planar Graph

Homeomorphic
 The graphs are called homeomorphic if they 

can be obtained from the same graph by a 
sequence of elementary subdivision

 If a graph is planar, it will be any graph obtained 
by removing an edge {u,v} and adding a new 
vertex w with edges {u,w} and {w,v}
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f
ge

Remove {a, b}, Add {a, e}, {e, b}

Remove {a, c}, Add {a, f}, {f, c}

Remove {f, c}, Add {f, c}, {c, g}

Obtain G from H

G H
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Ch. 9.5, 9.7 & 9.8

Planar Graph

Kuratowski’s Theorem
 A graph is not planar if it contains a non-

planar subgraph

 Kuratowski’s Theorem
A graph is nonplanar iif it contains a 
subgraph homeomorphic to K3,3 or K5

 Proof is neglected
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e
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d

c

f
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Planar Graph: Kuratowski’s Theorem

Example
 Determine whether the 

following graph is planar

 As G contains a subgraph (H) homeomorphic to 
K5, it is not planar
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fk

j i
h

H and K5 are homeomorphic

G

e

c

a

b

g
f

H

e

c

a

b

g

K5H  G

H can be obtained from K5

by removing {g,e} and 
adding {g,f} and {f,e}
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Ch. 9.5, 9.7 & 9.8

Coloring

 Two regions sharing a border 
are assigned different colors

 Represent a map by 
a graph (called Dual Graph)

 Vertex: Region

 Edge: Constraint

 the color cannot be the 
same for adjacent regions

a

b

d
c

47

Ch. 9.5, 9.7 & 9.8

Map Coloring

 What is the largest complete graph 
represented by a map?

c

d

a

b

ca

b

caa e

d

b

c

a

Planar Planar Planar Planar nonPlanar
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Ch. 9.5, 9.7 & 9.8

Coloring

 Graph Coloring Problem
Given a graph, assign all the vertices with the 
minimum number of colors so that no two 
adjacent vertices gets the same color

d a

cb

4 3 2 1

max min
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Coloring

 Chromatic number ( (G) )
The smallest number of colors needed to 
produce a proper coloring of G
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Ch. 9.5, 9.7 & 9.8

Coloring: Example

 Cycle Graph (C)  Wheel Graph (W)

c d

ba

c d

eb

a

c d

ba

e

c d

eb

a

f

(Ceven)= (Codd)= (Weven)= (Wodd)=2 3 3 4
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Coloring: Example

 Complete Graph (K)  Tree (T)

c d

eb

a
a

b c d

f ge h i

l mkj

n

c d

ba

(Keven)= (Kodd)=

(T)=

n n

2
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Coloring: Example

 Bipartite Graph

 Recall… a graph is bipartite if all vertices can 
be partitioned into two partitions, so that any 
two adjacent vertices are in different partitions

 Obviously,  = 2
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Ch. 9.5, 9.7 & 9.8

Coloring

 No formula for Chromatic number 

 Discussion

 Given a graph of size k
  > k: 
  = k: 
  < k:

 Analyzing a subgraph of a graph may be helpful

 If a subgraph is complete of size k,  ≥ k

for a complete graph
not possible

other graphs except the complete one

 = 4  = 5  = 4  = 4 
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Ch. 9.5, 9.7 & 9.8

Coloring: Application 1

 A flight need a gate in an airport

 How many gates needed for this 
flight schedule?

T1 T2 T3 T4 T5 T6

FA

FB

FC

FD

FE

FF

A

B

C

D

E

F

A

B

C

D

E

F

Bipartite

A

B

C

D

E

F

Vertex: Flight
Edge: Share the same time slot

3
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A

B

C

D

E

Ch. 9.5, 9.7 & 9.8

Coloring: Application 2

 Examination of subject 
conflicts if student takes 
both subjects

 How many different time slots?

56

S1 S2 S3 S4

AI

C++

DisMaths

Java

Vertex: Course
Edge: a student take 

the two courses

D

A C

J D

A C

JD

A

J D

A C

JD

A

J

C

Bipartite

3



Ch. 9.5, 9.7 & 9.8

Coloring: Application 3

 Suppose an university offers seven courses. Students can 
take more than one course. 

 Pairings of courses: 
 Course 1 : 2, 3, 4, 7

 Course 1 has a student 
in common with courses 2, 3, 4, 7

 Course 2 : 3, 4, 5, 7 

 Course 3 : 4, 6, 7 

 Course 4 : 5, 6 

 Course 5 : 6, 7 

 Course 6 : 7

 Find the fewest number of final exam slots that are needed 
to avoid any conflicts
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1

2

3

4

7

6

5

Ch. 9.5, 9.7 & 9.8

Coloring: Application 3
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1

2

3

4

7

6

5

1

2

3

4

7

6

5

1

2

3

4

7

6

5

1

2

3

4

7

6

5

1

2

3

4

7

6

5

Bipartite

1

2

3

4

7

6

5

K4

7 is not 
connected to 4

Answer is 4


