Discrete Mathematic

Chapter 9: Graphs
 9.1
 Graphs and Graph Model
 9.2
 Graph Terminology and Special Types of Graphs
 9.3
 Representing Graphs and
 graph Isomorphism
 9.4
 Connectivity

Dr Patrick Chan

School of Computer Science and Engineering
South China University of Technology

Agenda

- Graph
- Terminology
- Connectivity
- Isomorphism

Graph

- A graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ consists of a set of vertices \mathbf{V}, and a set of edges E

- Vertices (V)
- |V|: the number of vertices
- Edges (E)
- Sometimes referred as arc
- Connection between a pair of vertices (v, w), where v and w belong to V
- |E|: the number of edges
- Weight may be included
$V=\{a, b, c, d, e, f\}$
(e,f) \}

Graph Structure

- Key questions about Graph Structure
- Directed / Undirected Edge?
- Single / Multiple Connection?
- Loop?

Graph Structure

Directed / Undirected?

- Undirected Graph
- Edges are not directed
- If (a, b), then (b, a)
- Directed Graph (Digraph)
- Edges are directed
- (a, b) does not mean (b,a)

Graph Structure
Single/Multiple Connection?

- Simple Graph
- No two edges connects the same pair of vertices
- Loop is not allowed
- Multigraph

- Two vertices may be connected by more than one edges
- An edge cannot be identified uniquely by a pair of vertices
- Additional name is needed
- E.g. (c,d) means u or v

Graph Structure

Loop?

- Multigraph does not allow loop
- Pseudograph is a special multigraph allows loop

- Sometimes, the meanings of Pseudograph and Multigraph are the same

Graph Structure

Summary

Adjacent / Neighbor

- Undirected graph
- Let $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ is an edge
- v_{1} and v_{2} are endpoints
- v_{1} is adjacent to v_{2}
- Also mean
" v_{2} is adjacent to v_{1} "
since $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right)$

Directed graph

- Let $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ is an edge
- v_{1} is initial vertex
- v_{2} is terminal (end) vertex
- v_{1} is adjacent to v_{2}
- v_{2} is adjacent from v_{1}
- Do not mean
" v_{2} is adjacent to v_{1} "

Adjacent / Neighbor

- e incidents with v_{1} and v_{2}
- e connects v_{1} and v_{2}

- Example:
a \& b are adjacent
b \& a are adjacent

w is adjacent to z
z is not adjacent to w

Neighbor Set

- Neighbor Set N(v) contains all adjacent vertices of v
- For example: $N(c)=\{a, b, d\}$

$$
N(z)=\{y\}
$$

Degree

- Undirected graph
- Degree: number of edges containing that vertex (Adjacent vertex number)
- Isolated vertex: deg = 0
- Pendant vertex: deg = 1
- E.g. $\operatorname{deg}(\mathrm{c})=3$

Directed graph

- In-Degree: in-bound edge number
- Out-Degree: out-bound edge number
- E.g. $\operatorname{deg}^{-}(z)=2$ $\operatorname{deg}^{+}(z)=1$

Degree: Example

- What are the degrees of the following vertices?

$$
\begin{array}{lll}
\operatorname{deg}(a)=2 & \operatorname{deg}^{-}(g)=2 & \operatorname{deg}^{+}(g)=0 \\
\operatorname{deg}(b)=3 & \operatorname{deg}^{-}(h)=0 & \operatorname{deg}^{+}(h)=3 \\
\operatorname{deg}(c)=2 & \operatorname{deg}^{-}(i)=1 & \operatorname{deg}^{+}(i)=1 \\
\operatorname{deg}(d)=2 & \operatorname{deg}^{-}(j)=1 & \operatorname{deg}^{+}(j)=1 \\
\operatorname{deg}(e)=0 & \operatorname{deg}^{-}(k)=0 & \operatorname{deg}^{+}(k)=0 \\
\operatorname{deg}(f)=1 & \operatorname{deg}^{-}(l)=1 & \operatorname{deg}^{+}(l)=0
\end{array}
$$

(a)-(c)
(b)-(d)

(h) (i) (1)

Degree Sequence

- A degree sequence is a monotonic nonincreasing sequence of the degrees of vertices in an undirected graph.

(2,3,2,2,0,1) Not monotonic nonincreasing
$(3,2,2,2,1,0)$ Degree sequence
$(3,3,2,2,2) \quad$ Degree sequence

Degree

Handshaking Theorem 1

- For any undirected graph $G=(V, E)$,

$$
2|E|=\sum_{v \in V} \operatorname{deg}(v)
$$

- Twice number of edges = sum of degrees
- Each edge maps to two vertices (start \& end)
- It also applies to multiple edges and loop

Degree: Handshaking Theorem 1

Example 1

- How many edges are there in a graph with 10 vertices each of degree six?

Total degree $=10 \times 6=60$

- According to Handshaking Theorem

$$
2|E|=\sum_{v \in V} \operatorname{deg}(v)
$$

- $|E|=60 / 2=30$

Degree: Handshaking Theorem 1

Example 1

- Is there a graph with degree sequence...
- $(2,2,2)$? Yes
- $(3,3,3,3)$? Yes

- $(2,2,1)$? No,

- $(5,5,4)$? Yes

Degree

Handshaking Theorem 2

- Undirected graph has an even number of vertices of odd degree

vertices of odd degree 2

vertices of odd degree 4

vertices of odd degree 2

Degree

Handshaking Theorem 2

- Proof

- Let V_{o} and V_{e} be the set of vertices of odd and even degree

$$
\underbrace{2|E|}_{\text {even }}=\sum_{v \in V} \operatorname{deg}(v)=\underbrace{\sum_{v \in V_{o}} \operatorname{deg}(v)}_{\text {also be even }}+\underbrace{\sum_{v \in V_{e}} \operatorname{deg}(v)}_{\text {Must be even }}
$$

- As summation of even degree ($2^{\text {nd }}$ term) is even
- Summation of odd degree ($1^{\text {st }}$ term) is also even
- As $\operatorname{deg}(v)$ is odd for $v \in V_{o}$
- The number of $\operatorname{deg}(v)$ must be even for $v \in V_{o}$

Degree

Handshaking Theorem 3

- For any directed graph $G=(V, E)$,

$$
|E|=\sum_{v \in V} d e g^{+}(v)=\sum_{v \in V} d e g^{-}(v)
$$

- Each edge maps to one initial and on end vertices
- It also applies to multiple edges and loop

$$
|E|=4
$$

(b) (d) $\begin{array}{ll}\operatorname{deg}^{+}(a)=2 & \operatorname{deg}^{-}(a)=0 \\ \operatorname{deg}^{+}(b)=0 & \operatorname{deg}^{-}(b)=3\end{array}$ $\operatorname{deg}^{+}(\mathrm{c})=1 \quad \operatorname{deg}^{-}(\mathrm{c})=1$ $\operatorname{deg}^{+}(\mathrm{d})=1 \quad \operatorname{deg}^{-}(\mathrm{d})=0$

- A sequence of vertices $v_{1}, v_{2}, \ldots, v_{n}$ of length $n-1$ with an edge from v_{i} to v_{i+1} for $1 \leq i<n$
- A path is simple if all vertices on the path are distinct

Vertex a to e

$a>b>e$	Length $=2$	Simple
$a>c>b>e$	Length $=3$	Simple

Vertex a to b

$a>b$	Length $=1$	Simple
$a>c>b$	Length $=2$	Simple

$$
a>c>\text { b } \text { e }>d>c>\text { (b) } \begin{aligned}
& \text { Length }=6 \\
& \text { Not Simple }
\end{aligned}
$$

Cycle (Circuit)

- A path connects v_{i} to itself
- A cycle is simple if the path is simple, except the first and last vertices are the same

$$
\begin{array}{ll}
a>c>b>a & \text { Simple Cycle } \\
b>e>d>c>b & \text { Simple Cycle } \\
\text { b } \text { e }>d>c>\text { b }>\text { a }>c> & \text { Cycle }
\end{array}
$$

Acyclic

- A graph without cycle is called acyclic
- A directed graph without cycles is called a Directed Acyclic Graph (DAG)

Not a
Undirected Acyclic

DAG

Not a DAG

Connectedness

- Vertices v, w are connected if and only if there is a path starting at v and ending at w
- Every graph consists of separate connected pieces called connected components

Connectedness

- Undirected graph
- Connected: if there is at least one path from any vertex to any other (Only one connected component)

Directed graph

- Weakly connected: Directed graph without considering directions is connected
- Strongly connected: Directed graph with considering direction is connected

Connected

Not Connected

Strongly Connected

Weakly Connected

Maximal/Minimal graph

- A graph G is said to be a maximal graph (minimal graph) with respect to a property P if G has property P and no proper supergraph (subgraph) of G has the property P

maximal cycle

minimal connected graph

Graph Operation

- Given $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$
- Complement $\overline{\mathrm{G}}_{1}$
$\left(V_{1},\left\{u v \mid u \neq v, u v \notin E_{1}\right\}\right)$
- Intersection $\mathrm{G}_{1} \cap \mathrm{G}_{2}$
$\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)$
- Union $\mathrm{G}_{1} \cup \mathrm{G}_{2}$
$\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$
- Join $G_{1}+G_{2}$ if $V_{1} \cap V_{2}=\varnothing$
$\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left\{u v \mid u \in V_{1}\right.\right.$ and $\left.\left.v \in V_{2}\right\}\right)$
- Cartesian Product $\mathrm{G}_{1} \times \mathrm{G}_{2}$

$$
\begin{aligned}
& \left(\mathrm{V}_{1} \times \mathrm{V}_{2},\left\{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \mid\right.\right. \\
& \left(\mathrm{u}_{1}=\mathrm{v}_{1} \text { and }\left\{\mathrm{u}_{2}, v_{2}\right\} \in \mathrm{E}_{2}\right) \text { or } \\
& \left.\left.\left(\mathrm{u}_{2}=\mathrm{v}_{2} \text { and }\left\{\mathrm{u}_{1}, v_{2}\right\} \in \mathrm{E}_{1}\right)\right\}\right)
\end{aligned}
$$

Graph Operation

Example 1

Graph Operation

Example 2

- Complement $\overline{\mathrm{G}}_{1}$ $\left(V_{1},\left\{u v \mid u \neq v, u v \notin E_{1}\right\}\right)$
- Intersection $\mathrm{G}_{1} \cap \mathrm{G}_{2}$
$\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)$
- Union $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$
- Join $G_{1}+G_{2}$ if $V_{1} \cap V_{2}=\varnothing$ $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left\{u v \mid u \in V_{1}\right.\right.$ and $\left.\left.v \in V_{2}\right\}\right)$
- Cartesian Product $G_{1} \times G_{2}$ $\left(\mathrm{V}_{1} \times \mathrm{V}_{2},\left\{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right\}\right.$
$\left(u_{1}=v_{1}\right.$ and $\left.\left\{u_{2}, v_{2}\right\} \in E_{2}\right)$ or
$\left(u_{2}=v_{2}\right.$ and $\left.\left.\left.\left\{u_{1}, v_{2}\right\} \in E_{1}\right\}\right\}\right)$

$A+D$
$A \times D$

Graph Operation

Example 3

- Complement $\overline{\mathrm{G}}_{1}$

$$
\left(V_{1},\left\{u v \mid u \neq v, u v \notin E_{1}\right\}\right)
$$

- Intersection $\mathrm{G}_{1} \cap \mathrm{G}_{2}$

$$
\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)
$$

- Union $\mathrm{G}_{1} \mathrm{U}^{2}$

$$
\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)
$$

- Join $G_{1}+G_{2}$ if $V_{1} \cap V_{2}=\varnothing$ $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left\{u v \mid u \in V_{1}\right.\right.$ and $\left.\left.v \in V_{2}\right\}\right)$
- Cartesian Product $G_{1} \times G_{2}$

$$
\left(\mathrm{V}_{1} \times \mathrm{V}_{2},\left\{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \mid\right.\right.
$$

$$
\left(u_{1}=v_{1} \text { and }\left\{u_{2}, v_{2}\right\} \in E_{2}\right) \text { or }
$$

$$
\left.\left.\left(u_{2}=v_{2} \text { and }\left\{u_{1}, v_{2}\right\} \in E_{1}\right)\right\}\right)
$$

$\overline{\mathrm{K}}_{4}$
$\overline{\mathrm{C}}_{4}$

Graph Operation

Example 4

- Complement $\overline{\mathrm{G}}_{1}$

$$
\left(v_{1},\left\{u v \mid u \neq v, u v \notin E_{1}\right\}\right)
$$

- Intersection $\mathrm{G}_{1} \cap \mathrm{G}_{2}$

$$
\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)
$$

- Union $\mathrm{G}_{1} \cup \mathrm{G}_{2}$
$\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$
- Join $G_{1}+G_{2}$ if $V_{1} \cap V_{2}=\varnothing$
$\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left\{u v \mid u \in V_{1}\right.\right.$ and $\left.\left.v \in V_{2}\right\}\right)$
- Cartesian Product $\mathrm{G}_{1} \times \mathrm{G}_{2}$

$$
\begin{aligned}
& \left(\mathrm{V}_{1} \times \mathrm{V}_{2},\left\{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \mid\right.\right. \\
& \left(u_{1}=v_{1} \text { and }\left\{u_{2}, v_{2}\right\} \in \mathrm{E}_{2}\right) \text { or } \\
& \left.\left.\left(\mathrm{u}_{2}=\mathrm{v}_{2} \text { and }\left\{\mathrm{u}_{1}, \mathrm{v}_{2}\right\} \in \mathrm{E}_{1}\right)\right\}\right)
\end{aligned}
$$

$\mathrm{K}_{2}+\mathrm{K}_{3}$

$\overline{\mathrm{K}}_{2}+\overline{\mathrm{K}}_{3}$

Graph Operation

Example 5

- Complement $\overline{\mathrm{G}}_{1}$

$$
\left(V_{1},\left\{u v \mid u \neq v, u v \notin E_{1}\right\}\right)
$$

- Intersection $\mathrm{G}_{1} \cap \mathrm{G}_{2}$

$$
\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)
$$

- Union $\mathrm{G}_{1} \mathrm{U} \mathrm{G}_{2}$
$\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$
- Join $G_{1}+G_{2}$ if $V_{1} \cap V_{2}=\varnothing$
$\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left\{u v \mid u \in V_{1}\right.\right.$ and $\left.\left.v \in V_{2}\right\}\right)$
- Cartesian Product $\mathrm{G}_{1} \times \mathrm{G}_{2}$
$\left(V_{1} \times V_{2},\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \mid\right.\right.$
$\left(u_{1}=v_{1}\right.$ and $\left.\left\{u_{2}, v_{2}\right\} \in E_{2}\right)$ or
$\left(\mathrm{u}_{2}=\mathrm{v}_{2}\right.$ and $\left.\left.\left\{\mathrm{u}_{1}, \mathrm{v}_{2}\right\} \in \mathrm{E}_{1}\right)\right\}$)

$$
\mathrm{K}_{2} \times \overline{\mathrm{K}}_{3}
$$

Type of Graph

Complete Graph

- Complete graph $\mathbf{K}_{\mathbf{n}}$ if there is an edge between every pair of vertices, where n is the number of vertices
- Complete Undirected - Complete Directed Graph

Graph

Type of Graph
Cycle Graph

- Cycle graph C_{n} is a circular graph with $\mathrm{V}=$ $\{0,1,2, \ldots, n-1\}$ where vertex i is connected to (i+1) mod n and to ($\mathrm{i}-1$) $\bmod \mathrm{n}$
- like a polygon

C_{1}
C_{2}
C_{3}

Type of Graph
Wheel Graph

- Wheel graph \mathbf{W}_{n} is a cycle graph with an extra vertex in the middle which contact to each of other vertices

W_{3}

W_{4}

Type of Graph
Cube

- n-cube \mathbf{Q}_{n} is defined recursively.
- Q_{0} is just a vertex
- Q_{n+1} is gotten by taking 2 copies of Q_{n} and joining each vertex v of Q_{n} with its copy v^{\prime}

Type of Graph

Bipartite Graph

- A graph is bipartite if all vertices can be separated into two partitions, (i.e. $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\varnothing=\mathrm{V}_{1} \cap \mathrm{~V}_{2}$) so that any two adjacent vertices are in different partitions
- $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ is called a bipartition of V of G

Type of Graph

Bipartite Graph: Theorem

- A simple graph is bipartite if and only if it is possible to assign one of two different colors to each vertex of the graph so that no two adjacent vertices are assigned the same color

Type of Graph

Bipartite Graph: Example 1

- Is C_{n} (Cycle graph) bipartite?
- When n is even, Yes
- All odd vertices are in a color and all vertices numbers are in another color
- All vertices are only adjacent to opposite color
- When n is odd, No (except $\mathrm{n}=1$)
- Both n and 1 are odd, but $\mathrm{n}^{\text {th }}$ vertex is next to the $1^{\text {st }}$ vertex

Type of Graph
Bipartite Graph: Example 2

- Is the given graph bipartite?

NO

- For example, consider a, b, and c. There is two adjacent vertices are assigned the same color if only two colors are allowed

Type of Graph

Complete Bipartite Graph

- When all possible edges exist in a simple bipartite graph with m and n vertices in two partitions, the graph is called complete bipartite $K_{m, n}$

Subgraph

- Let $G=(V, E)$ and $H=(W, F)$ be graphs. H is a subgraph of G , if $\mathrm{W} \subseteq \mathrm{V}$ and $\mathrm{F} \subseteq \mathrm{E}$
- Subgraph is a graph inside another group
- A subgraph H of G is a proper subgraph of G if $\mathrm{H} \neq \mathrm{G}$

(d)

Subgraph
 Subgraph

Subgraph: Example : aั ํํㅇํ

- How many different Q_{2} subgraphs does Q_{3} have?

6

Tree

- Tree is an undirected, connected and acyclic graph - n vertices has ($n-1$) edges

- Forest is an undirected, disconnected, acyclic graph - Disjoint collection of trees

@ ©
$\stackrel{\ominus}{\circ}$
$\stackrel{\ominus}{\circ}$

Tree

Theorem 1

- A tree with at least two vertices has at least two leaves
- Assume P is a longest path in a tree T
- Prove its endpoints are leaves
- Suppose v is not a leaf, then v has at least two neighbors, x and y

- One of them (say x) must not in P, otherwise a cycle
- Let P' be the path that begins at x followed by P
- This is a longer path than P which is contradict to the assumption

Tree

Theorem 2

- A tree on n vertices has $n-1$ edges
- For $\mathrm{N}(1)$
- If $\mathrm{n}=1$, then T has no edges
- Assume $N(k)$ is true
- T with n vertices has exactly $\mathrm{n}-1$
- Show N(k+1)

Tree

Theorem 2

- Show T with $n+1$ vertices has exactly $n-1$
- Since T is a tree, T has at least two leaves (Theorem 1)
- Let T' be the graph created by deleting a leaf in T
- Note that T' is a tree with n vertices, since:
- T' is connected and acyclic
- T' has one less vertex than T
- According to $\mathrm{N}(\mathrm{k}), \mathrm{T}$ ' has $\mathrm{n}-1$ edges
* Since T' has one less edge than T, T has K edges

Tree

Theorem 3

- Let G be a graph with n vertices. Then the following are equivalent:

1. G is a tree
2. G is a maximal acyclic graph
3. G is a minimal connected graph
4. G is acyclic and it has $n-1$ edges
5. G is connected and it has $n-1$ edges
6. Between any two distinct vertices of G there exists a unique path

Tree

Spanning Tree

- Spanning Tree in a connected graph G is a subgraph H of G that includes all the vertices of G and is also a tree

Tree

Minimum Spanning Tree

- Minimum Spanning Trees (MST) is a spanning tree with the minimal cost to call all the vertices

Graph Isomorphism

- Is the following graphs the same as Graph A?

Yes
Different Labels

Yes
Different Positions

Yes
Different Label and Positions

Graph Isomorphism

- Two graphs, A and B, which contain the same number of graph vertices connected in the same way are said to be isomorphic, $\mathbf{A} \cong \mathbf{B}$
- Applications
- Checking fingerprint
- Testing molecules

Graph Isomorphism

- If $G_{1} \cong G_{2}$, do they have
- the same number of vertices? Yes
- the same number of edges? Yes
- the same degree sequence? Yes
- Are $\mathrm{G}_{1} \cong \mathrm{G}_{2}$, if they have
- the same number of vertices? No
- the same number of edges? No
- the same degree sequence? No

$$
\begin{aligned}
& |V|=6 \\
& |E|=4 \\
& 2,2,2,1,1,0 \\
& \text { (a)-(b)-C } \\
& \text { (a)-(© © } \\
& \text { (a)-(b) © } \\
& \text { (d) © © } \\
& |V|=6 \\
& |E|=4 \\
& 2,2,2,1,1,0
\end{aligned}
$$

Graph Isomorphism

- $G_{1}=\left(V_{1}, E_{1}\right) \cong G_{2}=\left(V_{2}, E_{2}\right)$ if there is a bijective function $f: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{2}$ such that for all $(u, v) \in E_{1}$:

$$
(\mathrm{u}, \mathrm{v}) \in \mathrm{E}_{1} \text { iff }(f(\mathrm{u}), f(\mathrm{v})) \in \mathrm{E}_{2}
$$

- It is edge-preserving vertex matching
- If there is an edge in the original graph, there is an edge after the mapping; vice versa.

Graph Isomorphism

$(u, v) \in \mathrm{E}_{1}$ iff $(f(u), f(v)) \in \mathrm{E}_{2}$
Example

$$
\begin{aligned}
& \mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right) \mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right) \\
& \mathrm{V}_{1}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \mathrm{V}_{2}=\{1,2,3,4\} \\
& \mathrm{E}_{1}=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{c}), \mathrm{E}_{2}=\{(1,3),(1,4), \\
&(\mathrm{a}, \mathrm{~d}),(\mathrm{b}, \mathrm{~d}),(2,3),(2,4), \\
&(\mathrm{c}, \mathrm{~d})\} \\
&(3,4)\}
\end{aligned}
$$

$(\mathrm{a}, \mathrm{b}) \Leftrightarrow(f(\mathrm{a}), f(\mathrm{~b}))=(3,1)$
$(\mathrm{a}, \mathrm{c}) \Leftrightarrow(f(\mathrm{a}), f(\mathrm{c}))=(3,2)$
$(\mathrm{a}, \mathrm{d}) \Leftrightarrow(f(\mathrm{a}), f(\mathrm{~d}))=(3,4)$
$(\mathrm{b}, \mathrm{d}) \Leftrightarrow(f(\mathrm{~b}), f(\mathrm{~d}))=(1,4)$
$(\mathrm{c}, \mathrm{d}) \Leftrightarrow(f(\mathrm{c}), f(\mathrm{~d}))=(2,4)$

Graph Isomorphism

Self-complementary

- A graph G is called self-complementary if $G \cong \bar{G}$
- C_{5} and $\overline{\mathrm{C}_{5}}$ are self-complementary $\left(\mathrm{C}_{5} \cong \overline{\mathrm{C}_{5}}\right)$

Graph Isomorphism

- Showing Isomorphism is not easy
- No general method which is more efficient than trying all possibilities

G_{1}

(a) G_{2}

(b) G_{3}

(c) G_{4}

(d) G_{5}

Graph Isomorphism

- Showing non-isomorphic is simpler
- Violate any isomorphic-preserving property
- Example: Are they isomorphism? NO

Degree is 2

Degree is 2

Degree of all nodes is 3

