Chapter 4: Advanced Counting Techniques

4.1
 Recurrence Relations

4.2

Solving Linear Recurrence Relations
4.4

Generating Functions

Dr Patrick Chan
School of Computer Science and Engineering
South China University of Technology

Agenda

- Recurrence Relations
- Modeling with Recurrence Relations
- Linear Nonhomogeneous Recurrence Relations with Constant Coefficients
- Generating Functions
- Useful Facts About Power Series
- Extended Binomial Coefficient
- Extended Binomial Theorem
- Counting Problems and Generating Functions
- Using Generating Functions to Solve Recurrence Relations

Ch. $4.1,4.2$ \& 4.4

Recurrence Relations

- A recurrence relation for a sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more previous elements (a_{0}, \ldots, a_{n-1})
- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation

Recurrence Relations

Example 1

Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}-a_{n-2}$ for $n=2,3$, $4, \ldots$, and suppose that $\mathrm{a}_{0}=3$ and $\mathrm{a}_{1}=5$. What are a_{2} and a_{3} ?

- From the recurrence relation:
- $\mathrm{a}_{2}=\mathrm{a}_{1}-\mathrm{a}_{0}=5-3=2$
- $a_{3}=a_{2}-a_{1}=2-5=-3$

Recurrence Relations

Example 2

- Consider the recurrence relation

$$
a_{n}=2 a_{n-1}-a_{n-2}, \text { where } n \geq 2
$$

- Which of the following are solutions?
- $a_{n}=3 n$
- $2 a_{n-1}-a_{n-2}=2(3(n-1))-3(n-2)=3 n=a_{n}$
- $a_{n}=2^{n}$
$-2 a_{n-1}-a_{n-2}=2\left(2^{n-1}\right)-n^{n-2}=2^{n} \neq a_{n}$
- $a_{n}=5$
$=2 a_{n-1}-a_{n-2}=2 \times 10-5=5=a_{n}$

Modeling with Recurrence Relations Compound Interest

- Growth of saving in a bank account with r\% interest per given period - $S_{n}=S_{n-1}+r \cdot S_{n-1}=(r+1) \cdot S_{n-1}$
- Example:
- Suppose that a person deposits $\$ 10,000$ in a savings

Suppose that a person deposits $\$ 10,000$ in a savings
account at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years?

- $S_{30}=1.11 S_{29}=1.11\left(1.11 S_{28}\right)=\ldots=(1.11)^{30} 10,000$
- Recurrence relation
- Initial conditions

Recurrence Relations

- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect
- For example
$a_{n}=a_{n-1}+a_{n-2}$, what is the value of a_{3} ?
Answer depends on a_{0} and a_{1} (initial conditions)

$$
\begin{array}{lll}
=a_{0}=3 \text { and } a_{1}=5: & a_{2}=8, & a_{3}=13 \\
=a_{0}=1 \text { and } a_{1}=2: & a_{2}=3, & a_{3}=5
\end{array}
$$

- A sequence is determined uniquely by

Modeling with Recurrence Relations
 Tower of Hanoi

- Objective
- Get all disks from peg 1 to peg 3
- Rules
- Only move 1 disk at a time
- Never put a larger disk on a smaller one

Modeling with Recurrence Relations Tower of Hanoi

Ch. 4.1, 4.2 \& 4.4

Modeling with Recurrence Relations Tower of Hanoi

Modeling with Recurrence Relations
 Tower of Hanoi

The solution

Modeling with Recurrence Relations Fibonacci (Rabbits) Numbers

- A young pair of rabbits (one of each sex) is placed on an island
- A pair of rabbits does not breed until they are 2 months old
- After they are 2 months old, each pair of rabbits produces another pair each month
- $P_{n}=P_{n-1}+P_{n-2}$

Modeling with Recurrence Relations Tower of Hanoi

- Let H_{n} be the number of moves for a stack of n disks.
- Strategy:
- Move top $\mathrm{n}-1$ disks ($\mathrm{H}_{\mathrm{n}-1}$ moves)
- Move bottom disk (1 move)
- Move top $\mathrm{n}-1$ to bottom disk ($\mathrm{H}_{\mathrm{n}-1}$ moves)
- $H_{n}=2 H_{n-1}+1$

Modeling with Recurrence Relations Example 1

- Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s.
- Let P_{n} denote the number of bit strings of length n that do not have two consecutive 0s

Any bit string of length n-2 with no two consecutive 0s $10 P_{n-2}$

- $P_{n}=P_{n-1}+P_{n-2}, n \geq 3$
- $P_{1}=2, P_{2}=3$

For P_{4}

010	01	10	
011	1	10	10
101	1	11	10
110	1	P_{2}	

Modeling with Recurrence Relations
 Example 2

- Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have three consecutive 0s.
- Let P_{n} denote the number of bit strings of length n that do not have three consecutive 0s

- $P_{n}=P_{n-1}+P_{n-2}+P_{n-3}, n \geq 4$
- $P_{1}=2, P_{2}=4, P_{3}=7$

Solving Linear Recurrence Relations

- Linear Homogeneous Recurrence of Degree k with Constant Coefficients is a recurrence of the form

$$
a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}=\sum_{i=1}^{k} c_{i} a_{n-i}
$$

where the c_{i} are all real numbers, and $c_{k} \neq 0$

- Linear: the power of all a_{i} term is one
- Homogeneous: no constant term (no team without a_{i})
- Recurrence: a sequence $\left\{a_{n}\right\}$ which a_{n} in terms of a_{n-1}, a_{n-2}, \ldots
- Degree \mathbf{k} : refer to k previous terms a_{n-k}
- Constant Coefficients: c_{1}, c_{2}, \ldots independent from n
- The short name is "k-LiHoReCoCo"

Solving Linear Recurrence Relations

- Given $P_{n}=P_{n-1}+P_{n-2}$, what is P_{100} ?
- It is not easy to calculate
- Need a better solution which is not in relation form
E.g. $P_{n}=n * 10-1$

Ch. 4.1, 4.2 \& 4.4

Solving Linear Recurrence Relations Example

- $M_{n}=M_{n-1}+(1.11) M_{n-1} \quad-a_{n}=a_{n-1}+\left(a_{n-2}\right.$
- 1-LiHoReCoCo
- Not linear
- $P_{n}=P_{n-1}+P_{n-2}$
- 2-LiHoReCoCo
${ }^{-} a_{n}=a_{n-5}$
- 5-LiHoReCoCo
k-LiHoReCoCo
Linear: the power of all a_{i} term is one
- Homogeneous: no constant term (no team without a_{i})
- Recurrence: a sequence $\left\{a_{n}\right\}$ which a_{n} in terms of a_{n-1}, a_{n-2}, \ldots
- Degree \mathbf{k} : refer to k previous terms a_{n-k}

Constant Coefficients: c_{1}, c_{2}, \ldots independent from n

- $\mathrm{H}_{\mathrm{n}}=2 \mathrm{H}_{\mathrm{n}-1}+1$
- Not homogeneous
- $B_{n}=B_{n-1}$
- Non-constant coefficient (n is a variable)

Solving 2-LiHoReCoCos

- Given 2-LiHoReCoCo: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$, and $a_{0}=$ c and $a_{1}=d$
- Assume s_{n} and t_{n} be the solution, $a_{n}=s_{n}$ and $\mathrm{a}_{n}=t_{n}$
- $s_{n}=c_{1} s_{n-1}+c_{2} s_{n-2}$ and $t_{n}=c_{1} t_{n-1}+c_{2} t_{n-2}$
- For constants w_{1} and w_{2}

$$
\left.\begin{array}{rl}
\underbrace{w_{1} s_{n}+w_{2} t_{n}}_{\boldsymbol{a}_{\boldsymbol{n}}} & =w_{1}\left(c_{1} s_{n-1}+c_{2} s_{n-2}\right)+w_{2}(\underbrace{c_{1} t_{n-1}+c_{2} t_{n-2}}_{\boldsymbol{a}_{n-1}}) \\
w_{1} s_{n-1}+w_{2} t_{n-1}
\end{array}\right)+c_{2}(\underbrace{w_{1} t_{n-2}+w_{2} t_{n-2}}_{\boldsymbol{a}_{\boldsymbol{n}-2}})
$$

- Therefore, $a_{n}=w_{1} s_{n}+w_{2} t_{n}$ is a solution

Solving 2-LiHoReCoCos

- Given 2-LiHoReCoCo: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$, and $a_{0}=c$ and $a_{1}=d$
- Assume $a_{n}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n}$ for r_{1} and r_{2} are different and some constants w_{1}, w_{2}
- We know that $r_{1}{ }^{2}-c_{1} r_{1}-c_{2}=0$ and $r_{2}{ }^{2}-c_{1} r_{2}-c_{2}=0$
- Characteristic Equation: $\boldsymbol{r}^{2}-\boldsymbol{c}_{1} r-c_{2}=\mathbf{0}$
- Characteristic Roots: \boldsymbol{r}_{1} and r_{2}
- w_{1} and w_{2} can be calculated by using c and d
$\left\{\begin{array}{l}a_{0}=c=\boldsymbol{w}_{1} \boldsymbol{r}_{1}{ }^{0}+\boldsymbol{w}_{2} \boldsymbol{r}_{2}{ }^{0} \\ a_{1}=d=\boldsymbol{w}_{1} \boldsymbol{r}_{1}{ }^{1}+\boldsymbol{w}_{2} \boldsymbol{r}_{2}{ }^{1}\end{array}\right.$

Solving 2-LiHoReCoCos

- By considering 1-LiHoReCoCo, $a_{n}=c a_{n-1}$
- Obviously, the general solution is $a_{n}=c^{n} a_{0}$
- Therefore, the solution of the form may be $a_{\mathrm{n}}=r^{n}$
- Substitute $a_{\mathrm{n}}=r^{n}$ to $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$, then $r^{2}-c_{1} r-c_{2}=0$ or $r=0$
- $r=0$ is a special case since $a_{n}=0$
- $r^{2}-c_{1} r-c_{2}$ is called characteristic equation

Solving 2-LiHoReCoCos

Theorem

- Consider an arbitrary 2-LiHoReCoCo:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

- By substituting $a_{n}=r^{n}$, we have the characteristic equation:

$$
r^{2}-c_{1} r-c_{2}=0
$$

- If there has two different roots r_{1} and r_{2}, then

$$
a_{n}=w_{1} r_{1}^{n}+w_{2} r_{2}^{n}
$$

for $n \geq 0$ and some constants w_{1}, w_{2}

Solving 2-LiHoReCoCos

- Proof

Given r_{1}, r_{2} are the characteristic root

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2} \Leftrightarrow a_{n}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n}
$$

where and w_{1}, w_{2} are constants

- Two steps for the proof

1. Show if $a_{n}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n},\left\{a_{n}\right\}$ is a solution of the recurrence relation
2. Show if $\left\{a_{n}\right\}$ is the solution of the recurrence relation, $a_{n}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n}$ for some w_{1} and w_{2}

Solving 2-LiHoReCoCos

- Step 2

Show if $\left\{a_{n}\right\}$ is the solution of the recurrence relation, $a_{n}=$ $w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n}$ for some w_{1} and w_{2}

- Suppose that $\left\{a_{n}\right\}$ is a solution of the recurrence relation, and the initial conditions $a_{0}=C_{0}$ and $a_{1}=C_{1}$ hold
- We want to show that there are constants w_{1} and w_{2} such that the sequence $\left\{a_{n}\right\}$ with $a_{n}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}^{n}$ satisfies these same initial conditions

$$
a_{0}=C_{0}=w_{1}+w_{2} \text { and } a_{1}=C_{1}=w_{1} r_{1}+w_{2} r_{2}
$$

- By solving these two equations:

$$
w_{1}=\frac{C_{1}-C_{0} r_{2}}{r_{1}-r_{2}} \quad w_{2}=\frac{C_{0} r_{2}-C_{1}}{r_{1}-r_{2}}
$$

- When $r_{1} \neq r_{2},\left\{a_{n}\right\}$ with $w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n}$ satisfy the 2 initial conditions

Solving 2-LiHoReCoCos

- Step 1

Show if $a_{n}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n},\left\{a_{n}\right\}$ is a solution of the recurrence relation

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(w_{1} r_{1}^{n-1}+w_{2} r_{2}^{n-1}\right)+c_{2}\left(w_{2} r_{1}^{n-2}+w_{2} r_{2}^{n-2}\right) \\
& =w_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+w_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right) \\
& =w_{1} r_{1}^{n-2} r_{1}^{2}+w_{2} r_{2}^{n-2} r_{2}^{2}\binom{r_{1} \text { and } r_{2} \text { are the solution of }}{r^{2}-c_{1} r-c_{2}=0} \\
& =w_{1} r_{1}^{n}+w_{2} r_{2}^{n} \\
& =a_{n}
\end{aligned}
$$

Solving 2-LiHoReCoCos

- We know that $\left\{a_{n}\right\}$ and $\left\{\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}\right\}$ are both solutions of the recurrence relation $a_{n}=c_{1} a_{n-1}+$ $c_{2} a_{n-2}$ and both satisfy the initial conditions when $n=$ 0 and $n=1$
- Because there is a unique solution of 2LiHoReCoCo with two initial conditions, it follows that the two solutions are the same, that is, $a_{n}=$ $\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}$ for all nonnegative integers n
- We have completed the proof

Solving 2-LiHoReCoCos Example 1

2-LiHoReCoCo: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$,

 Characteristic Equation: $\boldsymbol{r}^{2}-\boldsymbol{c}_{\boldsymbol{1}} \boldsymbol{r}-\boldsymbol{c}_{2}=\mathbf{0}$ $\boldsymbol{a}_{n}=\boldsymbol{w}_{1} \boldsymbol{r}_{1}{ }^{n}+\boldsymbol{w}_{2} \boldsymbol{r}_{2}{ }^{n}\left(r_{1}\right.$ and r_{2} are different)- Solve the recurrence $a_{n}=a_{n-1}+2 a_{n-2}$ given the initial conditions $\mathrm{a}_{0}=2, \mathrm{a}_{1}=7$
- Characteristic Equation: $r^{2}-r-2=0$
- Characteristic Root:
- r = (1 $\pm 3) / 2$
- $r=2$ or $r=-1$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Therefore, $a_{n}=w_{1} 2^{n}+w_{2}(-1)^{n}$
- By using $a_{0}=2, a_{1}=7$
- $a_{0}=2=w_{1} 2^{0}+w_{2}(-1)^{0}$
- $a_{1}=7=w_{1} 2^{1}+w_{2}(-1)^{1}$
- $w_{1}=3$ and $w_{2}=1$
- Therefore, $a_{n}=3 \cdot 2^{n}-(-1)^{n}$

Ch. $4.1,4.2$ \& 4.4

Solving 2-LiHoReCoCos Example 2

2-LiHoReCoCo: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$,
Characteristic Equation: $\boldsymbol{r}^{2}-\boldsymbol{c}_{\boldsymbol{I}} \boldsymbol{r}-\boldsymbol{c}_{2}=\mathbf{0}$ $\boldsymbol{a}_{n}=\boldsymbol{w}_{1} \boldsymbol{r}_{1}{ }^{n}+\boldsymbol{w}_{2} \boldsymbol{r}_{2}{ }^{n}\left(r_{1}\right.$ and r_{2} are different)

- Find an explicit formula for the Fibonacci numbers
- Recall $f_{n}=f_{n-1}+f_{n-2}$
- Characteristic equation: $r^{2}-r-1=0$
- Characteristic roots: $r_{1}=(1+\sqrt{5}) / 2 \quad r_{2}=(1-\sqrt{5}) / 2$

$$
f_{n}=w_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+w_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

- Initial conditions $f_{0}=0$ and $f_{1}=1$

$$
\begin{gathered}
f_{0}=0=w_{1}+w_{2} \\
f_{1}=1=w_{1}\left(\frac{1+\sqrt{5}}{2}\right)+w_{2}\left(\frac{1-\sqrt{5}}{2}\right) \quad w_{1}=\frac{1}{\sqrt{5}} \quad w_{2}=-\frac{1}{\sqrt{5}} \\
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{gathered}
$$

Solving 2-LiHoReCoCos with two same roots

Theorem

- Let c_{1} and c_{2} be real numbers with $c_{2} \neq 0$. Suppose that $r^{2}-c_{1} r-c_{2}=0$ has only one root r_{0}
- A sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=w_{1} r_{0}{ }^{n}+w_{2} n r_{0}{ }^{n}$, for $n=0,1,2, \ldots$, where w_{1} and w_{2} are constants

Solving 2-LiHoReCoCos with Example 1
 $$
\begin{aligned} & \text { 2-LiHoReCoCo: } a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}, \\ & \text { Characteristic Equation: } r^{2}-c_{1} r-c_{2}=0 \\ & a_{n}=w_{1} r_{0}{ }^{n}+w_{2} n r_{0}{ }^{n} \end{aligned}
$$

- What is the solution of the recurrence relation $a_{n}=6 a_{n-1}-9 a_{n-2}$ with initial conditions $a_{0}=1$ and $a_{1}=6$?
- Characteristic equation: $r^{2}-6 r+9=0$
- Only one characteristic root: $r=3$
- Hence, the solution to this recurrence relation is

$$
a_{n}=w_{1} 3^{n}+w_{2} n 3^{n}
$$

for some constants α_{1} and α_{2}

- By using the initial conditions,
$a_{0}=1=w_{1}, a_{1}=6=3 w_{1}+3 w_{2}$, so $w_{1}=1$ and $w_{2}=1$
- Consequently, $a^{n}=3^{n}+n 3^{n}$

Solving 2-LiHoReCoCos

Summary

- Given : $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ and $a_{0}=c$ and $a_{1}=d$

1. Characteristic equation: $r^{2}-c_{1} r-c_{2}=0$

2a. If Characteristic Root (r_{1} and r_{2}) are different

1. $a_{\mathrm{n}}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n}$ is the solution
2. Use $a_{0}=w_{1}+w_{2}=c$ and $a_{1}=w_{1} r_{1}+w_{2} r_{2}=d$ to solve w_{1} and w_{2}

2b. If Characteristic Root (r_{1} and r_{2}) are the same

1. $a_{\mathrm{n}}=w_{1} r^{n}+w_{2} n r^{n}$ is the solution
2. Use $a_{0}=w_{1}=c$ and $a_{1}=w_{1} r_{1}+w_{2} r_{2}=d$ to solve w_{1} and w_{2}

© Small Exercise ©

- the recurrence relation: $a_{n}=-a_{n}+6 a_{n-2}$
- Initial conditions $a_{0}=0$ and $a_{1}=5$
- Characteristic Equation: $r^{2}+r-6=0$

$$
(r+3)(r-2)=0
$$

- Characteristic Root: $r_{1}=-3, r_{2}=2$
- Therefore, $a^{n}=w_{1}(-3)^{n}+w_{2}(2)^{n}$
- Using the initial condition
- $a_{0}=0=w_{1}+w_{2}$
- $a_{1}=5=-3 w_{1}+2 w_{2}$
- $w_{1}=-1, w_{2}=1$
- Therefore, $a^{n}=-(-3)^{n}+(2)^{n}$

© Small Exercise ©

- What is the solution of the recurrence relation $a_{n}=-a_{n-1}+6 a_{n-2}$ with initial conditions $a_{0}=0$ and $a_{1}=5$?
- What is the solution of the recurrence relation $a_{n}=-2 a_{n-1}-a_{n-2}$ with initial conditions $a_{0}=5$ and $a_{1}=-6$?

© Small Exercise ;)

- the recurrence relation: $a_{n}=-2 a_{n}-a_{n-2}$
- Initial conditions $a_{0}=5$ and $a_{1}=-6$
- Characteristic Equation: $r^{2}+2 r+1=0$

$$
(r+1)(r+1)=0
$$

- Characteristic Root: $r_{1}=-1$
- Therefore, $a^{n}=w_{1}(-1)^{n}+w_{2} n(-1)^{n}$
- Using the initial condition
- $a_{0}=5=w_{1}$
- $a_{1}=-6=-w_{1}-w_{2}$
- $w_{1}=5, w_{2}=1$
- Therefore, $a^{n}=5(-1)^{n}+n(-1)^{n}$

Solving k-LiHoReCoCos

- k-LiHoReCoCo: $a_{n}=\sum_{i=1}^{k} c_{i} a_{n-i} \quad \left\lvert\, \begin{aligned} & 2-\text {-kiHoReCoCo } \\ & a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}\end{aligned}\right.$
- Characteristic Equation is:

$$
r^{k}-\sum_{i=1}^{k} c_{i} r^{k-i}=0 \quad r^{2}-c_{1} r-c_{2}=0
$$

- Theorem

If there are k distinct roots r_{i}, then the solutions to the recurrence are of the form:

$$
a_{n}=\sum_{i=1}^{k} w_{i} r_{i}^{n} \quad a_{n}=w_{1} r_{1}{ }^{n}+w_{2} r_{2}{ }^{n}
$$

for all $n \geq 0$, where the w_{i} are constants

Solving k-LiHoReCoCos with same roots

- Let $c_{1}, c_{2}, \ldots, c_{\mathrm{k}}$ be real numbers
- Suppose that the characteristic equation

$$
r^{k}-c_{1} r^{k-1}-\cdots-c_{k}=0
$$

has t distinct roots $r_{1}, r_{2}, \ldots, r_{\mathrm{t}}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$

- i.e. r_{i} appear m_{i} times
- $m_{1}+m_{2}+\cdots+m_{t}=k$

Solving k-LiHoReCoCos
 Example

- Find the solution to the recurrence relation

$$
a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}
$$

with the initial conditions $a_{0}=2, a_{1}=5$, and $a_{2}=15$.

- The characteristic equation is:

$$
r^{3}-6 r^{2}+11 r-6=(r-1)(r-2)(r-3)
$$

- The characteristic roots are $r=1, r=2$, and $r=3$
- $a_{n}=w_{1} 1^{n}+w_{2} 2^{n}+w_{3} 3^{n}$
- By using the initial conditions
- $\mathrm{a}_{0}=2=\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}$
- $\mathrm{a}_{1}=5=\mathrm{w}_{1}+\mathrm{w}_{2} \times 2+\mathrm{w}_{3} \times 3$
- $a_{2}=15=w_{1}+w_{2} \times 4+w_{3} \times 9$
- Therefore, $w_{1}=1, w_{2}=-1$ and $w_{3}=2$
- As a result, $a_{n}=1-2^{n}+2 \times 3^{n}$

Solving k-LiHoReC ${ }^{\text {Special case for } k=2, \text { One distinct root }}$ with same roots $\quad \begin{aligned} & a_{n}=w_{1} r_{0}{ }^{n}+w_{2} n r_{0}{ }^{n} \\ & a_{n}=\left(w_{1}+w_{2} n\right) r_{0}{ }^{n}\end{aligned}$

- A sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

- If and only if

Multiplicities for r_{i}

$$
\left.\begin{array}{rl}
a_{n}= & \left(w_{1,0}+w_{1,1} n+\ldots+w_{1, m_{1}-1} n^{m_{1}-1}\right) r_{1}^{n} \\
& +\left(w_{2,0}+w_{2,1} n+\ldots+w_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n} \\
& +\ldots+\left(w_{t, 0}+w_{t, 1} n+\ldots+w_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n}
\end{array}\right\} \begin{aligned}
& \text { No. of } \\
& \text { distinct } \\
& \text { roots }
\end{aligned}
$$

for $n=0,1,2, \ldots$, where $w_{i, j}$ are constants for $1 \leq i \leq t$ and $0 \leq j \leq m_{i-1}$

Solving k-LiHoReCoCos with Example

- Find the solution to the recurrence relation

$$
H_{n}=-H_{n-1}+3 H_{n-2}+5 H_{n-3}+2 H_{n-4}
$$

with the initial conditions $H_{0}=1, H_{1}=0, H_{2}=1, H_{3}=2$

- Characteristic equation: $\quad x^{4}+x^{3}-3 x^{2}-5 x-2=0$

$$
(x-2)(x+1)^{3}=0
$$

- Roots: $-1,-1,-1,2$
- Therefore: $H_{n}=\left(c_{1}+c_{2} n+c_{3} n^{2}\right)(-1)^{n}+c_{4} 2^{n}$
- By initial conditions:

$$
\begin{cases}H_{0}=c_{1}+c_{4}=1 & c_{1}=\frac{7}{9}, c_{2}=-\frac{1}{3}, c_{3}=0, c_{4}=\frac{2}{9} \\ H_{1}=-c_{1}-c_{2}-c_{3}+2 c_{4}=0 & H_{n}=\frac{7}{9}(-1)^{n}-\frac{1}{3} n(-1)^{n}+\frac{2}{9} 2^{n} \\ H_{2}=c_{1}+2 c_{2}+4 c_{3}+4 c_{4}=1 & \end{cases}
$$

© Small Exercise ©

- What is the solution of the recurrence relation $a_{n}=a_{n-1}+a_{n-2}-a_{n-3}$ with initial conditions $a_{0}=$ $0, a_{1}=8$ and $a_{2}=4$?

$$
\begin{aligned}
a_{n}= & \left(w_{1,0}+w_{1,1} n+\ldots+w_{1, m_{1}-1} n^{m_{1}-1}\right) r_{1}^{n} \\
& +\left(w_{2,0}+w_{2,1} n+\ldots+w_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n} \\
& +\ldots+\left(w_{t, 0}+w_{t, 1} n+\ldots+w_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n}
\end{aligned}
$$

Solving k-LiHoReCoCos
 Summary

- Given : $a_{n}=\sum_{i=1}^{k} c_{i} a_{n-i}$ and $a_{i}=c_{i}$, where $i=1,2, \ldots, k$
1.Characteristic equation: $r^{k}-\sum_{i=1}^{k} c_{i} r^{k-i}=0$

2. Characteristic Root $\left(r_{1}, r_{2}, \ldots, r_{\mathrm{k}}\right)$
3. $a_{n}=\sum_{i=1}^{t}\left(\sum_{j=0}^{m_{i}-1} w_{i, j} h^{j}\right) r_{i}^{n}$ is the solution of k-LiHoReCoCos where m_{i} is the multiplicity of r_{i}
4. solve w_{i} by $a_{p}=c_{p}=\sum_{i=1}^{t}\left(\sum_{j=0}^{m_{i}-1} w_{i, j} p^{j}\right) r_{i}^{p}$ where $\mathrm{p}=1,2, \ldots, \mathrm{k}$

© Small Exercise ©

- the recurrence relation: $a_{n}=a_{n-1}+a_{n-2}-a_{n-3}$
- Initial conditions $a_{0}=0, a_{1}=8$ and $a_{2}=4$

- Characteristic Root: $r_{1}=1, r_{2}=1, r_{3}=-1$
- Therefore, $a^{n}=\left(c_{1}+c_{2} n\right)(1)^{n}+c_{3}(-1)^{n}$
- Using the initial condition
- $a_{0}=0=c_{1}+c_{3}$
- $a_{1}=8=c_{1}+c_{2}-c_{3}$
- $a_{2}=4=c_{1}+2 c_{2}+c_{3}$
- $c_{1}=3, c_{2}=-3, c_{3}=2$
- Therefore, $a^{n}=3(1-n)(1)^{n}+2(-1)^{n}$

Solving LiNoReCoCos

- Linear nonhomogeneous recurrence of degree k with constant coefficients (k-LiNoReCoCos) contain some terms $\boldsymbol{F}(\boldsymbol{n})$ that depend only on n but not a_{i}
- General form:

$$
\underbrace{a_{n}=c_{1} a^{n-1}+\ldots+c_{k} a^{n-k}}+F(n)
$$

Associated Homogeneous Recurrence Relation

Solving LiNoReCoCos

- Proof

- As $\left\{a_{n}^{(p)}\right\}$ is a particular solution for LiNoReCoCos
- Suppose that $\left\{b_{n}\right\}$ is an another solution

$$
\begin{aligned}
a_{n}^{(p)} & =c_{1} a_{n-1}^{(p)}+c_{2} a_{n-2}^{(p)}+\ldots+c_{k} h_{n-k}^{(p)}+F(n) \\
-\quad b_{n} & =c_{1} b_{n-1}+c_{2} b_{n-2}+\ldots+c_{k} b_{n-k}+F(n) \\
\hline b_{n}-a_{n}^{(p)} & =c_{1}\left(b_{n-1}-a_{n-1}^{(p)}\right)+c_{2}\left(b_{n-2}-a_{n-2}^{(p)}\right)+\ldots+c_{k}\left(b_{n-k}-a_{n-k}^{(p)}\right) \\
a_{n}^{(p)} & =c_{1} a_{n-1}^{(p)}+c_{2} a_{n-2}^{(p)}+\ldots+c_{k} a_{n-k}^{(n)}
\end{aligned}
$$

- $\left\{b_{r}-a^{(p)}\right\}$ is a solution of the associated homogêneous linear recurrence, named $\left\{a_{n}^{(h)}\right\}$
- Consequently, $b_{n}=a_{n}^{(p)}+a_{n}^{(h)}$ for all n.

Solving LiNoReCoCos

- If $\left\{a_{n}^{(p)}\right\}$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)
$$

- Then every solution is of the form $\left\{a_{n}^{(p)}+a_{n}^{(h)}\right\}$, where $\left\{a_{n}^{(h)}\right\}$ is a solution of the associated ${ }^{n}$ homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

Solving LiNoReCoCos
 Example 1

$$
\begin{aligned}
& a_{n}=3 a_{n-1}+2 n \\
& a_{1}=3
\end{aligned}
$$

- Find all solutions to $a_{n}=3 a_{n-1}+2 n$, which solution has $a_{1}=3$?
- Notice this is a 1-LiNoReCoCo.
- Its associated 1-LiHoReCoCo
- $a_{n}=3 a_{n-1}$ and root is 3
- Solution is $a_{n}^{(h)}=c 3^{n}$
- The solutions of LiNoReCoCo are in the form

$$
a_{n}=a_{n}^{(p)}+a_{n}^{(h)}
$$

Solving LiNoReCoCos Example

$$
\begin{aligned}
& a_{n}=3 a_{n-1}+2 n \\
& a_{1}=3
\end{aligned}
$$

- If $F(n)$ is a degree- u polynomial in n, a degree- u polynomial should be tried as the particular solution $a_{n}^{(p)}$
- Now, $F(n)=2 n$
- Try $a_{n}^{(p)}=c n+d, c$ and d are constants

$$
\begin{gathered}
a_{n}=3 a_{n-1}+2 n \\
c n+d=3(c(n-1)+d)+2 n \\
(2 c+2) n+(3 c-2 d)=0 \\
c=-1 \text { and } d=-3 / 2
\end{gathered}
$$

- Solution is: $a_{n}^{(p)}=-n-3 / 2$

Solving LiNoReCoCos

Particular Solution

- Suppose $\left\{a_{n}\right\}$ satisfies the LiNoReCoCo $a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-i}\right)+F(n)$ where $c_{i}(i=1,2, \ldots k)$ are real numbers and

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

where $b_{0}, b_{1}, \ldots, b_{t}$ and s are real numbers

- When s is not a root of the characteristic equation of the associated linear homogeneous RR, there is a particular solution $\left(a_{n}^{(p)}\right)$ of the form

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

- When s is a root of the characteristic equation of the associated linear homogeneous RR with multiplicity m , there is a particular solution ($a_{n}^{(p)}$) of the form

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

Solving LiNoReCoCos Example

$$
\begin{aligned}
& a_{n}=3 a_{n-1}+2 n \\
& a_{1}=3
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
a_{n} & =a_{n}^{(p)}+a_{n}^{(h)} \\
& =-n-\frac{3}{2}+c 3^{n}
\end{aligned}
$$

$$
a_{n}^{(p)}=-n-\frac{3}{2}
$$

$$
a_{n}^{(h)}=c 3^{n}
$$

- By using $a_{1}=3$
- $3=-1-3 / 2+3 c$
- $c=11 / 6$
- As a result, $a_{n}=-n-\frac{3}{2}+\frac{11 \cdot 3^{n}}{6}$

Solving LiNoRe Example

- What form dd nonhomogen

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

\boldsymbol{s} is not a root $\quad\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}$ $a_{n}=6 a_{n-1}-9 a_{n-2}+F(n)$ have when ...

- Consider the associated homogeneous RR:

$$
a_{n}=6 a_{n-1}-9 a_{n-2}
$$

- Characteristic Equation

$$
r^{2}-6 r+9=(r-3)^{2}=0
$$

$$
\begin{gathered}
\boldsymbol{F}(\boldsymbol{n})=\mathbf{3}^{\boldsymbol{n}} \\
n^{2}\left(p_{0}\right) 3^{n}
\end{gathered}
$$

- Characteristic Root is 3 , of multiplicity $m=2$

$$
F(n)=n^{2} 2^{n}
$$

$$
=F(n)=n 3^{n}
$$

$$
n^{2}\left(p_{1} n+p_{0}\right) 3^{n}
$$

$$
\left(p_{2} n^{2}+p_{1} n+p_{0}\right) 2^{n}
$$

$$
=F(n)=\left(n^{2}+1\right) 3^{n}
$$

$$
n^{2}\left(p_{2} n^{2}+p_{1} n+p_{0}\right) 3^{n}
$$

Solving LiNoReCoCos: Pa $F(n)=\left(b_{t} t^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}$ Example $2 \quad \begin{aligned} & s \text { is not a root } \quad\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n} \\ & s \text { is a root } n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}\end{aligned}$

- Let a_{n} be the sum of the first n positive integers, so that

$$
a_{n}=\sum_{k=1}^{n} k
$$

- a_{n} satisfies the linear nonhomogeneous RR

$$
a_{n}=a_{n-1}+n
$$

- Associated linear homogeneous RR is $a_{n}=a_{n-1}$
- Root is 1 . The solution is $a_{n}^{(h)}=c(1)^{n}, c$ is a constant
- Since $F(n)=n=n \times(1)^{n}$, and $s=1$ is a root of degree one of the characteristic equation of the associated linear homogeneous RR
- So the particular solution has the form $n\left(p_{1} n+p_{0}\right)$

Solving Linear Recurrence Relations

Summary

- k-LiHoReCoCos with m same roots (without $F(x)$)
- Find the root of characteristic equation
- $a_{n}=\left(\alpha_{1,0}+\alpha_{1,1} n+\ldots+\alpha_{1, m_{1}-1} m^{m_{1}-1}\right) r_{1}^{n}$

$$
+\left(\alpha_{2,0}+\alpha_{2,1} n+\ldots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n}
$$

$$
+\ldots+\left(\alpha_{t, 0}+\alpha_{t, 1} n+\ldots+\alpha_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n}
$$

- Use initial terms to find alphas
- k-LiNoReCoCos with m same roots (with $F(x)$)
- Find the solution of characteristic equation of Associated linear homogeneous RR $a_{n}^{(h)}$
- Find the particular solution of LiNoReCoCo using

$$
a_{n}^{(p)}=n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

- Finally $a_{n}^{(p)}+a_{n}^{(h)}$
- Use initial terms to find alphas

Solving LiNoReCoCos: Particular Solu Example 2
 $$
\begin{gathered} a_{n}=a_{n-1}+n \\ a_{n}^{(p)}=n\left(p_{1} n+p_{0}\right) \end{gathered}
$$

- By solving

$$
p_{1} n^{2}+p_{0} n=p_{1}(n-1)^{2}+p_{0}(n-1)+n
$$

- We have $p_{0}=p_{1}=1 / 2$
- Recall, $a_{n}=a_{n}^{(p)}+a_{n}^{(h)}$

$$
a_{n}=n(n+1) / 2+c
$$

$$
\begin{aligned}
& a_{n}^{(h)}=c \\
& a_{n}^{(p)}=n(n+1) / 2
\end{aligned}
$$

- By using $a_{1}=1$, so $c=0$
- Therefore,

$$
a_{n}=\frac{n(n+1)}{2}
$$

Small Exercise ©

- Find all solutions to $a_{n}=7 a_{n-1}+\left(2 n^{2}+2\right) 3^{n}$, which solution has $a_{1}=10$?

Small Exercise ©

- Its associated 1-LiHoReCoCo
- $a_{n}=7 a_{n-1}$ and root is 7
- Solution is $a_{n}^{(h)}=c 7^{n}$
- The solutions of 1-LiNoReCoCo are in the form

$$
a_{n}=a_{n}^{(p)}+a_{n}^{(h)}
$$

- Need to do is find one $a_{n}^{(p)}$

$$
\begin{aligned}
& a_{n}=7 a_{n-1}+\left(2 n^{2}+2\right) 3^{\mathrm{n}} \\
& a_{0}=10
\end{aligned}
$$

Small Exercise ©

- Therefore, we have
$a_{n}=a_{n}^{(p)}+a_{n}^{(h)}$

$$
a_{n}^{(p)}=\left(-3 n^{2} / 2-21 n / 4-129 / 6\right) 3^{n}
$$

$=\left(-3 n^{2} / 2-21 n / 4-129 / 6\right) 3^{n}+c 7^{n}$

- By using $a_{0}=10$
- $a_{0}=10=-129 / 6+c$
- $c=189 / 6$
- As a result,

$$
a_{n}=\left(-3 n^{2} / 2-21 n / 4-129 / 6\right) 3^{n}+189 \cdot 7^{n} / 6
$$

Small Exercise ©
$a_{n}=7 a_{n-1}+\left(2 n^{2}+2\right) 3^{\text {n }}$
$a_{0}=10$

- Now, $F(n)=\left(2 n^{2}+2\right) 3^{n}$

$$
\begin{aligned}
& \bullet a_{n}^{(p)}=\left(a n^{2}+b n+c\right) 3^{n} \\
& a_{n}=7 a_{n-1}+\left(2 \mathrm{n}^{2}+2\right) 3^{\mathrm{n}} \\
&\left(a n^{2}+b n+c\right) 3^{\mathrm{n}}=7\left(a(n-1)^{2}+b(n-1)+c\right) 3^{n-1}+\left(2 n^{2}+2\right) 3^{\mathrm{n}} \\
& 3 a n^{2}+3 b n+3 c=7 a n^{2}-14 a n+7 \mathrm{a}+7 b n-7 b+7 c+6 n^{2}+6 \\
& 0=4 a n^{2}-14 a n+7 \mathrm{a}+4 b n-7 b+4 c+6 n^{2}+6 \\
& 0=n^{2}(4 a+6)+n(4 b-14 a)+(4 c+7 a-7 b+6) \\
& 4 a+6=0 \quad 4 b-14 a=0 \quad 4 c+7 a-7 b+6=0 \\
& a=-3 / 2 \quad \mathrm{~b}=-21 / 4 \quad c=-129 / 16
\end{aligned} \quad \begin{aligned}
& a_{n}^{(p)}=\left(-3 n^{2} / 2-21 n / 4-129 / 6\right) 3^{n}
\end{aligned}
$$

Generating Functions

- Generating functions ($\mathbf{G}(\mathbf{x})$) are used to represent sequences efficiently by coding the terms of a sequence as coefficients of powers of a variable x in a formal power series
- Generating function for the sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{k}, \ldots$ of real numbers is the infinite series

$$
G(x)=a_{0} x^{0}+a_{1} x^{1}+\cdots+a_{k} x^{k}+\cdots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Example

- What is the generating function for the following sequence?

$$
\begin{aligned}
& -\{0, \mathbf{2}, \ldots, \mathbf{2 k}, \ldots\} \\
& \quad 0+2 x+\ldots+2 k \cdot x^{k}+\ldots=\sum_{k=0}^{\infty} 2^{k} x^{k}
\end{aligned}
$$

$-\{1,1,1,1,1\}$

$$
1+x+x^{2}+x^{3}+x^{4}=\sum_{k=0}^{4} x^{k}
$$

Useful Facts About Power Series

- Given: $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \quad g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$

$$
\begin{aligned}
f(x)+g(x) & =\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k} \\
f(x) g(x) & =\sum_{k=0}^{\infty} a_{k} x^{k} \sum_{k=0}^{\infty} b_{k} x^{k} \\
& =\left(a_{0} x^{0}+a_{1} x^{1}+\ldots\right)\left(b_{0} x^{0}+b_{1} x^{1}+\ldots\right) \\
& =x_{0}^{0}\left(a_{0} b_{0}\right)+x^{1}\left(a_{0} b_{1}+a_{1} b_{0}\right)+ \\
& x^{2}\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)+\ldots \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{k}\left(a_{j} b_{k-j}\right) x^{k}
\end{aligned}
$$

Useful Facts About Power Series

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

$$
\sum_{k=0}^{\infty} a^{k} x^{k}=\frac{1}{1-a x}
$$

- $f(x)=\frac{1}{1-x}$
is generating function of the sequence 1,1,1,1, ...
- $f(x)=\frac{1}{1-a x}$
is generating function of the sequence $1, a, a^{2}, a^{3}, \ldots$

Useful Facts About Power Series
 Example

- Let $h(x)=\frac{1}{(1-x)^{2}}$,
- Find the coefficients $a_{0}, a_{1}, a_{2}, \ldots$ in the expansion

$$
h(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

$$
f(x)=\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

$$
\begin{aligned}
& f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} g(x)=\sum_{k=0}^{\infty} b_{k} x^{k} \\
& f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k} \\
& f(x) g(x)=\sum_{k=0}^{\infty} \sum_{j=0}^{k}\left(a_{j} b_{k-j}\right) x^{k}
\end{aligned}
$$

$$
h(x)=\frac{1}{(1-x)^{2}}=\frac{1}{(1-x)} \frac{1}{(1-x)}
$$

$$
=\left(\sum_{k=0}^{\infty} x^{k}\right)\left(\sum_{k=0}^{\infty} x^{k}\right)
$$

$$
=\sum_{k=0}^{\infty} \sum_{j=0}^{k} x^{k}
$$

$$
a_{k}=k+1
$$

$$
=\sum_{k=0}^{\infty}(k+1) x^{k}
$$

Counting Problems and Generating Functions

- How can we solve the counting problems, including the recurrence relation, by using the Generating Functions?

$$
G(x)=a_{0} x^{0}+a_{1} x^{1}+\cdots+a_{k} x^{k}+\cdots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Counting Problems and Generating Functions

Example 2

- In how many different ways can eight identical cookies be distributed among three distinct children if each child receives at least two cookies and no more than four cookies?
- By considering this generating function for the sequence $\left\{a_{n}\right\}$, where a_{n} is the number of solution for n

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=\left(x^{2}+x^{3}+x^{4}\right)\left(x^{2}+x^{3}+x^{4}\right)\left(x^{2}+x^{3}+x^{4}\right)
$$

- The coefficient of x^{8} is 6

Counting Problems and Generating Functions
 Example 1

- Find the number of solutions of $e_{1}+e_{2}+e_{3}=n$ when $n=17$, where e_{1}, e_{2}, e_{3} are nonnegative integers with $2 \leq e_{1} \leq 5$, $3 \leq e_{2} \leq 6,4 \leq e_{3} \leq 7$
- By considering this generating function for the sequence $\left\{a_{n}\right\}$, where a_{n} is the number of solution for n

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=\left(\begin{array}{c}
\left(x^{2}+x^{3}+x^{4}+x^{5}\right) \\
\left(x^{3}+x^{4}+x^{5}+x^{6}\right) \\
\left(x^{4}+x^{5}+x^{6}+x^{7}\right)
\end{array}\right)
$$

- As $n=17, a_{17}$, which is the coefficient of x^{17}, is the solution
- Answer is 3

Ch. $4.1,4.2 \& 4.4$

Counting Problems and Generating Functions

Example 3

- Solve the recurrence relation $a_{k}=3 a_{k-1}$ for $k=1,2$, $3, \ldots$ and initial condition $a_{0}=\mathbf{2}$
- Let $G(x)$ be the generating function for the sequence $\left\{a_{k}\right\}$, that is

$$
\begin{array}{lll}
G(x)=\sum_{k=0}^{\infty} a_{k} x^{k} & G(x)=a_{0}+3 x G(x) \\
G(x)=\sum_{k=0}^{\infty} 3 a_{k-1} x^{k} & G(x)=\frac{2}{1-3 x} & \sum_{k=0}^{\infty} a^{k} x^{k}=\frac{1}{1-a x} \\
G(x)=a_{0}+\sum_{k=1}^{\infty} 3 a_{k-1} x^{k} & G(x)=\sum_{k=0}^{\infty} 2 \cdot 3^{k} x^{k} & \\
G(x)=a_{0}+3 x \sum_{k=1}^{\infty} a_{k-1} x^{k-1} & a_{k}=2 \cdot 3^{k}
\end{array}
$$

Counting Problems and Generating Functions
 Example 4

- Solve the recurrence relation $a_{k}=-a_{k-1}+6 a_{k-2}$ with initial conditions $a_{0}=0$ and $a_{1}=5$
- Let $G(x)$ be the generating function for the sequence $\left\{a_{k}\right\}$, that is

$$
\begin{aligned}
& G(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \\
& G(x)=a_{0} x^{0}+a_{1} x^{1}+\sum_{k=2}^{\infty} a_{k} x^{k} \\
& G(x)=a_{0}+a_{1} x+\sum_{k=2}^{\infty}\left(-a k_{-1}+6 a_{k-2}\right) x^{k} \\
& G(x)=a_{0}+a_{1} x-\sum_{k=2}^{\infty} a_{k-1} x^{k}+6 \sum_{k=2}^{\infty} a_{k-2} x^{k}
\end{aligned}
$$

Example 4

$$
\begin{array}{ll}
G(x)=-\left(\frac{5 x}{(2 x-1)(3 x+1)}\right) & \\
G(x)=-\left(\frac{1}{2 x-1}+\frac{1}{3 x+1}\right) & \sum_{k=0}^{\infty} a^{k} x^{k}=\frac{1}{1-a x} \\
G(x)=\frac{1}{1-2 \mathrm{x}}-\frac{1}{1+3 x} & \\
G(x)=\sum_{k=0}^{\infty}(2)^{k} x^{k}-\sum_{k=0}^{\infty}(-3)^{k} x^{k} & \\
G(x)=\sum_{k=0}^{\infty}\left((2)^{k}-(-3)^{k}\right) x^{k} &
\end{array}
$$

$$
a_{k}=\left((2)^{k}-(-3)^{k}\right)
$$

Counting Problems and Generating Functions Example 4

$$
\begin{aligned}
& G(x)=a_{0}+a_{1} x-\sum_{k=2}^{\infty} a_{k-1} x^{k}+6 \sum_{k=2}^{\infty} a_{k-2} x^{k} \\
& G(x)=a_{0}+a_{1} x+a_{0} x-a_{0} x-x \sum_{k=2}^{\infty} a_{k-1} x^{k-1}+6 x^{2} \sum_{k=2}^{\infty} a_{k-2} x^{k-2} \\
& G(x)=a_{0}+a_{1} x+a_{0} x-x \sum_{k=1}^{\infty} a_{k-1} x^{k-1}+6 x^{2} \sum_{k=2}^{\infty} a_{k-2} x^{k-2} \\
& G(x)=5 x-x G(x)+6 x^{2} G(x) \quad a_{0}=0 \text { and } a_{1}=5 \\
& G(x)=-\frac{5 x}{\left(6 x^{2}-x-1\right)} \\
& G(x)=-\left(\frac{5 x}{(2 x-1)(3 x+1)}\right)
\end{aligned}
$$

Counting Problems and Generating Functions Example 5

- Solve the recurrence relation $a_{n}=-2 a_{n-1}-a_{n-2}$ with initial conditions $a_{0}=5$ and $a_{1}=-6$
- Let $G(x)$ be the generating function for the sequence $\left\{a_{k}\right\}$, that is

$$
\begin{aligned}
& G(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \\
& G(x)=a_{0} x^{0}+a_{1} x^{1}+\sum_{k=2}^{\infty} a_{k} x^{k} \\
& G(x)=a_{0}+a_{1} x+\sum_{k=2}^{\infty}\left(-2 a_{k-1}-a_{k-2}\right) x^{k} \\
& G(x)=a_{0}+a_{1} x-2 \sum_{k=2}^{\infty} a_{k-1} x^{k}-\sum_{k=2}^{\infty} a_{k-2} x^{k}
\end{aligned}
$$

Counting Problems and Generating Functions

Example 5

$$
\begin{array}{ll}
G(x)=a_{0}+a_{1} x-2 \sum_{k=2}^{\infty} a_{k-1} x^{k}-\sum_{k=2}^{\infty} a_{k-2} x^{k} \\
G(x)=a_{0}+a_{1} x+2 a_{0} x-2 a_{0} x-2 x \sum_{k=2}^{\infty} a_{k-1} x^{k-1}-x^{2} \sum_{k=2}^{\infty} a_{k-2} x^{k-2} \\
G(x)=a_{0}+a_{1} x+2 a_{0} x-2 x \sum_{k=1}^{\infty} a_{k-1} x^{k-1}-x^{2} \sum_{k=2}^{\infty} a_{k-2} x^{k-2} \\
G(x)=5+4 x-2 x G(x)-x^{2} G(x) & a_{0}=5 \text { and } a_{1}=-6 \\
G(x)=\frac{5+4 x}{\left(x^{2}+2 x+1\right)} & \sum_{k=0}^{\infty} a^{k} x^{k}=\frac{1}{1-a x} \\
G(x)=\frac{5+4 x}{(1+x)^{2}} &
\end{array}
$$

Counting Problems and Generating Functions Example 6

- The sequence $\left\{a_{n}\right\}$ satisfies the recurrence relation

$$
a_{n}=8 a_{n-1}+10^{n-1}
$$

and the initial condition $a_{1}=9$

- Use generating functions to find an explicit formula for a_{n}

Counting Problems and Generat $\sum_{k=0}^{\infty} a^{k} x^{k}=\frac{1}{1-a x} \quad f(x) g(x)=\sum_{k=0}^{\infty} \sum_{j=0}^{k}\left(a_{j} b_{k-j}\right) x^{k}$ Example 5
$G(x)=\frac{5+4 x}{(1+x)^{2}}$

$$
\frac{x}{(1+x)^{2}}=x \frac{1}{(1+x)} \frac{1}{(1+x)}
$$

$G(x)=\frac{5(1+x)-x}{(1+x)^{2}}$
$G(x)=\frac{5}{(1+x)}-\frac{x}{(1+x)^{2}}$
$=x\left(\sum_{k=0}^{\infty}(-1)^{k} x^{k}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} x^{k}\right)$
$G(x)=\sum_{k=0}^{\infty} 5(-1)^{k} x^{k}-\frac{x}{(1+x)^{2}}$
$=x \sum_{k=0}^{\infty} \sum_{j=0}^{k}(-1)^{k} x^{k}$
$G(x)=\sum_{k=0}^{\infty} 5(-1)^{k} x^{k}+\sum_{k=0}^{\infty} k(-1)^{k} x^{k}$
$=x \sum_{k=0}^{\infty}(-1)^{k}(k+1) x^{k}$
$G(x)=\sum_{k=0}^{\infty}\left(5(-1)^{k}+k(-1)^{k}\right) x^{k}$
$=\sum_{k=0}^{\infty}(k+1)(-1)^{k} x^{k+1}$
$a^{n}=5(-1)^{n}+n(-1)^{n}$

$$
a^{n}=5(-1)^{n}+n(-1)^{n}
$$

$$
\begin{aligned}
& =-\sum_{k=0}^{\infty}(k+1)(-1)^{k+1} x^{k+1} \\
& =-\sum_{k=0}^{\infty} k(-1)^{k} x^{k}
\end{aligned}
$$

Ch. $4.1,4.2 \& 4.4$

Counting Problems and Generating Functions

Example 6

$a_{n}=8 a_{n-1}+10^{n-1} \quad a_{1}=9$

$$
\begin{aligned}
& G(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& G(x)=\sum_{n=0}^{\infty}\left(8 a_{n-1}+10^{n-1}\right) x^{n} \\
& G(x)=a_{0}+\sum_{n=1}^{\infty}\left(8 a_{n-1}+10^{n-1}\right) x^{n} \\
& G(x)=a_{0}+\sum_{n=1}^{\infty} 8 a_{n-1} x^{n}+\sum_{n=1}^{\infty} 10^{n-1} x^{n} \\
& G(x)=a_{0}+8 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1}+x \sum_{n=0}^{\infty} 10^{n-1} x^{n-1} \\
& G(x)=a_{0}+8 x G(x)+\frac{x}{1-10 x}
\end{aligned}
$$

$$
\sum_{k=0}^{\infty} a^{k} x^{k}=\frac{1}{1-a x}
$$

Counting Problems and Generating Functions

Example 6

$G(x)=a_{0}+8 x G(x)+\frac{x}{1-10 x}$

$$
a_{n}=8 a_{n-1}+10^{n-1} \quad a_{1}=9
$$

$$
G(x)=\frac{1-9 x}{(1-8 x)(1-10 x)}
$$

$$
G(x)=\frac{1}{2}\left(\frac{1}{1-8 x}+\frac{1}{1-10 x}\right)
$$

$$
G(x)=\frac{1}{2}\left(\sum_{n=0}^{\infty} 8^{n} x^{n}+\sum_{n=0}^{\infty} 10^{n} x^{n}\right)
$$

$$
\sum_{k=0}^{\infty} a^{k} x^{k}=\frac{1}{1-a x}
$$

$$
G(x)=\sum_{n=0}^{\infty} \frac{1}{2}\left(8^{n}+10^{n}\right) x^{n}
$$

$$
a_{n}=\frac{1}{2}\left(8^{n}+10^{n}\right)
$$

