Discrete Mathematic

Chapter 4: Advanced Counting Techniques 4.1 Recurrence Relations 4.2 Solving Linear Recurrence Relations 4.4 Generating Functions

> Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Agenda

- Recurrence Relations
- Modeling with Recurrence Relations
- Linear Nonhomogeneous Recurrence Relations with Constant Coefficients
- Generating Functions
- Useful Facts About Power Series
- Extended Binomial Coefficient
- Extended Binomial Theorem
- Counting Problems and Generating Functions
- Using Generating Functions to Solve Recurrence Relations

Recurrence Relations

- A recurrence relation for a sequence {a_n} is an equation that expresses a_n in terms of one or more previous elements (a₀, ..., a_{n-1})
- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation

Recurrence Relations **Example 1**

- Let {a_n} be a sequence that satisfies the recurrence relation a_n = a_{n-1} a_{n-2} for n = 2, 3, 4, ..., and suppose that a₀ = 3 and a₁ = 5. What are a₂ and a₃?
- From the recurrence relation:

•
$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

• $a_3 = a_2 - a_1 = 2 - 5 = -3$

Ch. 4.1, 4.2 & 4.4

Recurrence Relations Example 2

Consider the recurrence relation

 $a_n = 2a_{n-1} - a_{n-2}$, where $n \ge 2$

Which of the following are solutions?

■
$$a_n = 3n$$

■ $2a_{n-1} - a_{n-2} = 2(3(n - 1)) - 3(n - 2) = 3n = a_n$
■ $a_n = 2^n$
■ $2a_{n-1} - a_{n-2} = 2(2^{n-1}) - n^{n-2} = 2^n \neq a_n$
■ $a_n = 5$
■ $2a_{n-1} - a_{n-2} = 2 \times 10 - 5 = 5 = a_n$

Recurrence Relations

- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect
 - For example

 $a_n = a_{n-1} + a_{n-2}$, what is the value of a_3 ?

Answer depends on a_0 and a_1 (initial conditions)

- $a_0 = 3$ and $a_1 = 5$: $a_2 = 8$, $a_3 = 13$
- $a_0 = 1$ and $a_1 = 2$: $a_2 = 3$, $a_3 = 5$
- A sequence is determined <u>uniquely</u> by
 - Recurrence relation
 - Initial conditions

Ch. 4.1, 4.2 & 4.4

Modeling with Recurrence Relations Compound Interest

- Growth of saving in a bank account with r% interest per given period
 - $S_n = S_{n-1} + r \cdot S_{n-1} = (r+1) \cdot S_{n-1}$
- Example:
 - Suppose that a person deposits \$10,000 in a savings account at a bank yielding 11 % per year with interest compounded annually. How much will be in the account after 30 years?
 - $S_{30} = 1.11S_{29} = 1.11(1.11S_{28}) = ... = (1.11)^{30} 10,000$

Modeling with Recurrence Relations Tower of Hanoi

- Objective
 - Get all disks from peg 1 to peg 3

Rules

- Only move 1 disk at a time
- Never put a larger disk on a smaller one

Ch. 4.1, 4.2 & 4.4

Modeling with Recurrence Relations Tower of Hanoi

Ch. 4.1, 4.2 & 4.4

11

Modeling with Recurrence Relations Tower of Hanoi

Modeling with Recurrence Relations Tower of Hanoi

- Let H_n be the number of moves for a stack of n disks.
- Strategy:
 - Move top n-1 disks (H_{n-1} moves)
 - Move bottom disk (1 move)
 - Move top n-1 to bottom disk (H_{n-1} moves)
- $H_n = 2H_{n-1} + 1$

Modeling with Recurrence Relations Fibonacci (Rabbits) Numbers

- A young pair of rabbits (one of each sex) is placed on an island
- A pair of rabbits does not breed until they are 2 months old
- After they are 2 months old, each pair of rabbits produces another pair each month
- $P_n = P_{n-1} + P_{n-2}$

Ch. 4.1, 4.2 & 4.4

Modeling with Recurrence Relations Example 1

- Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s.
- Let P_n denote the number of bit strings of length n that do not have two consecutive 0s

Any bit string of length n - 1 with no two consecutive 0s $1 P_{n-1}$ Any bit string of length n - 2 with no two consecutive 0s $10 P_{n-2}$ $P_n = P_{n-1} + P_{n-2}, n \ge 3$ $P_1 = 2, P_2 = 3$ For P_4

Ch. 4.1, 4.2 & 4.4

Modeling with Recurrence Relations **Example 2**

- Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have three consecutive 0s.
- Let P_n denote the number of bit strings of length n that do not have three consecutive 0s

Solving Linear Recurrence Relations

- Given $P_n = P_{n-1} + P_{n-2}$, what is P_{100} ?
- It is not easy to calculate
- Need a better solution which is not in relation form E.g. P_n = n*10 -1

Solving Linear Recurrence Relations

Linear Homogeneous Recurrence of Degree k with Constant Coefficients is a recurrence of the form

$$a_n = c_1 a_{n-1} + \ldots + c_k a_{n-k} = \sum_{i=1}^k c_i a_{n-i}$$

where the c_i are all real numbers, and $c_k \neq 0$

- Linear: the power of all a_i term is one
- **Homogeneous**: no constant term (no team without a_i)
- Recurrence: a sequence $\{a_n\}$ which a_n in terms of a_{n-1}, a_{n-2}, \dots
- Degree **k**: refer to k previous terms a_{n-k}
- Constant Coefficients: c₁, c₂, ... independent from n
- The short name is "k-LiHoReCoCo"

```
Ch. 4.1, 4.2 & 4.4
```

Solving Linear Recurrence Relations Example

- $M_n = M_{n-1} + (1.11)M_{n-1}$ $a_n = a_{n-1} + (a_{n-2})^2$
 - 1-LiHoReCoCo
- $P_n = P_{n-1} + P_{n-2}$
 - 2-LiHoReCoCo
- $a_n = a_{n-5}$
 - 5-LiHoReCoCo

k-LiHoReCoCo

- Linear: the power of all a_i term is one
- Homogeneous: no constant term (no team without a_i)
- Recurrence: a sequence $\{a_n\}$ which a_n in terms of a_{n-1}, a_{n-2}, \dots
- **Degree k**: refer to k previous terms a_{n-k}
- **<u>Constant</u>** Coefficients: c_1, c_2, \dots independent from *n*

Not linear

•
$$H_n = 2H_{n-1} + 1$$

- Not homogeneous
- $B_n = (n)B_{n-1}$ Non-constant coefficient (n is a variable)

- Given 2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, and $a_0 = c$ and $a_1 = d$
- Assume s_n and t_n be the solution, $a_n = s_n$ and $a_n = t_n$
 - $s_n = c_1 s_{n-1} + c_2 s_{n-2}$ and $t_n = c_1 t_{n-1} + c_2 t_{n-2}$
- For constants w₁ and w₂

$$w_{1}s_{n} + w_{2}t_{n} = w_{1}(c_{1}s_{n-1} + c_{2}s_{n-2}) + w_{2}(c_{1}t_{n-1} + c_{2}t_{n-2})$$
$$= c_{1}(w_{1}s_{n-1} + w_{2}t_{n-1}) + c_{2}(w_{1}t_{n-2} + w_{2}t_{n-2})$$
$$a_{n-1}$$

• Therefore, $a_n = w_1 s_n + w_2 t_n$ is a **solution**

Ch. 4.1, 4.2 & 4.4

Solving 2-LiHoReCoCos

- By considering 1-LiHoReCoCo, $a_n = c a_{n-1}$
- Obviously, the general solution is $a_n = c^n a_0$
- Therefore, the solution of the form may be $a_n = r^n$
- Substitute $a_n = r^n$ to $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, then $r^2 - c_1 r - c_2 = 0$ or r = 0
 - r = 0 is a special case since $a_n = 0$
- $r^2 c_1 r c_2$ is called **characteristic equation**

- Given 2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, and $a_0 = c$ and $a_1 = d$
- Assume $a_n = w_1 r_1^n + w_2 r_2^n$ for r_1 and r_2 are different and some constants w_1 , w_2
- We know that $r_1^2 c_1 r_1 c_2 = 0$ and $r_2^2 c_1 r_2 c_2 = 0$
- Characteristic Equation: $r^2 c_1 r c_2 = 0$
- Characteristic Roots: r₁ and r₂
- w_1 and w_2 can be calculated by using c and d

$$\begin{cases} a_0 = c = w_1 r_1^0 + w_2 r_2^0 \\ a_1 = d = w_1 r_1^1 + w_2 r_2^1 \end{cases}$$

Ch. 4.1, 4.2 & 4.4

Solving 2-LiHoReCoCos

Theorem

Consider an arbitrary 2-LiHoReCoCo:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

• By substituting $a_n = r^n$, we have the characteristic equation:

$$r^2 - c_1 r - c_2 = 0$$

• If there has two different roots r_1 and r_2 , then $a_n = w_1 r_1^n + w_2 r_2^n$

for $n \ge 0$ and some constants w_1 , w_2

Proof

Given r_1 , r_2 are the characteristic root

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} \quad \Leftrightarrow \quad a_n = w_1 r_1^n + w_2 r_2^n$

where and w_1 , w_2 are constants

Two steps for the proof

- 1. Show if $a_n = w_1 r_1^n + w_2 r_2^n$, $\{a_n\}$ is a solution of the recurrence relation
- 2. Show if $\{a_n\}$ is the solution of the recurrence relation, $a_n = w_1 r_1^n + w_2 r_2^n$ for some w_1 and w_2

Ch. 4.1, 4.2 & 4.4

Solving 2-LiHoReCoCos

Step 1

Show if $a_n = w_1 r_1^n + w_2 r_2^n$, $\{a_n\}$ is a solution of the recurrence relation

$$c_{1}a_{n-1} + c_{2}a_{n-2} = c_{1}\left(w_{1}r_{1}^{n-1} + w_{2}r_{2}^{n-1}\right) + c_{2}\left(w_{2}r_{1}^{n-2} + w_{2}r_{2}^{n-2}\right)$$

$$= w_{1}r_{1}^{n-2}\left(c_{1}r_{1} + c_{2}\right) + w_{2}r_{2}^{n-2}\left(c_{1}r_{2} + c_{2}\right)$$

$$= w_{1}r_{1}^{n-2}r_{1}^{2} + w_{2}r_{2}^{n-2}r_{2}^{2} \qquad \begin{bmatrix} r_{1} \text{ and } r_{2} \text{ are the solution of} \\ r^{2} - c_{1}r - c_{2} = 0 \end{bmatrix}$$

$$= w_{1}r_{1}^{n} + w_{2}r_{2}^{n}$$

$$= a_{n}$$

Step 2

Show if $\{a_n\}$ is the solution of the recurrence relation, $a_n = w_1r_1^n + w_2r_2^n$ for some w_1 and w_2

- Suppose that $\{a_n\}$ is a solution of the recurrence relation, and the initial conditions $a_0 = C_0$ and $a_1 = C_1$ hold
- We want to show that there are constants w_1 and w_2 such that the sequence $\{a_n\}$ with $a_n = w_1r_1^n + w_2r_2^n$ satisfies these same initial conditions

•
$$a_0 = C_0 = w_1 + w_2$$
 and $a_1 = C_1 = w_1r_1 + w_2r_2$

By solving these two equations:

$$w_1 = \frac{C_1 - C_0 r_2}{r_1 - r_2} \qquad w_2 = \frac{C_0 r_2 - C_1}{r_1 - r_2}$$

• When $r_1 \neq r_2$, $\{a_n\}$ with $w_1r_1^n + w_2r_2^n$ satisfy the 2 initial conditions

Ch. 4.1, 4.2 & 4.4

Solving 2-LiHoReCoCos

- We know that {a_n} and {α₁r₁ⁿ + α₂r₂ⁿ} are both solutions of the recurrence relation a_n = c₁a_{n-1} + c₂a_{n-2} and both satisfy the initial conditions when n = 0 and n = 1
- Because there is a unique solution of 2-LiHoReCoCo with two initial conditions, it follows that the two solutions are the same, that is, $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for all nonnegative integers *n*
- We have completed the proof

Solving 2-LiHoReCoCos Example 1

2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, Characteristic Equation: $r^2 - c_1 r - c_2 = 0$ $a_n = w_1 r_1^n + w_2 r_2^n$ (r_1 and r_2 are different)

- Solve the recurrence a_n = a_{n-1} + 2a_{n-2} given the initial conditions a₀ = 2, a₁ = 7
- Characteristic Equation: r² r 2 = 0
- Characteristic Root:
 - r = (1 ± 3) / 2
 - r = 2 or r = −1
- Therefore, $a_n = w_1 2^n + w_2 (-1)^n$
- By using a₀ = 2, a₁ = 7
 - $a_0 = 2 = w_1 2^0 + w_2 (-1)^0$
 - $a_1 = 7 = w_1 2^1 + w_2 (-1)^1$
 - $w_1 = 3$ and $w_2 = 1$

• Therefore,
$$a_n = 3 \cdot 2^n - (-1)^n$$

Solving 2-LiHoReCoCos Example 2

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

29

2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, Characteristic Equation: $r^2 - c_1 r - c_2 = 0$ $a_n = w_1 r_1^n + w_2 r_2^n$ (r_1 and r_2 are different)

- Find an explicit formula for the Fibonacci numbers
- Recall $f_n = f_{n-1} + f_{n-2}$
 - Characteristic equation: $r^2 r 1 = 0$
 - Characteristic roots: $r_1 = (1 + \sqrt{5})/2$ $r_2 = (1 \sqrt{5})/2$

$$f_n = w_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + w_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Initial conditions $f_0 = 0$ and $f_1 = 1$ $f_0 = 0 = w_1 + w_2$ $f_1 = 1 = w_1 \left(\frac{1 + \sqrt{5}}{2}\right) + w_2 \left(\frac{1 - \sqrt{5}}{2}\right)$ $w_1 = \frac{1}{\sqrt{5}}$ $w_2 = -\frac{1}{\sqrt{5}}$ $f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^n$

Ch. 4.1, 4.2 & 4.4

Solving 2-LiHoReCoCos with two same roots

Theorem

- Let c₁ and c₂ be real numbers with c₂ ≠ 0.
 Suppose that r² c₁r c₂ = 0 has only one root r₀
- A sequence {a_n} is a solution of the recurrence relation a_n = c₁a_{n-1} + c₂a_{n-2} if and only if a_n = w₁r₀ⁿ + w₂nr₀ⁿ, for n = 0, 1, 2, ..., where w₁ and w₂ are constants

```
Ch. 4.1, 4.2 & 4.4
```

Solving 2-LiHoReCoCos with **Example 1** 2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, Characteristic Equation: $r^2 - c_1 r - c_2 = 0$ $a_n = w_1 r_0^n + w_2 n r_0^n$

- What is the solution of the recurrence relation $a_n = 6a_{n-1} 9a_{n-2}$ with initial conditions $a_0 = 1$ and $a_1 = 6$?
- Characteristic equation: $r^2 6r + 9 = 0$
- Only one characteristic root: r = 3
- Hence, the solution to this recurrence relation is

 $a_n = w_1 3^n + w_2 n 3^n$

for some constants α_1 and α_2

By using the initial conditions,

 $a_0 = 1 = w_1, a_1 = 6 = 3w_1 + 3w_2$, so $w_1 = 1$ and $w_2 = 1$

• Consequently, $a^n = 3^n + n3^n$

Solving 2-LiHoReCoCos Summary

• Given : $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ and $a_0 = c$ and $a_1 = d$

- **1.** Characteristic equation: $r^2 c_1 r c_2 = 0$
- **2a.** If Characteristic Root $(r_1 \text{ and } r_2)$ are different
 - 1. $a_n = w_1 r_1^n + w_2 r_2^n$ is the solution
 - 2. Use $a_0 = w_1 + w_2 = c$ and $a_1 = w_1r_1 + w_2r_2 = d$ to solve w_1 and w_2

2b. If Characteristic Root $(r_1 \text{ and } r_2)$ are the same

- 1. $a_n = w_1 r^n + w_2 n r^n$ is the solution
- 2. Use $a_0 = w_1 = c$ and $a_1 = w_1r_1 + w_2r_2 = d$ to solve w_1 and w_2

Ch. 4.1, 4.2 & 4.4

33

Small Exercise

- What is the solution of the recurrence relation $a_n = -a_{n-1} + 6a_{n-2}$ with initial conditions $a_0 = 0$ and $a_1 = 5$?
- What is the solution of the recurrence relation
 a_n = 2a_{n-1} a_{n-2} with initial conditions a₀ = 5
 and a₁ = -6?

Small Exercise

- the recurrence relation: $a_n = -a_n + 6a_{n-2}$
- Initial conditions $a_0 = 0$ and $a_1 = 5$
- Characteristic Equation: $r^2 + r 6 = 0$ (r+3)(r-2) = 0
- Characteristic Root: $r_1 = -3$, $r_2 = 2$
- Therefore, $a^n = w_1 (-3)^n + w_2 (2)^n$
- Using the initial condition
 - $a_0 = 0 = w_1 + w_2$
 - $a_1 = 5 = -3w_1 + 2w_2$

•
$$w_1 = -1, w_2 =$$

• Therefore, $a^n = -(-3)^n + (2)^n$

```
Ch. 4.1, 4.2 & 4.4
```

Small Exercise

- the recurrence relation: $a_n = -2a_n a_{n-2}$
- Initial conditions $a_0 = 5$ and $a_1 = -6$
- Characteristic Equation: $r^2 + 2r + 1 = 0$ (r + 1)(r + 1) = 0
- Characteristic Root: $r_1 = -1$
- Therefore, $a^n = w_1 (-1)^n + w_2 n (-1)^n$
- Using the initial condition

•
$$a_0 = 5 = w_1$$

•
$$a_1 = -6 = -w_1 - w_2$$

•
$$w_1 = 5, w_2 = 1$$

• Therefore, $a^n = 5 (-1)^n + n (-1)^n$

• k-LiHoReCoCo:
$$a_n = \sum_{i=1}^{n} c_i a_{n-i}$$

2-kiHoReCoCo

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

Characteristic Equation is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0$$
 $r^{2} - c_{1} r - c_{2} = 0$

Theorem

If there are k distinct roots r_i , then the solutions to the recurrence are of the form:

$$a_n = \sum_{i=1}^k w_i r_i^n \qquad a_n = w_1 r_1^n + w_2 r_2^n$$

for all $n \ge 0$, where the w_i are constants

Ch. 4.1, 4.2 & 4.4

37

Solving k-LiHoReCoCos

Find the solution to the recurrence relation

 $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$

with the initial conditions $a_0 = 2$, $a_1 = 5$, and $a_2 = 15$.

The characteristic equation is:

$$r^{3} - 6r^{2} + 11r - 6 = (r - 1)(r - 2)(r - 3)$$

- The characteristic roots are r = 1, r = 2, and r = 3
- $a_n = w_1 1^n + w_2 2^n + w_3 3^n$
- By using the initial conditions
 - $a_0 = 2 = w_1 + w_2 + w_3$
 - $a_1 = 5 = w_1 + w_2 x 2 + w_3 x 3$
 - $a_2 = 15 = w_1 + w_2 x 4 + w_3 x 9$
 - Therefore, $w_1 = 1$, $w_2 = -1$ and $w_3 = 2$
- As a result, a_n = 1 2ⁿ + 2 x 3ⁿ

Solving k-LiHoReCoCos with same roots

- Let $c_1, c_2, ..., c_k$ be real numbers
- Suppose that the characteristic equation

 $r^k - c_1 r^{k-1} - \cdots - c_k = 0$

has *t* distinct roots $r_1, r_2, ..., r_t$ with multiplicities $m_1, m_2, ..., m_t$

- i.e. r_i appear m_i times
- $\bullet m_1 + m_2 + \cdots + m_t = k$

Ch. 4.1, 4.2 & 4.4

Solving k-LiHoReC Special case for k=2, One distinct root with same roots $a_n = w_1 r_0^n + w_2 n r_0^n$ $a_n = (w_1 + w_2 n) r_0^n$

• A sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

• If and only if Multiplicities for r_i

$$a_{n} = (w_{1,0} + w_{1,1}n + \dots + w_{1,m_{1}-1}n^{m_{1}-1})r_{1}^{n} + (w_{2,0} + w_{2,1}n + \dots + w_{2,m_{2}-1}n^{m_{2}-1})r_{2}^{n} + \dots + (w_{t,0} + w_{t,1}n + \dots + w_{t,m_{t}-1}n^{m_{t}-1})r_{t}^{n}$$
No. of distinct roots
$$= \sum_{i=1}^{t} \left(\sum_{j=0}^{m_{i}-1} w_{i,j}n^{j}\right)r_{i}^{n}$$

for n = 0, 1, 2, ..., where $w_{i,j}$ are constants for $1 \le i \le t$ and $0 \le j \le m_{i-1}$

Ch. 4.1, 4.2 & 4.4

Solving k-LiHoReCoCos with s

$$a_{n} = (w_{1,0} + w_{1,1}n + \dots + w_{1,m_{1}-1}n^{m_{1}-1})r_{1}^{n} + (w_{2,0} + w_{2,1}n + \dots + w_{2,m_{2}-1}n^{m_{2}-1})r_{2}^{n} + \dots + (w_{t,0} + w_{t,1}n + \dots + w_{t,m_{t}-1}n^{m_{t}-1})r_{t}^{n}$$

Find the solution to the recurrence relation

 $H_n = -H_{n-1} + 3H_{n-2} + 5H_{n-3} + 2H_{n-4}$ with the initial conditions $H_0 = 1, H_1 = 0, H_2 = 1, H_3 = 2$

- Characteristic equation: $x^4 + x^3 3x^2 5x 2 = 0$ $(x-2)(x+1)^3 = 0$
- **Roots**: -1, -1, -1, 2
- Therefore: $H_n = (c_1 + c_2 n + c_3 n^2)(-1)^n + c_4 2^n$
- By initial conditions:

$$\begin{cases} H_0 = c_1 + c_4 = 1 \\ H_1 = -c_1 - c_2 - c_3 + 2c_4 = 0 \\ H_2 = c_1 + 2c_2 + 4c_3 + 4c_4 = 1 \\ H_3 = -c_1 - 3c_2 - 9c_3 + 8c_4 = 2 \end{cases} \qquad c_1 = \frac{7}{9}, c_2 = -\frac{1}{3}, c_3 = 0, c_4 = \frac{2}{9} \\ H_n = \frac{7}{9}(-1)^n - \frac{1}{3}n(-1)^n + \frac{2}{9}2^n \end{cases}$$

Ch. 4.1, 4.2 & 4.4

Solving k-LiHoReCoCos

• Given : $a_n = \sum_{i=1}^{k} c_i a_{n-i}$ and $a_i = c_i$, where i = 1, 2, ..., k

1. Characteristic equation: $r^k - \sum_{i=1}^k c_i r^{k-i} = 0$

- 2. Characteristic Root $(r_1, r_2, ..., r_k)$
 - 1. $a_n = \sum_{i=1}^{t} \left(\sum_{j=0}^{m_i-1} w_{i,j} n^j \right) r_i^n$ is the solution of k-LiHoReCoCos where m_i is the multiplicity of r_i

2. solve
$$w_i$$
 by $a_p = c_p = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} w_{i,j} p^j \right) r_i^p$
where p = 1, 2, ..., k

Ch. 4.1, 4.2 & 4.4

Small Exercise

What is the solution of the recurrence relation
 a_n = a_{n-1} + a_{n-2} - a_{n-3} with initial conditions a₀ =
 0, a₁ = 8 and a₂ = 4?

$$a_{n} = (w_{1,0} + w_{1,1}n + \dots + w_{1,m_{1}-1}n^{m_{1}-1})r_{1}^{n} + (w_{2,0} + w_{2,1}n + \dots + w_{2,m_{2}-1}n^{m_{2}-1})r_{2}^{n} + \dots + (w_{t,0} + w_{t,1}n + \dots + w_{t,m_{t}-1}n^{m_{t}-1})r_{t}^{n}$$

Ch. 4.1, 4.2 & 4.4

43

Small Exercise Signal

- the recurrence relation: $a_n = a_{n-1} + a_{n-2} a_{n-3}$
- Initial conditions $a_0 = 0$, $a_1 = 8$ and $a_2 = 4$
- Characteristic Equation: $r^3 r^2 r + 1 = 0$ (r-1)(r-1)(r+1) = 0
- Characteristic Root: $r_1 = 1, r_2 = 1, r_3 = -1$
- Therefore, $a^n = (c_1 + c_2 n) (1)^n + c_3 (-1)^n$
- Using the initial condition
 - $a_0 = 0 = c_1 + c_3$
 - $a_1 = 8 = c_1 + c_2 c_3$
 - $a_2 = 4 = c_1 + 2c_2 + c_3$
 - $c_1 = 3, c_2 = -3, c_3 = 2$
- Therefore, $a^n = 3 (1 n) (1)^n + 2 (-1)^n$

Solving LiNoReCoCos

 Linear nonhomogeneous recurrence of degree k with constant coefficients (k-LiNoReCoCos) contain some terms *F(n)* that depend only on *n* but not *a_i*

General form:

$$\underbrace{a_n = c_1 a^{n-1} + \ldots + c_k a^{n-k} + F(n)}_{\checkmark}$$

Associated Homogeneous Recurrence Relation

Ch. 4.1, 4.2 & 4.4

Solving LiNoReCoCos

 If { a_n^(p) } is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n)$$

• Then every solution is of the form { $a_n^{(p)} + a_n^{(h)}$ }, where { $a_n^{(h)}$ } is a solution of the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

Solving LiNoReCoCos

Proof

- As $\{a_n^{(p)}\}$ is a particular solution for LiNoReCoCos
- Suppose that $\{b_n\}$ is an another solution

$$a_{n}^{(p)} = c_{1}a_{n-1}^{(p)} + c_{2}a_{n-2}^{(p)} + \dots + c_{k}a_{n-k}^{(p)} + F(n)$$

$$- b_{n} = c_{1}b_{n-1} + c_{2}b_{n-2} + \dots + c_{k}b_{n-k} + F(n)$$

$$b_{n} - a_{n}^{(p)} = c_{1}(b_{n-1} - a_{n-1}^{(p)}) + c_{2}(b_{n-2} - a_{n-2}^{(p)}) + \dots + c_{k}(b_{n-k} - a_{n-k}^{(p)})$$

$$a_{n}^{(h)} = c_{1}a_{n-1}^{(h)} + c_{2}a_{n-2}^{(h)} + \dots + c_{k}a_{n-k}^{(h)}$$

- { $b_n a_n^{(p)}$ } is a solution of the associated homogeneous linear recurrence, named { $a_n^{(h)}$ }
- Consequently, $b_n = a_n^{(p)} + a_n^{(h)}$ for all n.

```
Ch. 4.1, 4.2 & 4.4
```

Solving LiNoReCoCos Example 1

$$a_n = 3a_{n-1} + 2n$$

 $a_1 = 3$

- Find all solutions to $a_n = 3a_{n-1}+2n$, which solution has $a_1 = 3$?
- Notice this is a 1-LiNoReCoCo.
- Its associated 1-LiHoReCoCo
 - $a_n = 3a_{n-1}$ and root is 3
 - Solution is $a_n^{(h)} = c3^n$
- The solutions of LiNoReCoCo are in the form

$$a_n = a_n^{(p)} + a_n^{(h)}$$

Next step

Solving LiNoReCoCos

$$a_n = 3a_{n-1} + 2n$$
$$a_1 = 3$$

- If F(n) is a degree-u polynomial in n, a degree-u polynomial should be tried as the particular solution a_n^(p)
- Now, F(n) = 2n• Try $a_n^{(p)} = cn + d$, c and d are constants $a_n = 3a_{n-1} + 2n$ cn+d = 3(c(n-1)+d) + 2n (2c+2)n + (3c-2d) = 0 c = -1 and d = -3/2
 - Solution is: $a_n^{(p)} = -n 3/2$

Ch. 4.1, 4.2 & 4.4

Solving LiNoReCoCos

Therefore, we have

$$a_{n} = a_{n}^{(p)} + a_{n}^{(h)}$$
$$= -n - \frac{3}{2} + c3^{n}$$

- By using $a_1 = 3$
 - 3 = -1 3/2 + 3c
 - *c* = 11/6

• As a result,
$$a_n = -n - \frac{3}{2} + \frac{11 \cdot 3^n}{6}$$

 $a_n = 3a_{n-1} + 2n$ $a_1 = 3$

$$a_n^{(p)} = -n - \frac{3}{2}$$
$$a_n^{(h)} = c3^n$$

Ch. 4.1, 4.2 & 4.4

Solving LiNoReCoCos Particular Solution

Suppose {*a_n*} satisfies the LiNoReCoCo $a_n = \left(\sum_{i=1}^{k} c_i a_{n-i}\right) + F(n)$

where c_i (i = 1, 2, ..., k) are real numbers and

$$F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n$$

where $b_0, b_1, ..., b_t$ and s are real numbers

When s is not a root of the characteristic equation of the associated linear homogeneous RR, there is a particular solution $(a_n^{(p)})$ of the form

$$(p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$$

When s is a root of the characteristic equation of the associated linear homogeneous RR with multiplicity m, there is a particular solution $(a_n^{(p)})$ of the form

$$n^{m}(p_{t}n^{t}+p_{t-1}n^{t-1}+...+p_{1}n+p_{0})s^{n}$$

Ch. 4.1, 4.2 & 4.4

- Solving LiNoRe $F(n) = (b_{t}n^{t} + b_{t-1}n^{t-1} + \dots + b_{1}n + b_{0})s^{n}$
- **Example** s is not a root $(p_t n^t + p_{t-1} n^{t-1} + ... + p_1 n + p_0) s^n$ What form do **s** is a root $n^m (p_t n^t + p_{t-1} n^{t-1} + ... + p_1 n + p_0) s^n$ nonhomogen $a_n = 6a_{n-1} - 9a_{n-2} + F(n)$ have when ...
- Consider the associated homogeneous RR:

$$a_n = 6a_{n-1} - 9a_{n-2}$$

- Characteristic Equation $r^2 - 6r + 9 = (r - 3)^2 = 0$
- Characteristic Root is 3, of multiplicity *m*=2

- $F(n) = 3^n$ $n^{2}(p_{0})3^{n}$
- $F(n) = n3^n$ $n^{2}(p_{1}n+p_{0})3^{n}$
- $F(n) = n^2 2^n$ $(p_2n^2 + p_1n + p_0)2^n$
- $F(n) = (n^2 + 1)3^n$ $n^{2}(p_{2}n^{2}+p_{1}n+p_{0})3^{n}$

Example 2

- **Solving LiNoReCoCos : Pa** $F(n) = (b_t n^t + b_{t-1} n^{t-1} + ... + b_1 n + b_0) s^n$ s is not a root $(p_t n^t + p_{t-1} n^{t-1} + ... + p_1 n + p_0) s^n$ s is a root $n^m (p_t n^t + p_{t-1} n^{t-1} + ... + p_1 n + p_0) s^n$
- Let a_n be the sum of the first *n* positive integers, so that

$$a_n = \sum_{k=1}^n k$$

 a_n satisfies the linear nonhomogeneous RR

$$a_n = a_{n-1} + n$$

- Associated linear homogeneous RR is $a_n = a_{n-1}$
- Root is 1. The solution is $a_n^{(h)} = c(1)^n$, c is a constant
- Since $F(n) = n = n \times (1)^n$, and s = 1 is a root of degree one of the characteristic equation of the associated linear homogeneous RR
- So the particular solution has the form $n(p_1n+p_0)$

Solving LiNoReCoCos : Particular Solu Example 2

- $a_n = a_{n-1} + n$ $a_n^{(p)} = n(p_1 n + p_0)$ By solving $p_1n^2 + p_0n = p_1(n-1)^2 + p_0(n-1) + n$
- We have $p_0 = p_1 = 1/2$

• Recall,
$$a_n = a_n^{(p)} + a_n^{(h)}$$

 $a_n = n(n+1)/2 + c$

By using
$$a_1 = 1$$
, so $c = 0$

Therefore,

$$a_n = \frac{n(n+1)}{2}$$

 $a_n^{(h)} = c$ $a_n^{(p)} = n(n+1)/2$

Solving Linear Recurrence Relations Summary

k-LiHoReCoCos with m same roots (without F(x))

Find the root of characteristic equation

•
$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{m_1-1})r_1^n + (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n + \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_t-1}n^{m_t-1})r_t^n$$

Use initial terms to find alphas

k-LiNoReCoCos with m same roots (with F(x))

- Find the solution of characteristic equation of Associated linear homogeneous RR $a_n^{(h)}$
- Find the particular solution of LiNoReCoCo using $a_n^{(p)} = n^m (p_t n^t + p_{t-1} n^{t-1} + ... + p_1 n + p_0) s^n$
- Finally $a_n^{(p)} + a_n^{(h)}$
- Use initial terms to find alphas

```
Ch. 4.1, 4.2 & 4.4
```

☺ Small Exercise ☺

• Find all solutions to $a_n = 7a_{n-1} + (2n^2+2)3^n$, which solution has $a_1 = 10$?

Small Exercise

$$a_n = 7a_{n-1} + (2n^2 + 2)3^n$$

 $a_0 = 10$

 $a_n = 7a_{n-1} + (2n^2 + 2)3^n$ $a_0 = 10$

- Its associated 1-LiHoReCoCo
 - $a_n = 7a_{n-1}$ and root is 7
 - Solution is $a_n^{(h)} = c7^n$
- The solutions of 1-LiNoReCoCo are in the form $a_n = a_n^{(p)} + a_n^{(h)}$
- Need to do is find one $a_n^{(p)}$

Ch. 4.1, 4.2 & 4.4

☺ Small Exercise ☺

• Now,
$$F(n) = (2n^2+2)3^n$$

• $a_n^{(p)} = (an^2 + bn + c)3^n$
 $a_n = 7a_{n-1} + (2n^2+2)3^n$
 $(an^2+bn+c)3^n = 7(a(n-1)^2+b(n-1)+c)3^{n-1} + (2n^2+2)3^n$
 $3an^2+3bn+3c = 7an^2 - 14an + 7a + 7bn - 7b + 7c + 6n^2 + 6$
 $0 = 4an^2 - 14an + 7a + 4bn - 7b + 4c + 6n^2 + 6$
 $0 = n^2(4a+6)+n(4b-14a) + (4c + 7a-7b+6)$
 $4a+6=0$ $4b-14a=0$ $4c + 7a-7b+6=0$
 $a=-3/2$ $b=-21/4$ $c=-129/16$
 $a=-3/2$ $b=-21/4$ $c=-129/16$

Ch. 4.1, 4.2 & 4.4

Small Exercise

$$a_n = 7a_{n-1} + (2n^2 + 2)3^n$$

 $a_0 = 10$

- Therefore, we have $a_n = a_n^{(p)} + a_n^{(h)} \qquad a_n^{(p)} = (-3n^2/2 21n/4 129/6)3^n$ $= (-3n^2/2 21n/4 129/6)3^n + c7^n \qquad a_n^{(h)} = c7^n$ By using $a_0 = 10$
 - $a_0 = 10 = -129/6 + c$
 - *c* = 189/6
- As a result,

$$a_n = (-3n^2 / 2 - 21n / 4 - 129 / 6)3^n + 189 \cdot 7^n / 6$$

Ch. 4.1, 4.2 & 4.4

Generating Functions

- Generating functions (G(x)) are used to represent sequences efficiently by coding the terms of a sequence as coefficients of powers of a variable x in a formal power series
- Generating function for the sequence *a*₀, *a*₁, *a*₂, ..., *a_k*, ... of real numbers is the infinite series

$$G(x) = a_0 x^0 + a_1 x^1 + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k$$

Example

What is the generating function for the following sequence?

• {0, 2, ..., 2k,...}

$$0 + 2x + ... + 2k \cdot x^k + ... = \sum_{k=0}^{\infty} 2^k x^k$$

• {1, 1, 1, 1, 1, 1}
$$1 + x + x^2 + x^3 + x^4 = \sum_{k=0}^{4} x^k$$

Ch. 4.1, 4.2 & 4.4

61

Useful Facts About Power Series

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

• $f(x) = \frac{1}{1-x}$ is generating function

of the sequence 1,1,1,1, ...

$$\sum_{k=0}^{\infty} a^k x^k = \frac{1}{1-ax}$$

$$f(x) = \frac{1}{1 - ax}$$

is generating function of the sequence 1, a, a², a³, ...

Useful Facts About Power Series

• Given:
$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 $g(x) = \sum_{k=0}^{\infty} b_k x^k$
 $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$
 $f(x)g(x) = \sum_{k=0}^{\infty} a_k x^k \sum_{k=0}^{\infty} b_k x^k$
 $= (a_0 x^0 + a_1 x^1 + ...)(b_0 x^0 + b_1 x^1 + ...)$
 $= x^0 (a_0 b_0) + x^1 (a_0 b_1 + a_1 b_0) + x^2 (a_0 b_2 + a_1 b_1 + a_2 b_0) + ...$
 $= \sum_{k=0}^{\infty} \sum_{j=0}^{k} (a_j b_{k-j}) x^k$

Ch. 4.1, 4.2 & 4.4

Useful Facts About Power Series Example

- Let $h(x) = \frac{1}{(1-x)^2}$,
- Find the coefficients a_0, a_1, a_2, \dots in the expansion $h(x) = \sum_{k=0}^{\infty} a_k x^k$ $h(x) = \frac{1}{(1-x)^2} = \frac{1}{(1-x)} \frac{1}{(1-x)}$

$$f(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k}$$

$$f(x) = \sum_{k=0}^{\infty} a_{k} x^{k} \quad g(x) = \sum_{k=0}^{\infty} b_{k} x^{k}$$

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_{k} + b_{k}) x^{k}$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} (a_{j}b_{k-j}) x^{k}$$

$$a_{k} = k+1$$

 $= \left(\sum_{k=0}^{\infty} x^{k}\right) \left(\sum_{k=0}^{\infty} x^{k}\right)$

 $=\sum_{k=0}^{\infty}\sum_{i=0}^{k}x^{k}$

 $=\sum_{k=0}^{\infty}(k+1)x^{k}$

Counting Problems and Generating Functions

 How can we solve the counting problems, including the recurrence relation, by using the Generating Functions?

$$G(x) = a_0 x^0 + a_1 x^1 + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k$$

Ch. 4.1, 4.2 & 4.4

Counting Problems and Generating Functions **Example 1**

- Find the number of solutions of $e_1 + e_2 + e_3 = n$ when n = 17, where e_1, e_2, e_3 are nonnegative integers with $2 \le e_1 \le 5$, $3 \le e_2 \le 6, 4 \le e_3 \le 7$
- By considering this generating function for the sequence {a_n}, where a_n is the number of solution for n

$$\sum_{k=0}^{\infty} a_k x^k = \begin{cases} (x^2 + x^3 + x^4 + x^5) \\ (x^3 + x^4 + x^5 + x^6) \\ (x^4 + x^5 + x^6 + x^7) \end{cases}$$

• As n = 17, a_{17} , which is the coefficient of x^{17} , is the solution

Answer is 3

Counting Problems and Generating Functions **Example 2**

- In how many different ways can eight identical cookies be distributed among three distinct children if each child receives at least two cookies and no more than four cookies?
- By considering this generating function for the sequence {a_n}, where a_n is the number of solution for n

$$\sum_{k=0}^{\infty} a_k x^k = (x^2 + x^3 + x^4)(x^2 + x^3 + x^4)(x^2 + x^3 + x^4)$$

• The coefficient of x^8 is 6

Counting Problems and Generating Functions **Example 3**

- Solve the recurrence relation a_k = 3a_{k-1} for k=1, 2, 3, ... and initial condition a₀=2
- Let G(x) be the generating function for the sequence {a_k}, that is

$$G(x) = \sum_{k=0}^{\infty} a_k x^k \qquad G(x) = a_0 + 3xG(x)$$

$$G(x) = \sum_{k=0}^{\infty} 3a_{k-1} x^k \qquad G(x) = \frac{2}{1-3x} \qquad \sum_{k=0}^{\infty} a^k x^k = \frac{1}{1-ax}$$

$$G(x) = a_0 + \sum_{k=1}^{\infty} 3a_{k-1} x^k \qquad G(x) = \sum_{k=0}^{\infty} 2 \cdot 3^k x^k$$

$$G(x) = a_0 + 3x \sum_{k=1}^{\infty} a_{k-1} x^{k-1} \qquad a_k = 2 \cdot 3^k$$

Ch. 4.1, 4.2 & 4.4

Counting Problems and Generating Functions Example 4

- Solve the recurrence relation $a_k = -a_{k-1} + 6a_{k-2}$ with initial conditions $a_0 = 0$ and $a_1 = 5$
- Let G(x) be the generating function for the sequence {a_k}, that is

$$G(x) = \sum_{k=0}^{\infty} a_k x^k$$

$$G(x) = a_0 x^0 + a_1 x^1 + \sum_{k=2}^{\infty} a_k x^k$$

$$G(x) = a_0 + a_1 x + \sum_{k=2}^{\infty} (-ak_{-1} + 6a_{k-2}) x^k$$

$$G(x) = a_0 + a_1 x - \sum_{k=2}^{\infty} a_{k-1} x^k + 6 \sum_{k=2}^{\infty} a_{k-2} x^k$$

Ch. 4.1, 4.2 & 4.4

Counting Problems and Generating Functions **Example 4**

$$G(x) = a_0 + a_1 x - \sum_{k=2}^{\infty} a_{k-1} x^k + 6 \sum_{k=2}^{\infty} a_{k-2} x^k$$

$$G(x) = a_0 + a_1 x + a_0 x - a_0 x - x \sum_{k=2}^{\infty} a_{k-1} x^{k-1} + 6x^2 \sum_{k=2}^{\infty} a_{k-2} x^{k-2}$$

$$G(x) = a_0 + a_1 x + a_0 x - x \sum_{k=1}^{\infty} a_{k-1} x^{k-1} + 6x^2 \sum_{k=2}^{\infty} a_{k-2} x^{k-2}$$

$$G(x) = 5x - xG(x) + 6x^2G(x) \qquad a_0 = 0 \text{ and } a_1 = 5$$

$$G(x) = -\frac{5x}{(6x^2 - x - 1)}$$

$$G(x) = -\left(\frac{5x}{(2x - 1)(3x + 1)}\right)$$

Counting Problems and Generating Functions Example 4

$$G(x) = -\left(\frac{5x}{(2x-1)(3x+1)}\right)$$

$$G(x) = -\left(\frac{1}{2x-1} + \frac{1}{3x+1}\right)$$

$$G(x) = \frac{1}{1-2x} - \frac{1}{1+3x}$$

$$G(x) = \sum_{k=0}^{\infty} (2)^{k} x^{k} - \sum_{k=0}^{\infty} (-3)^{k} x^{k}$$

$$G(x) = \sum_{k=0}^{\infty} \left((2)^{k} - (-3)^{k}\right) x^{k}$$

$$a_{k} = \left((2)^{k} - (-3)^{k}\right)$$

$$\sum_{k=0}^{\infty} a^k x^k = \frac{1}{1 - ax}$$

Ch. 4.1, 4.2 & 4.4

Counting Problems and Generating Functions **Example 5**

- Solve the recurrence relation $a_n = -2a_{n-1} a_{n-2}$ with initial conditions $a_0 = 5$ and $a_1 = -6$
- Let G(x) be the generating function for the sequence {a_k}, that is

$$G(x) = \sum_{k=0}^{\infty} a_k x^k$$

$$G(x) = a_0 x^0 + a_1 x^1 + \sum_{k=2}^{\infty} a_k x^k$$

$$G(x) = a_0 + a_1 x + \sum_{k=2}^{\infty} (-2a_{k-1} - a_{k-2}) x^k$$

$$G(x) = a_0 + a_1 x - 2 \sum_{k=2}^{\infty} a_{k-1} x^k - \sum_{k=2}^{\infty} a_{k-2} x^k$$

Ch. 4.1, 4.2 & 4.4

Counting Problems and Generating Functions **Example 5**

Ch. 4.1, 4.2 & 4.4

Counting Problems and Generating Functions Example 6

 The sequence {a_n} satisfies the recurrence relation

$$a_n = 8a_{n-1} + 10^{n-1}$$

and the initial condition $a_1 = 9$

 Use generating functions to find an explicit formula for a_n

Ch. 4.1, 4.2 & 4.4

Counting Problems and Generating Functions **Example 6** $a_n = 8a_{n-1} + 10^{n-1}$

$$G(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$G(x) = \sum_{n=0}^{\infty} (8a_{n-1} + 10^{n-1})x^n$$

$$G(x) = a_0 + \sum_{n=1}^{\infty} (8a_{n-1} + 10^{n-1})x^n$$

$$G(x) = a_0 + \sum_{n=1}^{\infty} 8a_{n-1}x^n + \sum_{n=1}^{\infty} 10^{n-1}x^n$$

$$G(x) = a_0 + 8x \sum_{n=1}^{\infty} a_{n-1}x^{n-1} + x \sum_{n=0}^{\infty} 10^{n-1}x^{n-1}$$

$$G(x) = a_0 + 8xG(x) + \frac{x}{1 - 10x}$$

$$\sum_{k=0}^{\infty} a^k x^k = \frac{1}{1-ax}$$

75

 $a_1 = 9$

Counting Problems and Generating Functions **Example 6** $a_n = 8a_n$

$$a_{n} = 8a_{n-1} + 10^{n-1} \quad a_{1} = 9$$

$$a_{1} = 8a_{0} + 10^{1-1} = 9$$

$$a_{1} = 8a_{0} + 10^{1-1} = 9$$

$$a_{0} = 1$$

$$a_{0}$$

Ch. 4.1, 4.2 & 4.4