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Why Counting?

The brute force attack is the most common way
(time consumed but effective) in hacking

How security of your password?
= 5 digits at most
= Each digit either

0-9,a-zorA-Z

How many times a hacker
need to try in the worst

,ﬁ% |

situation? .-;.—-’ﬂ 4

Why Counting?

Counting problems arise throughout
mathematics and computer science
= For example

the number of experiment outcomes

the number of operations in an algorithm
(time complexity)



Basic Counting Principle
Multiplication / Addition Principle

Inclusion-Exclusion Principle

Permutation / Combination

Basic Counting Principles

Multiplication (Product) Rule

If a task can be constructed in t successive
steps and step i can be done in n, ways,
where i = 1...t, then the number of different
possible waysis n,x n,x ...x n

S=

Basic Counting Principles

Addition (Sum) Rule

If a task can be done in one of n, ways, in
one of n, ways, ..., or in one of n_, ways,
where all sets of n, ways are disjoint, then the
.+ N,

number of ways isn, + n, + ..
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Basic Counting Principles: Multiplication/Addition Principle

Example 1

In 1999, a virus named “Melissa’ is
created by David L. Smith based on a
Microsoft Word macro :

Melissa sends an email "Here is that '
document you asked for, don't show it !
to anybody else." to the top 50 people

in the address book

How many emails are sent after 4 iterations?

= 1stjteration: 1

= 2d jteration: 1 x 50 = 50

= 3 iteration: 50 x 50 = 2,500

= 4" jteration: 2500 x 50 = 6,250,000
(By Multiplication Rule)

6,377,551

(By Addition Rule)



Basic Counting Principles: Multiplication/Addition Principle

Example 2

A programming language Beginner's All-
purpose Symbolic Instruction Code (BASIC)

GW-BASIC (1986) in MS-DOS

GW-BASIC 3.22
(C) Copyright Microsoft 1983,1984,1985,1986,1987

O PRINT "Hello, worldt"
O END

1@ PRINT "Hello, world?!"

Basic Counting Principles: Multiplication/Addition Principle

Example 2

In BASIC, the requirements of a variable name

= A string of 1 or 2 alphanumeric characters
(a-z or 0-9)

= Begin with a letter

» Uppercase and lowercase letters are not
distinguished

= Different from the 5 strings of two characters that
are reserved

How many different variable names are there
in this version of BASIC?
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A string of 1 or 2 alphanumeric characters (number & letter)
Begin with a letter

Uppercase and lowercase letters are not distinguished
Different from the 5 strings of two characters that are reserved

Number of variables names containing 1 character (V,)

= V, = 26, because a one-character variable name must be a
letter

Number of variables names containing 2 characters (V,)

» For V,, by the product rule there are 26 x 36 strings of length
two that begin with a letter and end with an alphanumeric
character

= However, five of these are excluded, V, = 26 x 36 — 5 = 931

Total numberis V, + V, =26 + 931 = 957
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Basic Counting Principles:
Inclusion-Exclusion Principle
Suppose that a task can be done in A or in B ways

But some of the set of A ways to do the task are the
same as some of the B ways to do the task

overcount

A B A B

Avoid the overcount
|AUB|=[A|+|B|-|ANB|

12



Basic Counting Principles: Inclusion-Exclusion Principle
Example 1

How many bit strings of length 8, either start with a 1 bit
or end with the two bits 007

Start with 1: 27 = 128 ways e

End with 00: 26 = 64 ways ———e__0. 0
Some of these strings are the same )
= The bit strings of length eight start with | 0 0
a 1 bit and end with the two bits 00 e
= 25=32

128 + 64 - 32 = 160
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Basic Counting Principles: Inclusion-Exclusion Principle

Example 2
A computer company receives 350 applications

Suppose that
= 220 majored in computer science
» 147 majored in business
= 51 majored both in computer science and in business

How many of these applicants majored neither in

computer science nor in business?

Let A, : the set of students majored in computer science
A, : the set of students majored in business

|ATUA | = A | +]A,|-]A,NA,| =220+ 147 -51=316

350 - 316 = 34 of the applicants majored neither in computer
science nor in business
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Basic Counting Principles

Permutation
A permutation of a set of distinct ’g}":? LAY

n objects is an ordered arrangement i
of these objects %Qf‘.‘i\ .(:-ﬁ':',i?
\ - J\ nd""\ - )\ th’ ~ p
1n ' (r21-1)' '(n-rr+1)- .n1 =n! "‘..:‘:g ‘-‘“'S.':\
(% YQ‘. 4 gﬁf‘

General Case
The ordering of r elements selected from n distinct

elements is called r-permutation
P =Pn,r)=n(n-1)n-2)..(n-r+1) =

n!
(n—r)!

1

Basic Counting Principles

Combination

The unordered selection of r elements from n
distinct elements is called r-combination

= |t is a subset of the set with r elements

n!

n
€ =Clmr)= u T A=)

b A
"‘\’:".’ TR A
N Q)
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Basic Counting Principles

Combination
C(n,r)=C(n,n-r)
Algebraic Proof

C(n,r)=

n!
rl(n—r)!
n!

T ==\ (n—1r)!
=C(n,n—r)
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Basic Counting Principles

Combination

Combinatorial proof

» Using counting arguments to prove that both sides of
the identity count the same objects but in different ways

= Using combinatorial proof for
C(n,r)=C(n,n-r)
Suppose that S is a set with n
elements.
Every subset A of S with r
elements corresponds to a I
subset of S with n - r elements, &g
namely A Consequently,
Cn,n=C(n,n-r)

Basic Counting Principles

Permutation / Combina
Proof 6

"ﬂ P =

2 mber of r-permutations
ﬁ’:ﬂ\lu p utati

of n elements

iy

C X P \_ﬂ\.-
Number of r-permutations

of r elements

’\ ’ » —r—

.’ P(n,r)=C(n,r)-P(r,r)
- —— Loy X
o . f® Number of r-combinations A

of n elements

R
N

P(n,r)
P(r,r)

_nl/(n-r)!  n
rr—=r!  Hn-r)

19

Basic Counting Principles: Permutation / Combination

Example

Your class has 10 students. How many
different ways the committee can be set up:

1. A committee of four ,,C,

2. A committee of fourand , C, - ,C,
one person is to serve as chairperson

3. A committee of four and

: 10C4 ’ 402
two co-chairpersons

4. Two committees: 10Ca * 4Cy + 10C3+ 3C4
One with four members with two co-chairs
One with three members and a single chair

20



Combinatorial Proof Example 1
Pascal's Identity and Triangle

Pascal’s Identity
Let n and k be positive integers with n = k. Then

M 6 e

Pascal's triangle G QO

A geometric arrangement of the 1 @ 1
binomial coefficients in a

" | 1 331
riangle 14641

= binomial coefficient is the sum of
two adjacent binomial coefficients 15101051
in the previous row :

21

Combinatorial Proof Example 1

Pascal's Identity and Triangle

Proof ,.1Cy = ,Cy.q +,Cy

= Suppose T is a set containing n + 1 elements

» LetabeanelementinT,andletS =T - {a}

= There are ,,,C, subsets of T containing k elements

= +1C, subsets contains either 1+1Cx
(:Ck1) " k- 1 elementsof Sand a, or - A ~
(,Cy) = k elements of S and not a j_\ nCr-t nCk
. Therefore, n+1Ck - an_1 + an ?@{j{_ﬂ% (?:;:)@‘5]
T 999
?m@ et 1e9)
? o?s ? Y )

Combinatorial Proof Example 2

Vandermonde’s Identity

Theorem: Vandermonde’s Identity

» Let m, n, and r be nonnegative integers with r
not exceeding either m or n. Then

L)
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Combinatorial Proof Example 2

r - r—k \k

k=0

Vandermonde’s IdEI[anj Z[ m j[

Proof

|

= Suppose: m items in a first set and n items in a second set
= The total number of ways to pick r elements from the union
of these sets is ,4,C,

= Another way is to pick k elements from the first set and then
r - k elements from the second set, where k is an integer

ithO<k< » > o
" There arermC,-nC,_k ways%é)?ﬁzg\% 2+3C»
= Therefore, Aoy B
(m+nj:i( m ](nj : (T] ?é% mCrk " nCrk
r) &lr-k k r*-i} {f{?}{“‘“%} mCo" nCa
[FHPY (91 ... [aerac,
% nC2" Co

24




Combinatorial Proof Example 3

Theorem of Binomial Coefficients

Theorem
Let n and r be nonnegative integers with r < n.
Then

n+l Z”: j

r+1 o\r
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Combinatorial Proof Example 3

Theorem of Binomial Co{””j:z":(j

4+1C1+1

00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

r+1 =

1C1 4C1
1f1Jooo 01 00 001 0 0001f1
oo 01010 00101
100f1p o1o0ft
1000[

consider the possible locations of the final 1
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Combinatorial Proof Example 3

Theorem of Binomial Co{””j:i(jj

Proof: r+l) A

= Consider .. ,C,,, counts the bit strings of length n +
1 containing r + 1 ones

010100110...0 containr+11s

7

~
n+1 bits

= Another counting way is to consider the possible
locations, named k, of the final 1

» k should equaltor+1,r+2, ...

r+1 <k <n+1
01110. 10@00

k-1 bits contaln ris

,orn+1
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Combinatorial Proof Example 3

Theorem of Binomial Co ””j:i(j

r+1

OlllO

10@00

k-1 bits contaln ris

= Consider the first k-1 bits
In this k-1 bits, there should be r 1s
There are , ,C. ways
Recall, r+1 £ k < n+1

22

By the change of variables j = k - 1

28



Counting Problems

How to apply what you have learn to solve
the counting problems?

= Multiplication / Addition Principle
» |[nclusion-Exclusion Principle

» Permutation / Combination

= List all the possibilities_
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Counting Problems EEE %‘;

Many counting problems can be treated as
the ways objects can be placed into boxes

Distinguishable Innushle
(labeled) Objects(unlabeled)

Distinguishable | 0 Bl
(labeled) Z (o 129 o
Boxes

/[T indinguishable
(unlabeled)

Counting Problems EEE %‘;

General Algorithm

= First check whether “Permutation / Combination” can
be applied, otherwise, you need to “List all the
possibilities”

= Try to break down the problem into a subpart by using
“Multiplication / Addition Principle” and “Inclusion-
Exclusion Principle”

31

Counting Problems

@
Example 1 HEE @]
There are five students (A, B, C, D & E)
How many ways are there to arrange them:
= into 5 seats? 5!

= into 5 seats and Aand B 2 x 4! (AB and BA)
sit next to each other?

= into 5seatsandAand B 5! -2 x 4!
not sit next to each other?

= into around table? 5!/5 (each pattern counts
5 times)

32



Counting Problems

Example 2 @@gﬁ.ﬁ

How many ways to put 3 apples, 2 oranges
and 1 banana to 3 indistinguishable boxes
and each box contains 2 items?
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Counting Problems

Example 3 @gg@.ﬁ

How many ways are there to select 5 bills from a
cash box containing $1 bills, $2 bills, $5 bills, $10
bills, $20 bills, $50 bills, and $100 bills?

Assume:
= Order of selecting does not matter
= Bills of each denomination are indistinguishable
= At least five bills of each type

34

Counting Problems

Example 3 @gg@h

Select five bills from $1, $2, $5, $10, $20, $50 and $100

D | | |
A= -
100 50I20I10 5 2I1
En En| [=m =N
[ei] Cei] §[Eir] [ei] wxk | %] ]| |*
1000501201100 51211
*| | %% | % *
I | EEEEE
Y I T 1 1

7 -1 =06 bars (lines between 7 boxes) Bl Bl Bl Bl Bl

5 stars (5 bills)

Total, 11 characters

1Cs= 111/ (516!) = 462
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Counting Problems

Example 4 ggg@j

How many solutions does the equation
X4 + X, + X3 = 11 have?

= where X,, X,, and X, OO00000
C . O0od
are nonnegative integers.
n=3,r=11 X X X
1 2 3
1143.1C11 =78 1 1

and x,=1,x,22,and x; = 3. [H
n=3,r=11-6=5

5+3-1C5 = 21 1 1

Il unmovable




Counting Problems

Example 5

How many ways are there to pack 6 copies of
the same book into 4 identical boxes, where a
box can contain as many as six books?

By listing all the possibilities

6, 0, 0 ,0 3, 3, 0, 0
5111010 3,2,1,0
4/2/0/0 3,1,1,1
4, 1, 1, 0 2, 2, 2,0
There are 9 ways 2,2, 1,1
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Generating
Permutations & Combinations

Sometimes permutations or combinations
need to be generated but not just counted

= E.g. all 3-combination for the set {a, b, ..., ¢}
= {a, b, c}, {a,b,d}, {a,b,e}, {a,c,d} ...

How can we systemically generate all the
combinations of the elements of a finite set?

38

Generating Combinations

Recall that the bit string representation
corresponding to a subset

= For k™ position:
= 1:aq,is in the subset
= 0 : a,is not in the subset

¥ 209 ad ¢

b, b, b, b

39

Generating Combinations

Next Larger Bit String

Algorithm: Generating the next bit string
(b, 4, b,5, ..., by, by), Where the current bit
string is not equal to 11...11)

1.i=0

2. while b, = 1
21 b,=0
22 i=i+1

3. b;=1

Treat it as adding “1” to a binary number

40



Generating Combinations: Next Larger Bit String Generating Combinations

Example Next Larger r-combinations
Find out the next combination using next Algorithm: Generating the next larger r-
larger bit string algorithm for = =0 combinations after {a,, a,, ..., a,} by given a
85 ﬂ,’"f 2. while b, = 1 set{1,2,3,...,n} {a;, a5}
At fed gl 1011 21 b =0 1. i=r {1,2,3, 4}
Gy P _y : :
il ol i 22i=ix 2. while a;=n-r+i } locate the last 4, {1, 2}
3. b.=1 R iea #Fn-r+1
Next : 21 i=i-1 o ' {1, 3}
1100 M, 09 3 4= a4 Fadittoq {1, 4)
pe L &8 & = dforj=irtor q roma,t0q {23}
o gy B “"b b 41 a; = q +j-1 Assign new values {2 4}
&g 2 B2 BB 3,4

Generating Combinations

Example 1

— Generating Combinations
. 1=r

while @, =n-r+i Example 2
21 i=i-1

N =

Find the next larger 4-combination |, "~ . List all 3-combination for the set {q, b, ..., €}
of the set {1, 2, 3, 4, 5, 6} 4 f(l)rj=li+1t0r 3
after{152, 55 6} ' 4.1 ajzai+j-i .Assume {a’ b,.-.’e}_{1’2,.-.’5}

= For all {a,, a,, a5}
a1=1,a2=2,a3=5,anda4=6 1. i=r
The last a, such thata, #n-r+ 1isa, (i=2) 1.{a,b,c} 6. {a, d, ¢} 2 W2hi1'e.az-=."1-"+i

. 1=1-

2. 7.
Next larger 4-combination C6-6.4+4 ta, b, dy b, ¢, d} 3. a,=a,+1
"a, =g,+1 =2+1 =3 amE o 3. {a,b, ¢} 8. {b,c, ¢} 4. forj=i+1tor
"4y =q,+j—-i=3+3-2 =4 a3=5=6-4+3 4. {a,c,dy 9. {b, d, e} 41 a;=a;+j-i
"4y =a,*tj-i=3+4-2 =5 =2 #6-4+2 5. {a, c, €} 10.{c, d, e}

Hence : {1, 3, 4, 5}
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Generating Permutations

Any set can be placed in one-to-one
correspondence with the set {1, 2, 3, ..., n}

» The permutations of any set of n elements can
be listed by generating the permutations of the
n smallest positive integers

The algorithms based on the lexicographic
(or dictionary) ordering is discussed

45

Generating Permutations

Algorithm: Generating the next permutation of (a4, a5, ..., a,)
in Lexicographic Order by given permutation is {1, 2, ..., n},
where (a4, a,, ..., a,) is not equal to (n, n-1, ..., 2, 1)

1. j=n—1

2. while g; > a;,, } Jj is the largest subscript {311 ds, 83}

; k2.1 ji=j—1 with a, < a,,, {1, 2, 3}

. k=n

4. while a,> a; k!fhthelargest subscript {1, 2, 3}
41 k=k-1 With @ < ay {1, 3, 2}

. H H

5. interchange a; and g,

6. r=n {2,1, 3}

7. s=j+1 Sort the number

8. WhiJIe > after the ji {2,3,1}
8.1 interchange a, and a, pos't'oc?_ " g {3,1, 2}
82r=r—tand s=s+1 ) TENNIEN 3 5 1y
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Generating Permutations
Example

What is the next permutation in lexicographic order
after 3625417

The last pair of ¢, and a,., where a; < a;, is
a;=2anda, =

The least integer to the right of 2 that is greater than
2is a,=4

Exchange «; and a;
* Hence, 4 is placed in the third position

5, 2, 1 are placed in order in the last three positions
Hence, the next permutation is 364125
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Generating Permutations

r-Permutations

How can we list all r-permutations from a
set{1,2,3,...,n}?

r-combination

{a, a5, a3}
1,2,3,4 :
Use “next larger { b n-permutation
r-combinations” lists {1,2,3} {1,2,3}
all r-combinations (1,2, 4) {1, 3, 2}
For each r-combination, (1,3, 4 {2,1, 3}
use n-permutation to list C {2, 3, 1}
all permutations {2,3, 4} 3,1, 2)

{3, 2, 1}
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Pigeonhole Principle

Suppose that a flock of 26 pigeons flies into a
set of 25 pigeonholes to roost

What can we conclude?

Pigeonhole Principle

A least one of these 25 pigeonholes must
have at least two pigeons in it

= Because there are 26 pigeons but only 25
pigeonholes

This is ™ o1 |

Pigeonhole Principle

50

Pigeonhole Principle

Pigeonhole Principle

If k is a positive integer and k + 1 or more objects
are placed into k boxes, then there is at least one
box containing two or more of the objects

» Also called the Dirichlet Drawer Principle
the nineteenth-century German mathematician Dirichlet

Proof by contraposition (p > q=—-q — —p)
= Suppose that none of the k boxes contains more than
one object

» Then the total number of objects would be at most k
» This is a contradiction

51

Pigeonhole Principle

Corollary

A function f'from a set with k + 1 or more
elements to a set with k elements is not one-
to-one

a e

b o o

Coe o2
3

d e— °

52



Pigeonhole Principle

Example 1
How many words we should have if there must be
at least two that begin with the same letter?

= 27 English words, because 26 letters in the English
alphabet

Example 2
How many people we should have if there must be
at least two with the same birthday?

» 367 people because 366 possible birthdays

53

Generalized Pigeonhole Principle

Pigeonhole Principle states thatif k + 1 or
more objects are placed into k boxes, then
there is at least one box containing two or
more of the objects

How about if we have
= 2k + 1 objects?

= 3k + 2 object?

= nk + 1 object?

54

Generalized Pigeonhole Principle

Generalized Pigeonhole Principle
If N objects are placed into k boxes, then there is at
least one box containing at least | N/k | objects

Proof by Contradiction

= Suppose that none of the boxes contains more than
[N/k- 1 objects

= The total number of objects is at most

()4

= This is a contradiction because there are a total of N
objects

[N/k]< (N/K) + 1

55

Generalized Pigeonhole Principle

A common type of problem asks for the
minimum number of objects such that at least
r of these objects must be in one of k boxes
when these objects are distributed among the
boxes

56



Generalized Pigeonhole Principle

According to generalized pigeonhole principle,
when we have N objects, there must be at least r
objects in one of the k boxes as long as | N/k|>r

= N, where N =Kk(r-1) + 1, is the smallest integer
satisfying [N/k |  r

57

Generalized Pigeonhole Principle

[N/k]=r, N=k(r-1)+1,is the smallest
integer satisfying [ N/k | > r

Could a smaller value of N suffice?

No
= [f K(r - 1) objects

= We could put r - 1 of them in each of the k
boxes

= No box would have at least r objects
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Generalized Pigeonhole Principle

Example 1

IN/Kk]=r
N=Kk(r-1)+1

How many people out of 100 people were

born in the same month?

N =100
k=12
r=72

100/12] = 9 who were born in the same

month
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Generalized Pigeonhole Principle IN/K]=T

Example 2 N =k(r-1)+1

What is the least number of area codes needed to guarantee
that the 25 million phones in a state can be assigned distinct
10-digit telephone numbers?

Assume that telephone numbers are of the form NXX-NXX-
XXXX, where the first three digits form the area code, N
represents a digit from 2 to 9 inclusive, and X represents any
digit.

Different phone numbers for NXX-XXXX is

8 x 108 = 8,000,000

N = 25,000,000, k = 8,000,000

At least [ 25,000,000 / 8,000,000 | = 4 of them must have
identical phone numbers

Hence, at least four area codes are required
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Generalized Pigeonhole Principle

IN/K]=r
Example 3 N = Kk(r-1) + 1

Show that among any »n + 1 positive integers not exceeding
2n there must be an integer that divides one of the other
integers

Assume we have n + 1 integers a4, ay, ..., dpeq

Let a,=2"¢q, forj=1,2,...,n+1,

where k; is a nonnegative |nteger and
q1, 42, ---, 4,44 @re all odd positive integers less than 2n

Accordlng to pigeonhole principle, because only n odd
positive integers less than 2n, two of the integers ¢4, ¢, ...,
¢n+4 Must be equal

Let g be the common value of ¢, and g;, then, a, = =24 and

a,= =2b q
It foIIows that if £. < k then ¢, divides a;
otherwise a; d|V|cjes a

ﬁ.L - _Qz / - 2kj_ki
a.
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Applications: Subsequence

Suppose that a4, a,, ...,
real numbers.

a, is a sequence of

A subsequence of this sequence is a
sequence of the form a; ,0; 5...r
where 1 <i; <i,<..<i <N

m

62

Applications: Subsequence

Example

Example:

"a,,dy ..,a5=9,8,2,3,1

= 5, 3, 1is a subsequence? a,, ay, as ‘/

» 8, 1is a subsequence? a,, as

= 2, 3,5, 8is asubsequence? as, a;,@)@) 3
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Applications: Subsequence

A sequence is called strictly increasing if
each term is larger than the one that
precedes it

A sequence is called strictly decreasing if
each term is smaller than the one that
precedes it
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Applications: Subsequence

Theorem

Every sequence of n?2 + 1 distinct real numbers
contains a subsequence of length n + 1 that is
either strictly increasing or strictly decreasing

Example
= Given a sequence: 8, 11,9, 1,4,6, 12,10, 5,7
10 term =32 + 1
= What is the length of the longest in / decreasing
subsequences? n+1 =4

Increasing sequence Decreasing sequence

Applications: Subsequence
Proof

Let a,a,,...,a ,  be asequence of n? + 1 distinct
n-+1
real numbers

Associate an ordered pair (i, d;) to the term a,,
where

= i, is the length of the longest increasing subsequence
starting at a,

= d, is the length of the longest decreasing subsequence
starting at a,

1,4,6,12 11,9,6.,5
e ® & 2@
1,4,5,7 (iy, dg) = (2, 3) (is, dg) = (1, 2)
Applications: Subsequence Applications: Subsequence
8, 1
Proof (ZC?) 2(1@2) Proof w3 8gy weey Ay e
Suppose no increasing or decreasing ’ There exist terms a_ and a,, Be )
subsequences is longer than n with s <t such that ig = i, and d, = d, 2.3) (1.2

i, and d, are both positive integers less than or
equalton,fork=1,2,...,n2+ 1

By the product rule,
n? possible ordered pairs for (i, d,)

By the pigeonhole principle
two of n2 + 1 ordered pairs are equal

Therefore, there exist terms a_ and a,,
with s <t such that ig = i, and d, = d,

67

We will show that this is impossible

Because the terms of the sequence are distinct, either
a < a,orag> a,

If a, < a,, then, because ig = i;, an increasing
subsequence of length i, + 1 can be built starting at a,
by taking as followed by an increasing subsequence of
length it beginning at a,

This is a contradiction

Similarly, if a; > a,, it can be shown that d, must be
greater than d,, which is a contradiction
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Applications: Ramsey Theory

Ramsey theory, after the English mathematician F.
Ramsey, deals with the distribution of subsets of
elements of sets

= Two people either friends or enemies

A B A B
ol ol
Friends Enemies

= Mutual Friend/Enemies

A B C D are mutual
friends/enemies

A B A B
C D C D

9

Applications: Ramsey Theory
Example 1

Assume that in a group of six people

Show that there are either three mutual
friends or three mutual enemies in the group

70

Applications: Ramsey Theory
Example 1

Let A be one of the six people

According to pigeonhole principle ( 5/2 ] = 3),
A at least has three friends, or three enemies

Former Case: suppose that B, C, and D are friends

= |f any two of these three people are friends, then these two and A
form a group of three mutual friends

= QOtherwise, B, C, and D form a set of three mutual enemies

Similar to the latter case

DEEA L4
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Applications: Ramsey Theory

Ramsey number R(m, n)

= The minimum number of people at a party such that
there are either m mutual friends or n mutual enemies,
assuming that every pair of people at the party are
friends or enemies

= m and n are positive integers greater than or equal to 2

Example
= What is R(3, 3)?
Answer should be 6

In a group of five people where every two people are
friends or enemies, there may not be three mutual friends
or three mutual enemies
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Applications: Ramsey Theory

5 people cannot guarantee having 3 mutual
friends/enemies

B




