Discrete Mathematic

Chapter 3: Counting

3.1

The Basics of Counting
3.2

The Pigeonhole Principle
3.3

Permutations \& Combinations
3.5

Generalized Permutations \& Combinations
3.6

Generating Permutations \& Combinations

Agenda

- Basic Counting Principles
- Multiplication / Addition Principle
- Inclusion-Exclusion Principle
- Permutation / Combination
- Distributing Objects into Boxes
- Generating Permutations \& Combinations

Why Counting?

- The brute force attack is the most common way (time consumed but effective) in hacking
- How security of your password?
- 5 digits at most
- Each digit either $0-9$, a-z or A-Z
- How many times a hacker need to try in the worst situation?

Why Counting?

- Counting problems arise throughout mathematics and computer science
- For example
- the number of experiment outcomes
- the number of operations in an algorithm (time complexity)

Basic Counting Principle

- Multiplication / Addition Principle
- Inclusion-Exclusion Principle
- Permutation / Combination

Basic Counting Principles

Multiplication (Product) Rule

- If a task can be constructed in t successive steps and step i can be done in n_{i} ways, where $i=1 \ldots t$, then the number of different possible ways is $n_{1} \times n_{2} \times \ldots \times n_{m}$

6

Basic Counting Principles

Addition (Sum) Rule

- If a task can be done in one of n_{1} ways, in one of n_{2} ways, \ldots, or in one of n_{m} ways, where all sets of n_{j} ways are disjoint, then the number of ways is $n_{1}+n_{2}+\ldots+n_{m}$

Basic Counting Principles: Multiplication/Addition Principle Example 1

- In 1999, a virus named "Melissa" is created by David L. Smith based on a Microsoft Word macro
- Melissa sends an email "Here is that document you asked for, don't show it to anybody else." to the top 50 people in the address book

- How many emails are sent after 4 iterations?
- $1^{\text {st }}$ iteration: 1
- $2^{\text {nd }}$ iteration: $1 \times 50=50$
- 3rd iteration: $50 \times 50=2,500$
- $4^{\text {th }}$ iteration: $2500 \times 50=6,250,000$
(By Addition Rule)

Basic Counting Principles: Multiplication/Addition Principle Example 2

- A programming language Beginner's Allpurpose Symbolic Instruction Code (BASIC)
- GW-BASIC (1986) in MS-DOS

Basic Counting Principles: Multiplication/Addition Principle Example 2

- In BASIC, the requirements of a variable name
- A string of 1 or 2 alphanumeric characters (a-z or 0-9)
- Begin with a letter
- Uppercase and lowercase letters are not distinguished
- Different from the 5 strings of two characters that are reserved
- How many different variable names are there in this version of BASIC?

Basic Counting Principles:

Inclusion-Exclusion Principle

- Suppose that a task can be done in A or in B ways
- But some of the set of A ways to do the task are the same as some of the B ways to do the task

- Avoid the overcount

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Basic Counting Principles: Inclusion-Exclusion Principle Example 1

- How many bit strings of length 8, either start with a 1 bit or end with the two bits 00 ?
- Start with 1: $2^{7}=128$ ways
- End with 00: $2^{6}=64$ ways
\qquad
——————0ㅇ
Some of these strings are the same
- The bit strings of length eight start with a 1 bit and end with the two bits 00

- $2^{5}=32$
- $128+64-32=160$

Basic Counting Principles: Inclusion-Exclusion Principle Example 2

- A computer company receives 350 applications
- Suppose that
- 220 majored in computer science
- 147 majored in business
- 51 majored both in computer science and in business
- How many of these applicants majored neither in computer science nor in business?
- Let \mathbf{A}_{1} : the set of students majored in computer science
$\mathbf{A}_{\mathbf{2}}$: the set of students majored in business
- $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|=220+147-51=316$
- 350-316 = 34 of the applicants majored neither in computer science nor in business

Basic Counting Principles

Combination

- The unordered selection of r elements from n distinct elements is called r-combination
- It is a subset of the set with r elements

$$
{ }_{n} C_{r}=C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

General Case
 General Case

The ordering of r elements selected from n distinct elements is called r-permutation

$$
{ }_{n} P_{r}=P(n, r)=n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!}
$$

Basic Counting Principles

Permutation

- A permutation of a set of distinct n objects is an ordered arrangement of these objects

$$
n \cdot(n-1) \cdot \ldots \cdot(n-r+1) \cdot \ldots \cdot 1=n!
$$

Basic Counting Principles

Combination

= C(n, r) = C(n, n - r)

- Algebraic Proof

$$
\begin{aligned}
C(n, r) & =\frac{n!}{r!(n-r)!} \\
& =\frac{n!}{(n-(n-r))!(n-r)!} \\
& =C(n, n-r)
\end{aligned}
$$

Basic Counting Principles

Combination

- Combinatorial proof

- Using counting arguments to prove that both sides of the identity count the same objects but in different ways
- Using combinatorial proof for $\mathrm{C}(\mathrm{n}, \mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{n}-\mathrm{r})$
Suppose that S is a set with n elements.
Every subset A of S with r elements corresponds to a subset of \bar{S} with $n-r$ elements, namely A Consequently,
$C(n, r)=C(n, n-r)$

Basic Counting Principles: Permutation / Combination Example

- Your class has 10 students. How many different ways the committee can be set up:

1. A committee of four ${ }_{10} \mathrm{C}_{4}$
2. A committee of four and ${ }_{10} \mathrm{C}_{4} \cdot{ }_{4} \mathrm{C}_{1}$ one person is to serve as chairperson
3. A committee of four and two co-chairpersons

$$
{ }_{10} \mathrm{C}_{4} \cdot{ }_{4} \mathrm{C}_{2}
$$

4. Two committees: ${ }_{10} \mathrm{C}_{4} \cdot{ }_{4} \mathrm{C}_{2} \cdot{ }_{10} \mathrm{C}_{3} \cdot{ }_{3} \mathrm{C}_{1}$

- One with four members with two co-chairs
- One with three members and a single chair

Combinatorial Proof Example 1

Pascal's Identity and Triangle

- Pascal's Identity

Let n and k be positive integers with $\mathrm{n} \geq \mathrm{k}$. Then

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

- Pascal's triangle

A geometric arrangement of the binomial coefficients in a triangle

- binomial coefficient is the sum of two adjacent binomial coefficients in the previous row

Combinatorial Proof Example 2

Vandermonde's Identity

- Theorem: Vandermonde's Identity
- Let m, n, and r be nonnegative integers with r not exceeding either m or n. Then

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}
$$

Combinatorial Proof Example 1

Pascal's Identity and Triangle

- Proof ${ }_{n+1} C_{k}={ }_{n} C_{k-1}+{ }_{n} C_{k}$
- Suppose T is a set containing $n+1$ elements
- Let a be an element in T , and let $\mathrm{S}=\mathrm{T}-\{\mathrm{a}\}$
- There are ${ }_{n+1} C_{k}$ subsets of T containing k elements
- ${ }_{n+1} C_{k}$ subsets contains either
$\left.{ }_{n} \mathbf{C}_{k-1}\right)=k-1$ elements of S and a, or
$\left({ }_{n} C_{k}\right)=k$ elements of S and not a
- Therefore, ${ }_{n+1} C_{k}={ }_{n} C_{k-1}+{ }_{n} C_{k}$

Combinatorial Proof Example 2

Vandermonde's Idel $\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}$

- Suppose: m items in a first set and n items in a second set
- The total number of ways to pick r elements from the union of these sets is ${ }_{m+n} C_{r}$
- Another way is to pick k elements from the first set and then r - k elements from the second set, where k is an integer with $0 \leq k \leq r$
- There are ${ }_{m} \mathbf{C}_{r} \cdot{ }_{n} \mathbf{C}_{r-k}$ ways

$$
\begin{aligned}
& \text { - Therefore, }
\end{aligned}
$$

Combinatorial Proof Example 3

Theorem of Binomial Coefficients

Theorem

Let n and r be nonnegative integers with $r \leq n$.
Then

$$
\binom{n+1}{r+1}=\sum_{j=r}^{n}\binom{j}{r}
$$

Combinatorial Proof Example 3

Theorem of Binomial Cos $\binom{n+1}{r+1}=\sum_{j=r}^{n}\binom{j}{r}$

- Proof:
- Consider ${ }_{n+1} C_{r+1}$ counts the bit strings of length $n+$ 1 containing $r+1$ ones

- Another counting way is to consider the possible locations, named k, of the final 1
- k should equal to $r+1, r+2, \ldots$, or $n+1$
- $\mathrm{r}+1 \leq \mathrm{k} \leq \mathrm{n}+1$

Combinatorial Proof Example 3
Theorem of Binomial Cot $\binom{n+1}{r+1}=\sum_{j=r}^{n}\binom{j}{r}$
${ }_{4+1} \mathrm{C}_{1+1}$
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

consider the possible locations of the final 1

Combinatorial Proof Example 3
Theorem of Binomial Co $\binom{n+1}{r+1}=\sum_{j=r}^{n}\binom{j}{r}$

- Consider the first k-1 bits
- In this $\mathrm{k}-1$ bits, there should be r 1 s
- There are ${ }_{k-1} C_{r}$ ways
- Recall, $\mathrm{r}+1 \leq \mathrm{k} \leq \mathrm{n}+1$

$$
\sum_{k=r+1}^{n+1}\binom{k-1}{r}=\sum_{j=r}^{n}\binom{j}{r}
$$

By the change of variables $\mathrm{j}=\mathrm{k}-1$

Counting Problems

－How to apply what you have learn to solve the counting problems？
－Multiplication／Addition Principle
－Inclusion－Exclusion Principle
－Permutation／Combination
－List all the possibilities

29

Counting Problems

豊 曲 豊 䒼

－General Algorithm
－First check whether＂Permutation／Combination＂can be applied，otherwise，you need to＂List all the possibilities＂
－Try to break down the problem into a subpart by using ＂Multiplication／Addition Principle＂and＂Inclusion－ Exclusion Principle＂

Counting Problems

－Many counting problems can be treated as the ways objects can be placed into boxes

30

Counting Problems

 Example 1－There are five students（A，B，C，D \＆E） How many ways are there to arrange them：
－into 5 seats？5！
－into 5 seats and A and $B 2 \times 4$ ！（AB and BA） sit next to each other？
－into 5 seats and A and $B \quad 5$ ！－ 2×4 ！ not sit next to each other？
－into a round table？5！／5（each pattern counts 5 times）

Counting Problems
 Example 2

－How many ways to put 3 apples， 2 oranges and 1 banana to 3 indistinguishable boxes and each box contains 2 items？

33

Counting Problems

Example 3

曲 豊 曲 䒼

－How many ways are there to select 5 bills from a cash box containing $\$ 1$ bills，$\$ 2$ bills，$\$ 5$ bills，$\$ 10$ bills，$\$ 20$ bills，$\$ 50$ bills，and $\$ 100$ bills？
Assume：
－Order of selecting does not matter
－Bills of each denomination are indistinguishable
－At least five bills of each type

34

Counting Problems Example 3

Select five bills from $\$ 1, \$ 2, \$ 5, \$ 10, \$ 20, \$ 50$ and $\$ 100$

＊＊＊｜｜＊｜｜｜｜＊

7－1＝ 6 bars（lines between 7 boxes）

｜｜＊｜＊｜＊｜＊｜＊
5 stars（5 bills）
Total， 11 characters

$$
{ }_{11} C_{5}=11!/(5!6!)=462
$$

Counting Problems

 Example 4
－How many solutions does the equation $x_{1}+x_{2}+x_{3}=11$ have？
－where x_{1}, x_{2} ，and x_{3} are nonnegative integers．

$$
\begin{aligned}
& \mathrm{n}=3, \mathrm{r}=11 \\
& 11+3-1 \mathrm{C}_{11}=78
\end{aligned}
$$

－where x_{1}, x_{2} ，and x_{3} integers and $x_{1} \geq 1, x_{2} \geq 2$ ，and $x_{3} \geq 3$ ．

$$
\begin{aligned}
& n=3, r=11-6=5 \\
& 5+3-1 C_{5}=21
\end{aligned}
$$

Counting Problems

Example 5

- How many ways are there to pack 6 copies of the same book into 4 identical boxes, where a box can contain as many as six books?
- By listing all the possibilities

| 6, | 0, | 0, | 0 | 3, | 3, |
| :--- | :--- | :--- | :--- | :--- | :--- | 0,0

Generating

Permutations \& Combinations

- Sometimes permutations or combinations need to be generated but not just counted
- E.g. all 3-combination for the set $\{a, b, \ldots, e\}$
- $\{a, b, c\},\{a, b, d\},\{a, b, e\},\{a, c, d\}, \ldots$
- How can we systemically generate all the combinations of the elements of a finite set?

Generating Combinations

- Recall that the bit string representation corresponding to a subset
- For $k^{\text {th }}$ position:
- $1: a_{k}$ is in the subset
- $0: a_{k}$ is not in the subset

1011

Generating Combinations
 Next Larger Bit String

- Algorithm: Generating the next bit string $\left(b_{n-1}, b_{n-2}, \ldots, b_{1}, b_{0}\right)$, where the current bit string is not equal to 11...11)

1. $i=0$
2. while $b_{i}=1$
$2.1 b_{i}=0$
$2.2 i=i+1$
3. $b_{i}=1$

- Treat it as adding " 1 " to a binary number

Generating Combinations: Next Larger Bit String Example

- Find out the next combination using next larger bit string algorithm for

1011

> 1. $i=0$
> 2. while $b_{i}=1$ $2.1 b_{i}=0$ $2.2 i=i+1$
> 3. $b_{i}=1$

Next:

41

Generating Combinations
 Example 1

- Find the next larger 4-combination of the set $\{1,2,3,4,5,6\}$
after $\{1,2,5,6\}$

$$
\begin{array}{|l}
\text { 1. } \quad i=r \\
\text { 2. } \\
\text { while } a_{i}=n-r+i \\
\text { 3. } 2.1 \quad i=i-1 \\
\text { 3. } a_{i}=a_{i}+1 \\
\text { 4. } \\
\text { for } j=i+1 \text { to } r \\
\\
4.1 \quad a_{j}=a_{i}+j-i
\end{array}
$$

- $a_{1}=1, a_{2}=2, a_{3}=5$, and $a_{4}=6$
- The last a_{i} such that $a_{i} \neq n-r+1$ is $a_{2} \quad(i=2)$
- Next larger 4-combination
- $a_{2}=a_{2}+1=2+1=3$
- $a_{3}=a_{2}+j-\mathrm{i}=3+3-2=4$
- $a_{4}=a_{2}+j-\mathrm{i}=3+4-2=5$

$$
\begin{aligned}
& a_{4}=6=6-4+4 \\
& a_{3}=5=6-4+3 \\
& a_{2}=2 \neq 6-4+2
\end{aligned}
$$

Generating Combinations

Next Larger r-combinations

- Algorithm: Generating the next larger rcombinations after $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ by given a set $\{1,2,3, \ldots, n\}$

1. $i=r$
2. while $a_{i}=n-r+i$
$\{1,2\}$
$2.1 \quad i=i-1 \quad$ ie $a_{i} \neq n-r+1$
$\{1,3\}$
3. $a_{i}=a_{i}+1$
4. for $j=i+1$ to r

Generating Combinations

Example 2

- List all 3-combination for the set $\{a, b, \ldots, e\}$
- Assume $\{a, b, \ldots, e\}=\{1,2, \ldots, 5\}$
- For all $\left\{a_{1}, a_{2}, a_{3}\right\}$

1. $\{a, b, c\}$
2. $\{a, d, e\}$
3. $\{a, b, d\}$
4. $\{b, c, d\}$
5. $\{a, b, e\}$
6. $\{b, c, e\}$
7. $\{a, c, d\}$
8. $\{b, d, e\}$
9. $\{a, c, e\}$
10. $\{c, d, e\}$

Generating Permutations

- Any set can be placed in one-to-one correspondence with the set $\{1,2,3, \ldots, n\}$
- The permutations of any set of n elements can be listed by generating the permutations of the n smallest positive integers
- The algorithms based on the lexicographic (or dictionary) ordering is discussed

Generating Permutations

- Algorithm: Generating the next permutation of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in Lexicographic Order by given permutation is $\{1,2, \ldots, n\}$, where $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is not equal to $(n, n-1, \ldots, 2,1)$

1. $j=n-1$
2. while $a_{j}>a_{j+1}$

$$
2.1 j:=j-1
$$

3. $k=n$
4. while $a_{j}>a_{k}$ $4.1 k=k-1$

k is the largest subscript
$\{1,2,3\}$
$\{1,3,2\}$
5. interchange a_{j} and a_{k}
$\{2,1,3\}$
6. $r=n$

Sort the number after the $j^{\text {th }}$
$\{2,3,1\}$
7. $s=j+1$
8. while $r>s$
8.1 interchange a_{r} and a_{s} $8.2 r=r-1$ and $s=s+1$
position in $\{3,1,2\}$
ascending order
$\{3,2,1\}$

Generating Permutations

Example

- What is the next permutation in lexicographic order after 362541?
- The last pair of a_{j} and a_{j+1} where $a_{j}<a_{j+1}$ is $a_{3}=2$ and $a_{4}=5$
- The least integer to the right of 2 that is greater than 2 is $a_{s}=4$
- Exchange a_{j} and a_{s}
- Hence, 4 is placed in the third position
- 5, 2, 1 are placed in order in the last three positions
- Hence, the next permutation is 364125

Generating Permutations

r-Permutations

- How can we list all r-permutations from a set $\{1,2,3, \ldots, n\}$? r-combination

$$
\left\{a_{1}, a_{2}, a_{3}\right\}
$$

1. Use "next larger r-combinations" lists all r-combinations
2. For each r-combination, use n-permutation to list all permutations $\{1,2,3,4\}$ n-permutation $\{1,2,3\} \quad\{1,2,3\}$ $\{1,2,4\} \quad\{1,3,2\}$
$\{1,3,4\} \quad\{2,1,3\}$
$\{2,3,4\}$
$\{2,3,1\}$
$\{3,1,2\}$
$\{3,2,1\}$

Pigeonhole Principle

- Suppose that a flock of 26 pigeons flies into a set of 25 pigeonholes to roost
- What can we conclude?

Pigeonhole Principle

- A least one of these 25 pigeonholes must have at least two pigeons in it
- Because there are 26 pigeons but only 25 pigeonholes
- This is

Pigeonhole Principle

50

Pigeonhole Principle

- Pigeonhole Principle

If k is a positive integer and $\mathbf{k + 1}$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects

- Also called the Dirichlet Drawer Principle the nineteenth-century German mathematician Dirichlet
- Proof by contraposition ($p \rightarrow q \equiv \neg q \rightarrow \neg p$)
- Suppose that none of the k boxes contains more than one object
- Then the total number of objects would be at most k
- This is a contradiction

Pigeonhole Principle

- Corollary

A function f from a set with $\mathrm{k}+1$ or more elements to a set with k elements is not one-to-one

Pigeonhole Principle

- Example 1

How many words we should have if there must be at least two that begin with the same letter?

- 27 English words, because 26 letters in the English alphabet

- Example 2

How many people we should have if there must be at least two with the same birthday?

- 367 people because 366 possible birthdays

Generalized Pigeonhole Principle

- Pigeonhole Principle states that if $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects
- How about if we have
- $2 \mathrm{k}+1$ objects?
- $3 k+2$ object?
- nk + 1 object?

Generalized Pigeonhole Principle

- Generalized Pigeonhole Principle

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil\mathrm{N} / \mathrm{k}\rceil$ objects

- Proof by Contradiction
- Suppose that none of the boxes contains more than「N/k†-1 objects
- The total number of objects is at most

$$
k\left(\left\lceil\frac{N}{k}\right\rceil-1\right)<k\left(\left(\frac{N}{k}+1\right)-1\right)=N \quad\lceil\mathrm{~N} / \mathrm{k}\rceil<(\mathrm{N} / \mathrm{k})+1
$$

- This is a contradiction because there are a total of N objects

Generalized Pigeonhole Principle

- A common type of problem asks for the minimum number of objects such that at least r of these objects must be in one of k boxes when these objects are distributed among the boxes

Generalized Pigeonhole Principle

- According to generalized pigeonhole principle, when we have N objects, there must be at least r objects in one of the k boxes as long as $\lceil N / k\rceil \geq r$
- N, where $N=k(r-1)+1$, is the smallest integer satisfying $\lceil N / k\rceil \geq r$

57

Generalized Pigeonhole Principle

- $\lceil N / k\rceil \geq r, N=k(r-1)+1$, is the smallest integer satisfying $\lceil N / k\rceil \geq r$
- Could a smaller value of N suffice?
- No
- If $k(r-1)$ objects
- We could put r-1 of them in each of the k boxes
- No box would have at least r objects

Generalized Pigeonhole Principle Example 2

$$
\begin{gathered}
\lceil N / k\rceil \geq r \\
N=k(r-1)+1
\end{gathered}
$$

- What is the least number of area codes needed to guarantee that the 25 million phones in a state can be assigned distinct 10-digit telephone numbers?
- Assume that telephone numbers are of the form NXX-NXXXXXX, where the first three digits form the area code, N represents a digit from 2 to 9 inclusive, and X represents any digit.
- Different phone numbers for NXX-XXXX is $8 \times 10^{6}=8,000,000$
- $N=25,000,000, k=8,000,000$
- At least $\lceil 25,000,000 / 8,000,000\rceil=4$ of them must have identical phone numbers
- Hence, at least four area codes are required

Generalized Pigeonhole Principle

 Example 3$$
\begin{gathered}
\lceil N / k\rceil \geq r \\
N=k(r-1)+1
\end{gathered}
$$

- Show that among any $n+1$ positive integers not exceeding $2 n$ there must be an integer that divides one of the other integers
- Assume we have $n+1$ integers $a_{1}, a_{2}, \ldots, a_{\mathrm{n}+1}$
- Let $a_{j}=2^{k_{j}} q_{j}$ for $j=1,2, \ldots, n+1$, where k_{j} is a nonnegative integer and
$q_{1}, q_{2}, \ldots, q_{\mathrm{n}+1}$ are all odd positive integers less than $2 n$
- According to pigeonhole principle, because only n odd positive integers less than $2 n$, two of the integers q_{1}, q_{2}, \ldots, $q_{\mathrm{n}+1}$ must be equal
- Let q be the common value of q_{i} and q_{j}, then, $a_{i}=2^{k_{i}} q$ and $a_{j}=2^{\kappa_{j}} q$
- It follows that if $k_{i}<k_{j}$, then a_{i} divides a_{j}; otherwise a_{j} divides a_{i},

$$
\frac{a_{j}}{a_{i}}=\frac{2^{k_{j}} q}{2^{k_{i}} q}=2^{k_{j}-k_{i}}
$$

Applications: Subsequence

- Suppose that $a_{1}, a_{2}, \ldots, a_{N}$ is a sequence of real numbers.
- A subsequence of this sequence is a sequence of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}$ where $1<i_{1}<i_{2}<\ldots<i_{m}<N$

Applications: Subsequence Example

- Example:
- $a_{1}, a_{2}, \ldots, a_{5}=5,8,2,3,1$
- $5,3,1$ is a subsequence?
- 8,1 is a subsequence? a_{2}, a_{5}

- $2,3,5,8$ is a subsequence?
$a_{3}, a_{4}, a_{1}, a_{2}$

Applications: Subsequence

- A sequence is called strictly increasing if each term is larger than the one that precedes it
- A sequence is called strictly decreasing if each term is smaller than the one that precedes it

Applications: Subsequence

- Theorem

Every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ that is either strictly increasing or strictly decreasing

- Example
- Given a sequence: $8,11,9,1,4,6,12,10,5,7$
- 10 term $=3^{2}+1$
- What is the length of the longest in / decreasing subsequences? $\mathrm{n}+1=4$
- Increasing sequence
- Decreasing sequence

$$
1,4,6,12
$$

-1, 4, 6, 7
-1, 4, 6, 10
-1, 4, 5, 7

Applications: Subsequence Proof

- Let $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ be a sequence of $n^{2}+1$ distinct real numbers
- Associate an ordered pair $\left(\mathrm{i}_{\mathrm{k}}, \mathrm{d}_{\mathrm{k}}\right)$ to the term a_{k}, where
- i_{k} is the length of the longest increasing subsequence starting at a_{k}
- $\mathbf{d}_{\mathbf{k}}$ is the length of the longest decreasing subsequence starting at a_{k}

$$
\begin{gathered}
\text { (5.) 8, 2, (3.) } 1 \\
\left(i_{1}, d_{1}\right)=(2,3) \quad\left(i_{4}, d_{4}\right)=(1,2)
\end{gathered}
$$

Applications: Subsequence

Proof $\quad \ldots, a_{s}, \ldots, a_{t}, \ldots$

There exist terms a_{s} and a_{t}, with $\mathrm{s}<\mathrm{t}$ such that $\mathrm{i}_{\mathrm{s}}=\mathrm{i}_{\mathrm{t}}$ and $\mathrm{d}_{\mathrm{s}}=\mathrm{d}_{\mathrm{t}}$

- We will show that this is impossible
- Because the terms of the sequence are distinct, either $a_{s}<a_{t}$ or $a_{s}>a_{t}$
- If $a_{s}<a_{t}$, then, because $i_{s}=i_{t}$, an increasing subsequence of length $i_{t}+1$ can be built starting at a_{s}, by taking as followed by an increasing subsequence of length it beginning at a_{t}
- This is a contradiction
- Similarly, if $a_{s}>a_{\text {t }}$, it can be shown that d_{s} must be greater than d_{t}, which is a contradiction

Applications: Ramsey Theory

- Ramsey theory, after the English mathematician F. Ramsey, deals with the distribution of subsets of elements of sets
- Two people either friends or enemies

- Mutual Friend/Enemies

ABCD are mutual friends/enemies

Applications: Ramsey Theory

Example 1

- Let A be one of the six people
- According to pigeonhole principle ($(5 / 2\rceil=3)$,

A at least has three friends, or three enemies

- Former Case: suppose that B, C, and D are friends
- If any two of these three people are friends, then these two and A form a group of three mutual friends
- Otherwise, B, C, and D form a set of three mutual enemies
- Similar to the latter case

Applications: Ramsey Theory

Example 1

- Assume that in a group of six people
- Show that there are either three mutual friends or three mutual enemies in the group

Applications: Ramsey Theory

- Ramsey number $\mathbf{R (m , n)}$
- The minimum number of people at a party such that there are either m mutual friends or n mutual enemies, assuming that every pair of people at the party are friends or enemies
- m and n are positive integers greater than or equal to 2
- Example
- What is $\mathrm{R}(3,3)$?
- Answer should be 6
- In a group of five people where every two people are friends or enemies, there may not be three mutual friends or three mutual enemies

Applications: Ramsey Theory

- 5 people cannot guarantee having 3 mutual friends/enemies

