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Why Counting?

 The brute force attack is the most common way 
(time consumed but effective) in hacking

 How security of your password?

 5 digits at most

 Each digit either 
0-9, a-z or A-Z

 How many times a hacker
need to try in the worst 
situation?
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Why Counting?

 Counting problems arise throughout 
mathematics and computer science

 For example

 the number of experiment outcomes

 the number of operations in an algorithm 
(time complexity)
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Basic Counting Principle

 Multiplication / Addition Principle

 Inclusion-Exclusion Principle

 Permutation / Combination
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Basic Counting Principles

Multiplication (Product) Rule

 If a task can be constructed in t successive 
steps and step i can be done in ni ways, 
where i = 1…t, then the number of different 
possible ways is n1 x n2 x ...x nm
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Basic Counting Principles

Addition (Sum) Rule

 If a task can be done in one of n1 ways, in 
one of n2 ways, ... , or in one of nm ways, 
where all sets of nj ways are disjoint, then the 
number of ways is n1 + n2 + … + nm

8

 How many emails are sent after 4 iterations?
 1st iteration:
 2nd iteration:
 3rd iteration:
 4th iteration:

Basic Counting Principles: Multiplication/Addition Principle 

Example 1
 In 1999, a virus named “Melissa” is 

created by David L. Smith based on a 
Microsoft Word macro

 Melissa sends an email "Here is that 
document you asked for, don't show it 
to anybody else." to the top 50 people
in the address book

6,377,551

1
1 x 50 = 50
50 x 50 = 2,500
2500 x 50 = 6,250,000

(By Multiplication Rule)

(By Addition Rule)
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Basic Counting Principles: Multiplication/Addition Principle 

Example 2

 A programming language Beginner's All-

purpose Symbolic Instruction Code (BASIC)

 GW-BASIC (1986) in MS-DOS
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Basic Counting Principles: Multiplication/Addition Principle 

Example 2

 In BASIC, the requirements of a variable name

 A string of 1 or 2 alphanumeric characters 
(a-z or 0-9)

 Begin with a letter

 Uppercase and lowercase letters are not
distinguished

 Different from the 5 strings of two characters that 
are reserved

 How many different variable names are there 
in this version of BASIC?

11

Basic Counting Principles: Multiplication/Addition Principle 

Example 2

 Number of variables names containing 1 character (V1)
 V1 = 26, because a one-character variable name must be a 

letter 

 Number of variables names containing 2 characters (V2)
 For V2, by the product rule there are 26 x 36 strings of length 

two that begin with a letter and end with an alphanumeric 
character

 However, five of these are excluded, V2 = 26 x 36 – 5 = 931

 Total number is V1 + V2 = 26 + 931 = 957

 A string of 1 or 2 alphanumeric characters (number & letter)
 Begin with a letter 
 Uppercase and lowercase letters are not distinguished
 Different from the 5 strings of two characters that are reserved
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Basic Counting Principles:

Inclusion-Exclusion Principle
 Suppose that a task can be done in A or in B ways 

 But some of the set of A ways to do the task are the 
same as some of the B ways to do the task

 Avoid the overcount

| A U B | = | A | + | B | - | A ∩ B |

BA BA

overcount
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Basic Counting Principles: Inclusion-Exclusion Principle

Example 1

 How many bit strings of length 8, either start with a 1 bit
or end with the two bits 00? 

 Start with 1: 27 = 128 ways

 End with 00: 26 = 64 ways

 Some of these strings are the same

 The bit strings of length eight start with 

a 1 bit and end with the two bits 00 

 25 = 32 

 128 + 64 - 32 = 160

14

Basic Counting Principles: Inclusion-Exclusion Principle

Example 2
 A computer company receives 350 applications

 Suppose that 
 220 majored in computer science
 147 majored in business
 51 majored both in computer science and in business

 How many of these applicants majored neither in 
computer science nor in business? 

 Let A1 : the set of students majored in computer science

A2 : the set of students majored in business

 | A1 U A2 |

 350 - 316 = 34 of the applicants majored neither in computer 
science nor in business

= 220 + 147 - 51 = 316 = | A1 | + | A2 | - | A1 ∩ A2 |
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 A permutation of a set of distinct
n objects is an ordered arrangement
of these objects 

 General Case
The ordering of r elements selected from n distinct
elements is called r-permutation

Basic Counting Principles

Permutation 
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Basic Counting Principles

Combination 

 The unordered selection of r elements from n 
distinct elements is called r-combination

 It is a subset of the set with r elements
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Basic Counting Principles

Combination

 C(n, r) = C(n, n - r)

 Algebraic Proof
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 Using combinatorial proof for 
C(n, r) = C(n, n - r)
Suppose that S is a set with n 
elements. 
Every subset A of S with r 
elements corresponds to a 
subset of S with n - r elements, 
namely A Consequently, 
C(n, r) = C(n, n - r)

Basic Counting Principles

Combination
 Combinatorial proof

 Using counting arguments to prove that both sides of 
the identity count the same objects but in different ways
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Basic Counting Principles

Permutation / Combination

 Proof
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Number of r-combinations 
of n elements 

Number of r-permutations 
of r elements

Number of r-permutations 
of n elements

3P2 3C2 2P2x=
6 3 2
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Basic Counting Principles: Permutation / Combination 

Example

 Your class has 10 students. How many 
different ways the committee can be set up:

1. A committee of four 

2. A committee of four and 

one person is to serve as chairperson

3. A committee of four and 

two co-chairpersons

4. Two committees: 

 One with four members with two co-chairs 

 One with three members and a single chair

10C4

10C4· 4C1

10C4· 4C2

10C4· 4C2 · 10C3· 3C1
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Combinatorial Proof Example 1

Pascal's Identity and Triangle
 Pascal’s Identity

Let n and k be positive integers with n ≥ k. Then 
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01C 11C

12C Pascal's triangle
A geometric arrangement of the 
binomial coefficients in a 
triangle
 binomial coefficient is the sum of 

two adjacent binomial coefficients
in the previous row
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Combinatorial Proof Example 1

Pascal's Identity and Triangle
 Proof

 Suppose T is a set containing n + 1 elements

 Let a be an element in T, and let S = T - {a}

 There are n+1Ck subsets of T containing k elements

 n+1Ck subsets contains either

 k - 1 elements of S and a, or

 k elements of S and not a

 Therefore, n+1Ck = nCk-1 + nCk

(nCk-1)
(nCk)

T =

a = S = 

… …

a nCk

n+1Ck = nCk-1 + nCk

nCk-1

n+1Ck
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Combinatorial Proof Example 2 

Vandermonde’s Identity
 Theorem: Vandermonde’s Identity

 Let m, n, and r be nonnegative integers with r
not exceeding either m or n. Then 
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Combinatorial Proof Example 2 

Vandermonde’s Identity
 Proof

 Suppose: m items in a first set and n items in a second set

 The total number of ways to pick r elements from the union
of these sets is m+nCr

 Another way is to pick k elements from the first set and then 
r - k elements from the second set, where k is an integer 
with 0 ≤ k ≤ r 
 There are mCr · nCr-k ways

 Therefore,
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mCr-k ∙ nCk

mC0 ∙ nC2

mC1 ∙ nC1

mC2 ∙ nC0
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Combinatorial Proof Example 3 

Theorem of Binomial Coefficients

 Theorem
Let n and r be nonnegative integers with r ≤ n. 
Then 
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Combinatorial Proof Example 3 

Theorem of Binomial Coefficients
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00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

11000 01100
10100

00110
01010

10010

00011
00101

01001

10001
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4+1C1+1 1C1 2C1 3C1 4C1

consider the possible locations of the final 1
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Combinatorial Proof Example 3 

Theorem of Binomial Coefficients
 Proof: 

 Consider n+1Cr+1 counts the bit strings of length n + 
1 containing r + 1 ones

 Another counting way is to consider the possible 
locations, named k, of the final 1

 k should equal to r + 1, r + 2, . . ., or n + 1
 r+1 ≤ k ≤ n+1

010100110...0

n+1 bits

contain r+1 1s

01110...10100

k-1 bits contain r 1s

k
























 n

rj r

j

r

n

1

1

28

 Consider the first k-1 bits

 In this k-1 bits, there should be r 1s

 There are k-1Cr ways

 Recall, r+1 ≤ k ≤ n+1

Combinatorial Proof Example 3 

Theorem of Binomial Coefficients

01110...10100

k-1 bits contain r 1s
k
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Counting Problems

 How to apply what you have learn to solve 
the counting problems?

 Multiplication / Addition Principle

 Inclusion-Exclusion Principle

 Permutation / Combination

 List all the possibilities
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 Many counting problems can be treated as 
the ways objects can be placed into boxes

Counting Problems

Distinguishable
(labeled)

Indinguishable
(unlabeled)

Distinguishable
(labeled)

Indinguishable
(unlabeled)Objects

Boxes

Counting Problems

 General Algorithm

 First check whether “Permutation / Combination” can 
be applied, otherwise, you need to “List all the 
possibilities”

 Try to break down the problem into a subpart by using 
“Multiplication / Addition Principle” and “Inclusion-
Exclusion Principle”
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Counting Problems

Example 1
 There are five students (A, B, C, D & E)

How many ways are there to arrange them:

 into 5 seats?

 into 5 seats and A and B 
sit next to each other?

 into 5 seats and A and B 
not sit next to each other?

 into a round table?
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2 x 4!

5!

5! / 5 (each pattern counts 
5 times)

(AB and BA)

5! - 2 x 4!



Counting Problems

Example 2
 How many ways to put 3 apples, 2 oranges 

and 1 banana to 3 indistinguishable boxes 
and each box contains 2 items?

33

3
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Counting Problems

Example 3
 How many ways are there to select 5 bills from a 

cash box containing $1 bills, $2 bills, $5 bills, $10 
bills, $20 bills, $50 bills, and $100 bills? 

Assume:
 Order of selecting does not matter
 Bills of each denomination are indistinguishable
 At least five bills of each type
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Counting Problems

Example 3

100 150 20 10 5 2
Bill Bill

Bill

Bill Bill

*||**|*|||*

7 - 1 = 6 bars (lines between 7 boxes)

5 stars (5 bills)

Total, 11 characters
11C5 = 11! / (5!6!) = 462

100 150 20 10 5 2

100 150 20 10 5 2

***||*||||*

||*|*|*|*|*

Select five bills from $1, $2, $5, $10, $20, $50 and $100

Counting Problems

Example 4
 How many solutions does the equation 

x1 + x2 + x3 = 11 have? 

 where x1, x2, and x3

are nonnegative integers.

 where x1, x2, and x3 integers 
and x1 ≥ 1, x2 ≥ 2, and x3 ≥ 3.

x1 x2 x3

x1 x2 x3

unmovable

11+3-1C11 = 78

5+3-1C5 = 21

n = 3, r = 11

n =3, r = 11 – 6 = 5
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Counting Problems

Example 5
 How many ways are there to pack 6 copies of 

the same book into 4 identical boxes, where a 
box can contain as many as six books?

 By listing all the possibilities

 There are 9 ways

6, 0, 0 ,0
5, 1, 0, 0 
4, 2, 0, 0 
4, 1, 1, 0 

3, 3, 0, 0 
3, 2, 1, 0 
3, 1, 1, 1 
2, 2, 2, 0 
2, 2, 1, 1
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Generating 
Permutations & Combinations

 Sometimes permutations or combinations 
need to be generated but not just counted

 E.g. all 3-combination for the set {a, b, …, e}

 {a, b, c},  {a, b, d},  {a, b, e},  {a, c, d}, …

 How can we systemically generate all the 
combinations of the elements of a finite set?
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Generating Combinations

 Recall that the bit string representation 
corresponding to a subset

 For kth position:

 1 : ak is in the subset

 0 : ak is not in the subset

1 0 1 1

b3 b2 b1 b0
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Generating Combinations

Next Larger Bit String

 Algorithm: Generating the next bit string
(bn-1, bn-2, ..., b1, b0), where the current bit 
string is not equal to 11...11) 

1. i = 0

2. while bi = 1 

2.1 bi = 0 

2.2 i = i + 1 

3. bi = 1 

 Treat it as adding “1” to a binary number
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Generating Combinations: Next Larger Bit String 

Example

 Find out the next combination using next 
larger bit string algorithm for

 Next:

1. i = 0

2. while bi = 1 

2.1 bi = 0 

2.2 i = i + 1 

3. bi = 1 

b3 b2 b1 b0

1 0 1 1

1 1 0 0
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 Algorithm: Generating the next larger r-
combinations after {a1, a2, …, ar} by given a 
set {1, 2, 3, . . . , n}

1. i = r

2. while ai = n - r + i

2.1 i = i - 1 

3. ai = ai + 1 

4. for j = i + 1 to r

4.1 aj = ai + j - i

Generating Combinations

Next Larger r-combinations

locate the last ai

ie ai ≠ n - r + 1

From ai+1 to ar

Assign new values

add 1 to ai

{1, 2, 3, 4}
{a1, a2}

{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}
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Generating Combinations

Example 1
 Find the next larger 4-combination

of the set {1, 2, 3, 4, 5, 6} 
after {1, 2, 5, 6}

 a1 = 1, a2 = 2, a3 = 5, and a4 = 6

 The last ai such that ai ≠ n - r + 1 is a2

 Next larger 4-combination
 a2

 a3

 a4

 Hence : {1, 3, 4, 5}

a4 = 6

a3 = 5

a2 = 2

= 6 - 4 + 4

= 6 - 4 + 3

≠ 6 - 4 + 2

= a2 + 1

= a2 + j – i

= a2 + j – i

= 2 + 1 = 3

= 3 + 3 – 2 = 4

= 3 + 4 – 2 = 5

1. i = r

2. while ai = n - r + i
2.1 i = i - 1 

3. ai = ai + 1 

4. for j = i + 1 to r
4.1 aj = ai + j - i

(i = 2)
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Generating Combinations

Example 2

 List all 3-combination for the set {a, b, …, e}

 Assume {a, b, …, e} = {1, 2, …, 5}

 For all {a1, a2, a3}

1. {a, b, c}

2. {a, b, d}

3. {a, b, e}

4. {a, c, d}

5. {a, c, e}

6. {a, d, e}

7. {b, c, d}

8. {b, c, e}

9. {b, d, e}

10.{c, d, e}

1. i = r

2. while ai = n - r + i
2.1 i = i - 1 

3. ai = ai + 1 

4. for j = i + 1 to r
4.1 aj = ai + j - i
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Generating Permutations

 Any set can be placed in one-to-one 
correspondence with the set {1, 2, 3, ..., n}

 The permutations of any set of n elements can 
be listed by generating the permutations of the 
n smallest positive integers 

 The algorithms based on the lexicographic 
(or dictionary) ordering is discussed
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Generating Permutations
 Algorithm: Generating the next permutation of (a1, a2, ..., an)

in Lexicographic Order by given permutation is {1, 2, ..., n}, 
where (a1, a2, ..., an) is not equal to (n, n-1, ..., 2, 1) 
1. j = n – 1 
2. while aj > aj+1

2.1 j := j – 1 
3. k = n
4. while aj > ak

4.1 k = k – 1 
5. interchange aj and ak

6. r = n
7. s = j + 1 
8. while r > s

8.1 interchange ar and as

8.2 r = r – 1 and s = s + 1 

j is the largest subscript 
with aj < aj+1

k is the largest subscript 
with aj < ak

Sort the number 
after the jth

position in 
ascending order 

{1, 2, 3}
{a1, a2 , a3}

{1, 2, 3}

{1, 3, 2}

{2, 1, 3}

{2, 3, 1}

{3, 1, 2}

{3, 2, 1}
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Generating Permutations

Example
 What is the next permutation in lexicographic order 

after 362541? 

 The last pair of aj and aj+1 where aj < aj+1 is 

 The least integer to the right of 2 that is greater than 
2 is

 Exchange aj and as
 Hence, 4 is placed in the third position

 5, 2, 1 are placed in order in the last three positions

 Hence, the next permutation is 364125

a3 = 2 and a4 = 5

as = 4
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Generating Permutations 

r-Permutations

 How can we list all r-permutations from a 
set {1, 2, 3, . . . , n}?

1. Use “next larger 
r-combinations” lists 
all r-combinations

2. For each r-combination, 
use n-permutation to list 
all permutations

{1, 2, 3, 4}

{a1, a2 , a3}

{1, 2, 3}

{1, 3, 4}

{1, 2, 4}

{2, 3, 4}

{1, 2, 3}

{1, 3, 2}

{2, 1, 3}

{2, 3, 1}

{3, 1, 2}

{3, 2, 1}

r-combination

n-permutation
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Pigeonhole Principle

 Suppose that a flock of 26 pigeons flies into a 
set of 25 pigeonholes to roost

 What can we conclude?
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Pigeonhole Principle

 A least one of these 25 pigeonholes must 
have at least two pigeons in it

 Because there are 26 pigeons but only 25 
pigeonholes

 This is 
Pigeonhole Principle
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Pigeonhole Principle

 Pigeonhole Principle
If k is a positive integer and k + 1 or more objects
are placed into k boxes, then there is at least one
box containing two or more of the objects
 Also called the Dirichlet Drawer Principle

the nineteenth-century German mathematician Dirichlet

 Proof by contraposition (p  q  q  p)
 Suppose that none of the k boxes contains more than 

one object

 Then the total number of objects would be at most k

 This is a contradiction
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Pigeonhole Principle

 Corollary
A function f from a set with k + 1 or more 
elements to a set with k elements is not one-
to-one

a
b
c
d

1
2
3
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Pigeonhole Principle

 Example 1
How many words we should have if there must be 
at least two that begin with the same letter?

 27 English words, because 26 letters in the English 
alphabet

 Example 2
How many people we should have if there must be
at least two with the same birthday?

 367 people because 366 possible birthdays
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Generalized Pigeonhole Principle

 Pigeonhole Principle states that if k + 1 or 
more objects are placed into k boxes, then 
there is at least one box containing two or 
more of the objects

 How about if we have 

 2k + 1 objects? 

 3k + 2 object?

 nk + 1 object?
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Generalized Pigeonhole Principle

 Generalized Pigeonhole Principle
If N objects are placed into k boxes, then there is at 
least one box containing at least N/k objects

 Proof by Contradiction
 Suppose that none of the boxes contains more than 
N/k - 1 objects

 The total number of objects is at most

 This is a contradiction because there are a total of N 
objects
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k

N
k N N/k < (N/k) + 1
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Generalized Pigeonhole Principle

 A common type of problem asks for the
minimum number of objects such that at least 
r of these objects must be in one of k boxes
when these objects are distributed among the 
boxes
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Generalized Pigeonhole Principle

 According to generalized pigeonhole principle, 
when we have N objects, there must be at least r 
objects in one of the k boxes as long as N/k ≥ r
 N, where N = k(r - 1) + 1, is the smallest integer

satisfying N/k ≥ r

N

r

k
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Generalized Pigeonhole Principle

 N/k ≥ r, N = k(r - 1) + 1, is the smallest 
integer satisfying N/k ≥ r

 Could a smaller value of N suffice?

 No

 If k(r - 1) objects

 We could put r - 1 of them in each of the k 
boxes 

 No box would have at least r objects
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Generalized Pigeonhole Principle

Example 1
 How many people out of 100 people were 

born in the same month?

 N = 100

 k = 12

 r = ?

 100/12 = 9 who were born in the same 
month

N/k ≥ r
N = k(r - 1) + 1
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Generalized Pigeonhole Principle

Example 2
 What is the least number of area codes needed to guarantee 

that the 25 million phones in a state can be assigned distinct 
10-digit telephone numbers?

 Assume that telephone numbers are of the form NXX-NXX-
XXXX, where the first three digits form the area code, N
represents a digit from 2 to 9 inclusive, and X represents any 
digit.

 Different phone numbers for NXX-XXXX is 
8 x 106 = 8,000,000

 N = 25,000,000, k = 8,000,000

 At least 25,000,000 / 8,000,000 = 4 of them must have 
identical phone numbers

 Hence, at least four area codes are required

N/k ≥ r
N = k(r - 1) + 1
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 Show that among any n + 1 positive integers not exceeding 
2n there must be an integer that divides one of the other 
integers

 Assume we have n + 1 integers a1, a2, ..., an+1

 Let                   for j = 1, 2, . . . , n + 1, 

where kj is a nonnegative integer and 
q1, q2, ..., qn+1 are all odd positive integers less than 2n

 According to pigeonhole principle, because only n odd 
positive integers less than 2n, two of the integers q1, q2, ..., 
qn+1 must be equal

 Let q be the common value of qi and qj, then,                 and 

 It follows that if ki < kj, then ai divides aj; 
otherwise aj divides ai

Generalized Pigeonhole Principle

Example 3

j

k

j qa j2

qa ik

i 2
qa jk

j 2

N/k ≥ r
N = k(r - 1) + 1

ia
ja qjk

2

qik2
= = ij kk 

2
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Applications: Subsequence

 Suppose that a1, a2, ..., aN is a sequence of 
real numbers. 

 A subsequence of this sequence is a 
sequence of the form 
where 1 < i1 < i2 < ... < im < N

miii aaa ,...,,
21
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Applications: Subsequence

Example
 Example:

 a1 , a2, ..., a5 = 5, 8, 2, 3, 1

 5, 3, 1 is a subsequence?

 8, 1 is a subsequence?

 2, 3, 5, 8 is a subsequence?






a1, a4, a5

a2, a5

a3, a4 , a1, a2
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Applications: Subsequence

 A sequence is called strictly increasing if 
each term is larger than the one that 
precedes it

 A sequence is called strictly decreasing if 
each term is smaller than the one that 
precedes it
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Applications: Subsequence

 Theorem
Every sequence of n2 + 1 distinct real numbers
contains a subsequence of length n + 1 that is 
either strictly increasing or strictly decreasing

 Example
 Given a sequence: 8, 11, 9, 1, 4, 6, 12, 10, 5, 7

 10 term = 32 + 1

 What is the length of the longest in / decreasing 
subsequences?

 Increasing sequence
1, 4, 6, 12
1, 4, 6, 7
1, 4, 6, 10
1, 4, 5, 7

 Decreasing sequence
11, 9, 6 ,5

n+1 = 4
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Applications: Subsequence

Proof
 Let                        be a sequence of n2 + 1 distinct 

real numbers

 Associate an ordered pair (ik, dk) to the term ak, 
where 

 ik is the length of the longest increasing subsequence
starting at ak

 dk is the length of the longest decreasing subsequence
starting at ak

121 2,...,,
n

aaa

5,    8,    2,    3,    1

(i1, d1) = (2, 3) (i4, d4) = (1, 2)
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Applications: Subsequence

Proof
 Suppose no increasing or decreasing 

subsequences is longer than n

 ik and dk are both positive integers less than or 
equal to n, for k = 1, 2, . . . , n2 + 1

 By the product rule, 
n2 possible ordered pairs for (ik, dk)

 By the pigeonhole principle
two of n2 + 1 ordered pairs are equal

 Therefore, there exist terms as and at, 
with s < t such that is = it and ds = dt

5, 8, 2, 3, 1

(2, 3) (1, 2)
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Applications: Subsequence

Proof

 We will show that this is impossible

 Because the terms of the sequence are distinct, either
as < at or as > at

 If as < at, then, because is = it, an increasing 
subsequence of length it + 1 can be built starting at as, 
by taking as followed by an increasing subsequence of 
length it beginning at at

 This is a contradiction

 Similarly, if as > at, it can be shown that ds must be 
greater than dt, which is a contradiction

There exist terms as and at, 
with s < t such that is = it and ds = dt

…, as, …, at, …

5, 8, 2, 3, 1

(2, 3) (1, 2)
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Applications: Ramsey Theory

 Ramsey theory, after the English mathematician F. 
Ramsey, deals with the distribution of subsets of 
elements of sets
 Two people either friends or enemies

 Mutual Friend/Enemies

Friends Enemies

A B A B

A B

C D

A B

C D

A B C D are mutual 
friends/enemies
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Applications: Ramsey Theory

Example 1

 Assume that in a group of six people

 Show that there are either three mutual 
friends or three mutual enemies in the group

A B C D E F
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Applications: Ramsey Theory

Example 1
 Let A be one of the six people

 According to pigeonhole principle (5/2 = 3), 
A at least has three friends, or three enemies

 Former Case: suppose that B, C, and D are friends
 If any two of these three people are friends, then these two and A 

form a group of three mutual friends

 Otherwise, B, C, and D form a set of three mutual enemies

 Similar to the latter case

A B C D E F
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Applications: Ramsey Theory

 Ramsey number R(m, n)
 The minimum number of people at a party such that 

there are either m mutual friends or n mutual enemies, 
assuming that every pair of people at the party are 
friends or enemies

 m and n are positive integers greater than or equal to 2

 Example
 What is R(3, 3)? 

 Answer should be 6

 In a group of five people where every two people are 
friends or enemies, there may not be three mutual friends 
or three mutual enemies
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Applications: Ramsey Theory

 5 people cannot guarantee having 3 mutual 
friends/enemies

C

B

A

DE


