Discrete Mathematic

Chapter 3: Counting 3.1 The Basics of Counting 3.2 The Pigeonhole Principle 3.3 Permutations & Combinations 3.5 Generalized Permutations & Combinations 3.6 Generating Permutations & Dr Patrick Chan

South China University of Technology

Agenda

- Basic Counting Principles
 - Multiplication / Addition Principle
 - Inclusion-Exclusion Principle
 - Permutation / Combination
- Distributing Objects into Boxes
- Generating Permutations & Combinations

Why Counting?

- The brute force attack is the most common way (time consumed but effective) in hacking
- How security of your password?
 - 5 digits at most
 - Each digit either 0-9, a-z or A-Z
- How many times a hacker need to try in the worst situation?

3

Why Counting?

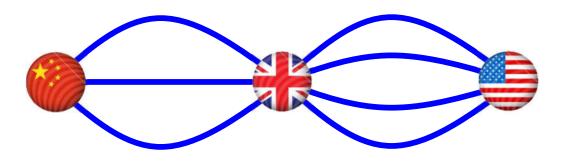
- Counting problems arise throughout mathematics and computer science
 - For example
 - the number of experiment outcomes
 - the number of operations in an algorithm (time complexity)

Basic Counting Principle

- Multiplication / Addition Principle
- Inclusion-Exclusion Principle
- Permutation / Combination

Basic Counting Principles Multiplication (Product) Rule

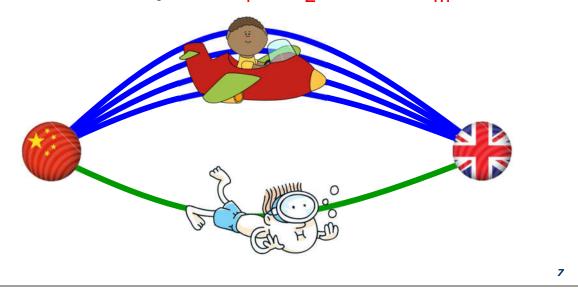
If a task can be constructed in t successive steps and step i can be done in n_i ways, where i = 1...t, then the number of different possible ways is n₁ x n₂ x ...x n_m



5

Basic Counting Principles Addition (Sum) Rule

If a task can be done in one of n₁ ways, in one of n₂ ways, ..., or in one of n_m ways, where all sets of n_j ways are disjoint, then the number of ways is n₁ + n₂ + ... + n_m



Basic Counting Principles: Multiplication/Addition Principle Example 1

- In 1999, a virus named "Melissa" is created by David L. Smith based on a Microsoft Word macro
- Melissa sends an email "Here is that document you asked for, don't show it to anybody else." to the top 50 people in the address book

6.377.551

(By Addition Rule)

- How many emails are sent after 4 iterations?
 - 1st iteration: 1
 - 2nd iteration: 1 x 50 = 50
 - 3rd iteration: 50 x 50 = 2,500
 - 4th iteration: 2500 x 50 = 6,250,000

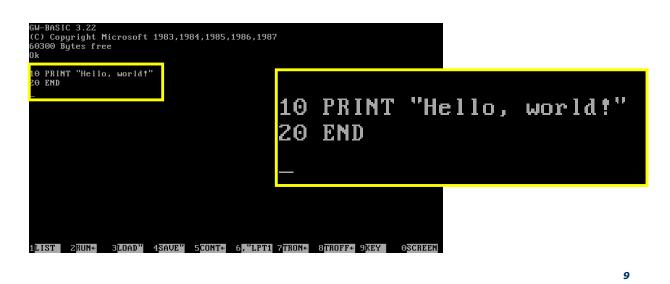
6,250,000

(By Multiplication Rule)

8

Basic Counting Principles: Multiplication/Addition Principle Example 2

- A programming language Beginner's Allpurpose Symbolic Instruction Code (BASIC)
- GW-BASIC (1986) in MS-DOS



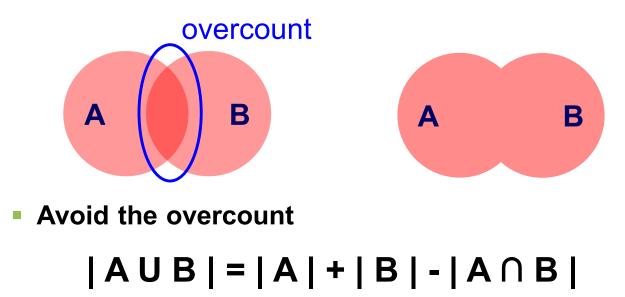
Basic Counting Principles: Multiplication/Addition Principle Example 2

- In BASIC, the requirements of a variable name
 - A string of 1 or 2 alphanumeric characters (a-z or 0-9)
 - Begin with a letter
 - Uppercase and lowercase letters are not distinguished
 - Different from the 5 strings of two characters that are reserved
- How many different variable names are there in this version of BASIC?

- A string of 1 or 2 alphanumeric characters (number & letter)
- Begin with a letter
- Uppercase and lowercase letters are not distinguished
- Different from the 5 strings of two characters that are reserved
- Number of variables names containing 1 character (V₁)
 - V₁ = 26, because a one-character variable name must be a letter
- Number of variables names containing 2 characters (V₂)
 - For V₂, by the product rule there are 26 x 36 strings of length two that begin with a letter and end with an alphanumeric character
 - However, five of these are excluded, $V_2 = 26 \times 36 5 = 931$
- Total number is V₁ + V₂ = 26 + 931 = 957

Basic Counting Principles: Inclusion-Exclusion Principle

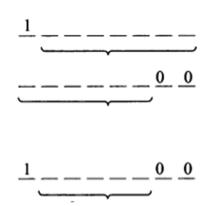
- Suppose that a task can be done in A or in B ways
- But some of the set of A ways to do the task are the same as some of the B ways to do the task



11

Basic Counting Principles: Inclusion-Exclusion Principle Example 1

- How many bit strings of length 8, either start with a 1 bit or end with the two bits 00?
- **Start with 1:** 2⁷ = 128 ways
- End with 00: 2⁶ = 64 ways
- Some of these strings are the same
 - The bit strings of length eight start with a 1 bit and end with the two bits 00
 - 2⁵ = 32
- 128 + 64 32 = 160



13

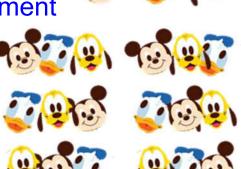
Basic Counting Principles: Inclusion-Exclusion Principle **Example 2**

- A computer company receives 350 applications
- Suppose that
 - 220 majored in computer science
 - 147 majored in business
 - 51 majored both in computer science and in business
- How many of these applicants majored neither in computer science nor in business?
- Let A₁ : the set of students majored in computer science
 A₂ : the set of students majored in business
- $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2| = 220 + 147 51 = 316$
- 350 316 = 34 of the applicants majored neither in computer science nor in business

Basic Counting Principles Permutation

 A permutation of a set of distinct n objects is an ordered arrangement of these objects

$$\begin{array}{cccc} & & & & \\ 1^{st} & 2^{nd} & & & r^{th} & & n^{th} \\ n & & (n-1) \cdot \dots \cdot (n-r+1) \cdot \dots \cdot 1 & = \mathbf{n!} \end{array}$$



General Case

The ordering of r elements selected from n distinct elements is called **r-permutation**

$$_{n}P_{r} = P(n,r) = n(n-1)(n-2)...(n-r+1) = \frac{n!}{(n-r)!}$$

Basic Counting Principles

- The unordered selection of r elements from n distinct elements is called r-combination
 - It is a subset of the set with r elements

$$_{n}C_{r} = C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Basic Counting Principles Combination

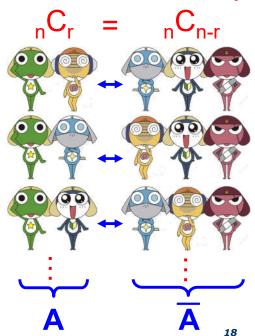
Algebraic Proof

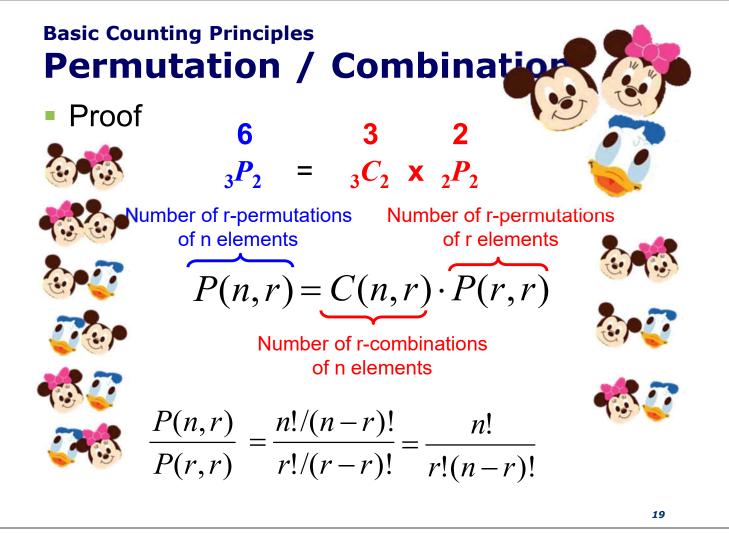
$$C(n,r) = \frac{n!}{r!(n-r)!}$$
$$= \frac{n!}{(n-(n-r))!(n-r)!}$$
$$= C(n,n-r)$$

Basic Counting Principles

Combinatorial proof

- Using counting arguments to prove that both sides of the identity count the same objects but in different ways
- Using combinatorial proof for C(n, r) = C(n, n - r) Suppose that S is a set with n elements. Every subset A of S with r elements corresponds to a subset of S with n - r elements, namely A Consequently, C(n, r) = C(n, n - r)





Basic Counting Principles: Permutation / Combination **Example**

- Your class has 10 students. How many different ways the committee can be set up:
 - 1. A committee of four $_{10}C_4$
 - 2. A committee of four and $_{10}C_4 \cdot _4C_1$ one person is to serve as chairperson
 - 3. A committee of four and two co-chairpersons ${}_{10}C_4 \cdot {}_4C_2$
 - 4. Two committees: ${}_{10}C_4 \cdot {}_{4}C_2 \cdot {}_{10}C_3 \cdot {}_{3}C_1$
 - One with four members with two co-chairs
 - One with three members and a single chair

Combinatorial Proof Example 1 Pascal's Identity and Triangle

Pascal's Identity

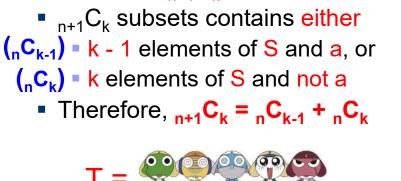
Let n and k be positive integers with $n \ge k$. Then

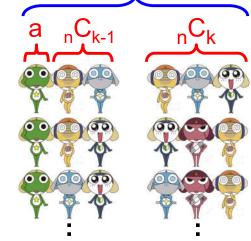
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

- $\begin{pmatrix} k \end{pmatrix} \begin{pmatrix} k-1 \end{pmatrix}^{T} \begin{pmatrix} k \end{pmatrix} {}_{1} C_{0} {}_{1} C_{1} \\ \begin{array}{c} 2 \\ C_{1} \\ 2 \\ C_{1} \\ C_$
 - binomial coefficient is the sum of two adjacent binomial coefficients in the previous row

Combinatorial Proof Example 1 Pascal's Identity and Triangle

- **Proof** $_{n+1}C_k = {}_{n}C_{k-1} + {}_{n}C_k$
 - Suppose T is a set containing n + 1 elements
 - Let a be an element in T, and let S = T {a}
 - There are n+1Ck subsets of T containing k elements





 $_{n+1}C_k$

1

5 10 10 5 1

21

22

Combinatorial Proof Example 2 Vandermonde's Identity

- Theorem: Vandermonde's Identity
 - Let m, n, and r be nonnegative integers with r not exceeding either m or n. Then

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

23

Combinatorial Proof Example 2 Vandermonde's Ider $\binom{m+n}{2} = \sum_{r=1}^{r} \binom{m}{r} \binom{m}{r}$

Proof

- Suppose: m items in a first set and n items in a second set
- The total number of ways to pick r elements from the union of these sets is m+nCr
- Another way is to pick k elements from the first set and then
 r k elements from the second set, where k is an integer
 with 0 ≤ k ≤ r
- There are ${}_{\mathbf{m}}\mathbf{C}_{\mathbf{r}} \cdot {}_{\mathbf{n}}\mathbf{C}_{\mathbf{r}-\mathbf{k}}$ ways • Therefore, $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k} \binom{n}{k} \xrightarrow{\mathbf{m}} \binom{n}{k} \underbrace{\{}_{\mathbf{m}} \otimes \underbrace{\{}_$

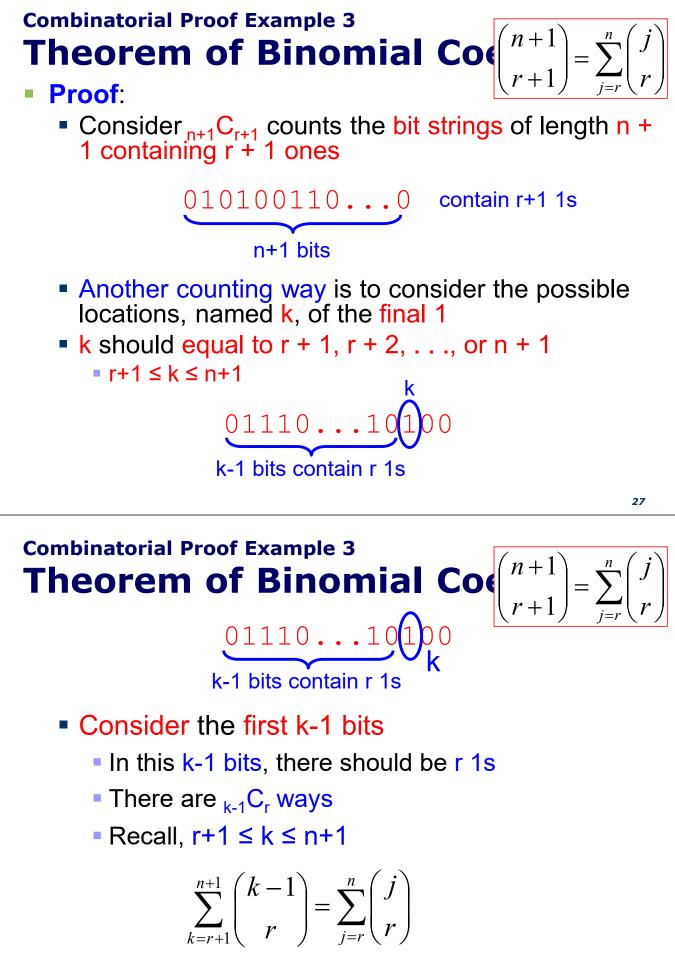
Combinatorial Proof Example 3 Theorem of Binomial Coefficients

Theorem

Let n and r be nonnegative integers with $r \le n$. Then

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

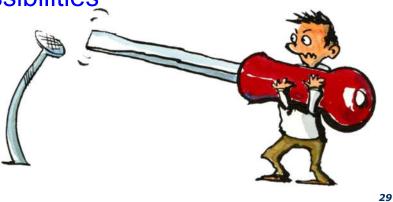
Combinatorial Proof Example 3 Theorem of Binomial Coe $\binom{n+1}{r+1} = \sum_{i=r}^{n} \binom{j}{r}$ $_{4+1}C_{1+1}$ 00011 00101 00110 01001 01010 1000 01100 10001 consider the possible locations of the final 1 10010 10100 11000



By the change of variables j = k - 1

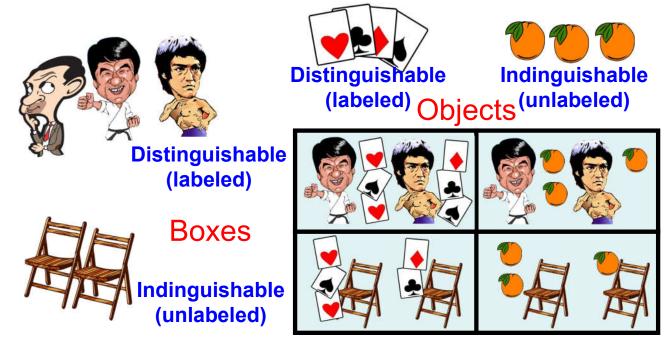
Counting Problems

- How to apply what you have learn to solve the counting problems?
 - Multiplication / Addition Principle
 - Inclusion-Exclusion Principle
 - Permutation / Combination
 - List all the possibilities



Counting Problems

 Many counting problems can be treated as the ways <u>objects</u> can be placed into <u>boxes</u>



Counting Problems

- General Algorithm
 - First check whether "Permutation / Combination" can be applied, otherwise, you need to "List all the possibilities"
 - Try to break down the problem into a subpart by using "Multiplication / Addition Principle" and "Inclusion-Exclusion Principle"

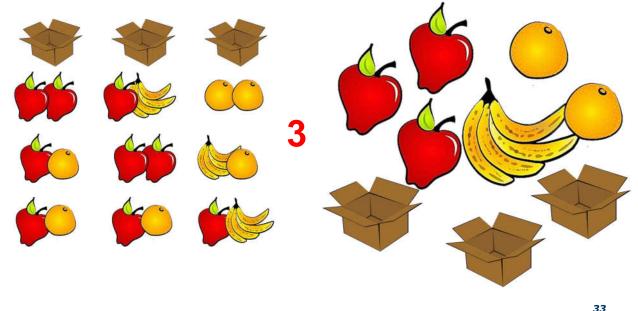
31

Counting Problems **Example 1**

- There are five students (A, B, C, D & E) How many ways are there to arrange them:
 - into 5 seats? 5!
 - into 5 seats and A and B 2 x 4! (AB and BA) sit next to each other?
 - into 5 seats and A and B 5! 2 x 4! not sit next to each other?
 - into a round table? 5! / 5 (each page 10.000)
- (each pattern counts 5 times)

Counting Problems Example 2

How many ways to put 3 apples, 2 oranges and 1 banana to 3 indistinguishable boxes and each box contains 2 items?

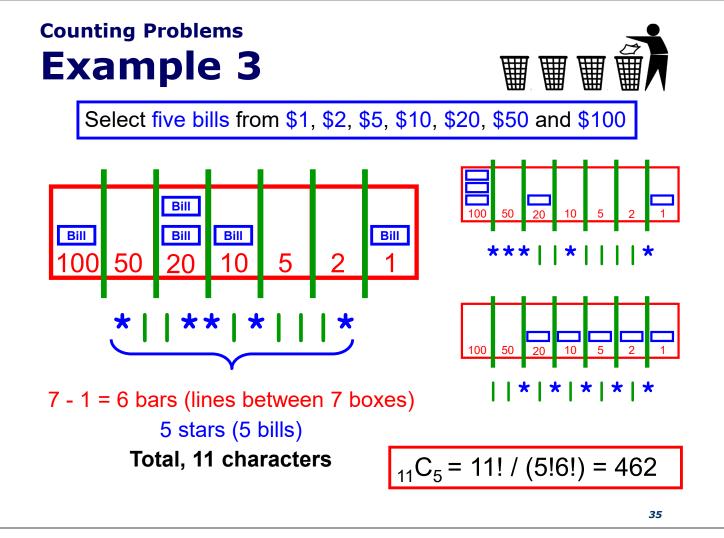


Counting Problems Example 3

How many ways are there to select 5 bills from a cash box containing \$1 bills, \$2 bills, \$5 bills, \$10 bills, \$20 bills, \$50 bills, and \$100 bills?

Assume:

- Order of selecting does not matter
- Bills of each denomination are indistinguishable
- At least five bills of each type

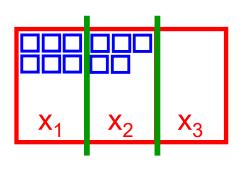


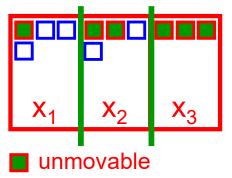
Counting Problems Example 4

How many solutions does the equation

 $x_1 + x_2 + x_3 = 11$ have?

- where x_1 , x_2 , and x_3 are nonnegative integers. n = 3, r = 11 $_{11+3-1}C_{11} = 78$
- where x_1 , x_2 , and x_3 integers and $x_1 \ge 1$, $x_2 \ge 2$, and $x_3 \ge 3$. n = 3, r = 11 - 6 = 5 $_{5+3-1}C_5 = 21$





Counting Problems **Example 5**

- How many ways are there to pack 6 copies of the same book into 4 identical boxes, where a box can contain as many as six books?
- By listing all the possibilities

6,	0,	0	, 0	З,	З,	0,	0
5,	1,	0,	0	З,	2,	1,	0
4,	2,	0,	0	З,	1,	1,	1
4,	1,	1,	0	2,	2,	2,	0
				2,	2,	1,	1

There are 9 ways

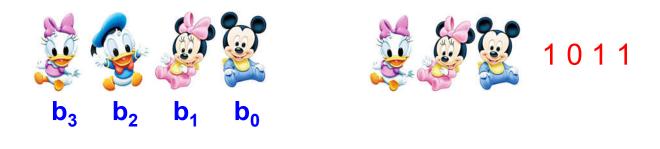
37

Generating Permutations & Combinations

- Sometimes permutations or combinations need to be generated but not just counted
 - E.g. all 3-combination for the set {*a*, *b*, ..., *e*}
 - {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, …
- How can we systemically generate all the combinations of the elements of a finite set?

Generating Combinations

- Recall that the bit string representation corresponding to a subset
 - For *k*th position:
 - 1 : a_k is in the subset
 - 0 : a_k is not in the subset



Generating Combinations
Next Larger Bit String

 Algorithm: Generating the next bit string (b_{n-1}, b_{n-2}, ..., b₁, b₀), where the current bit string is not equal to 11...11)

2. while
$$b_i = 1$$

2.1
$$D_i = 0$$

2.2 $i = i + 1$

3.
$$b_i = 1$$

Treat it as adding "1" to a binary number

39

Generating Combinations: Next Larger Bit String Example

Find out the next combination using next larger bit string algorithm for 1. i = 0

b₁ **b**₀ \mathbf{b}_2 41

2.1 $b_i = 0$

2.2 i = i + 1

Generating Combinations Next Larger r-combinations

Algorithm: Generating the next larger r-combinations after $\{a_1, a_2, ..., a_r\}$ by given a set {1, 2, 3, ..., *n*} {a₁, a₂} {1, 2, 3, 4} $1_{i} = r$ 2. while $a_i = n - r + i$ locate the last a_i {1, 2} ie $a_i \neq n - r + 1$ 2.1 i = i - 1**{1, 3}** 3. $a_i = a_i + 1$ **{1, 4}** add 1 to a_i 4. for j = i + 1 to r**{2, 3}** From a_{i+1} to a_r Assign new values {2, 4} 4.1 $a_i = a_i + j - i$ **{3, 4}**

Generating Combinations Example 1

- Find the next larger 4-combination of the set {1, 2, 3, 4, 5, 6} after {1, 2, 5, 6}
- 1. i = r2. while $a_i = n - r + i$ 2.1 i = i - 13. $a_i = a_i + 1$ 4. for j = i + 1 to r4.1 $a_i = a_i + j - i$

•
$$a_1 = 1, a_2 = 2, a_3 = 5, \text{ and } a_4 = 6$$

- The last a_i such that $a_i \neq n r + 1$ is a_2 (*i* = 2)
- Next larger 4-combination

•
$$a_2 = a_2 + 1 = 2 + 1 = 3$$

•
$$a_3 = a_2 + j - i = 3 + 3 - 2 = 4$$

- $a_3 a_2 + j i = 3 + 3 2 = 4$ $a_4 = a_2 + j i = 3 + 4 2 = 5$
- Hence : {1, 3, 4, 5}

 $a_4 = 6 = 6 - 4 + 4$ $a_3 = 5 = 6 - 4 + 3$ $a_2 = 2 \neq 6 - 4 + 2$

43

Generating Combinations Example 2

- List all 3-combination for the set {a, b, ..., e}
 - Assume $\{a, b, ..., e\} = \{1, 2, ..., 5\}$
 - For all $\{a_1, a_2, a_3\}$

1.
$$\{a, b, c\}$$
6. $\{a, d, e\}$ 2. $\{a, b, d\}$ 7. $\{b, c, d\}$ 3. $\{a, b, e\}$ 8. $\{b, c, e\}$ 4. $\{a, c, d\}$ 9. $\{b, d, e\}$ 5. $\{a, c, e\}$ 10. $\{c, d, e\}$

1.
$$i = r$$

2. while $a_i = n - r + i$
2.1 $i = i - 1$
3. $a_i = a_i + 1$
4. for $j = i + 1$ to r
4.1 $a_j = a_i + j - i$

Generating Permutations

- Any set can be placed in one-to-one correspondence with the set {1, 2, 3, ..., n}
 - The permutations of any set of n elements can be listed by generating the permutations of the n smallest positive integers
- The algorithms based on the lexicographic (or dictionary) ordering is discussed

Generating Permutations

Ì	Algorithm: Generating the next permutation of $(a_1, a_2,, a_n)$ in Lexicographic Order by given permutation is $\{1, 2,, n\}$, where $(a_1, a_2,, a_n)$ is not equal to $(n, n-1,, 2, 1)$								
	1. $j = n - 1$								
	, , , , , , , , , , , , , , , , , , ,	$\{a_1, a_2, a_3\}$							
	2.1 $j := j - 1$ with $a_j < a_{j+1}$	{1, 2, 3}							
	3. $k = n$								
	4. while $a_j > a_k$ k is the largest subscript	{1, 2, 3}							
	4.1 $k = k - 1$ with $a_j < a_k$	{1, 3, 2}							
	5. interchange a_i and a_k	1 , 3 , 2							
	6. $r = n$	{2 , 1, 3 }							
	7. $s = j + 1$ Sort the number	{2, 3, 1}							
	8. while $r > s$ after the <i>j</i> th								
	8.1 interchange a_r and a_s position in	{3, 1, 2}							
	8.2 $r = r - 1$ and $s = s + 1$ ascending order	{3, 2, 1}							
		ری, ۷, ۱۶							

Generating Permutations Example

- What is the next permutation in lexicographic order after 362541?
- The last pair of a_j and a_{j+1} where $a_j < a_{j+1}$ is $a_3 = 2$ and $a_4 = 5$
- The least integer to the right of 2 that is greater than 2 is a_s = 4
- Exchange a_i and a_s
 - Hence, 4 is placed in the third position
- 5, 2, 1 are placed in order in the last three positions
- Hence, the next permutation is 364125

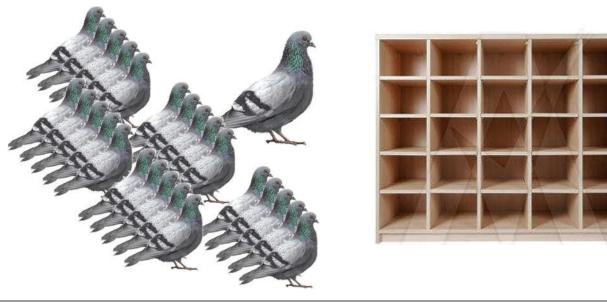
- How can we list all r-permutations from a set {1, 2, 3, ..., n}? r-combination
- Use "next larger r-combinations" lists all r-combinations
- For each r-combination, use n-permutation to list all permutations

ermutations	s from a
r-combination {a ₁ , a ₂ , a ₃ } {1, 2, 3, 4}	n-permutation
<pre>{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}</pre>	<pre>{1, 2, 3} {1, 3, 2} {2, 1, 3} {2, 3, 1} {3, 1, 2} {3, 2, 1}</pre>

47

Pigeonhole Principle

- Suppose that a flock of 26 pigeons flies into a set of 25 pigeonholes to roost
- What can we conclude?



Pigeonhole Principle

- A least one of these 25 pigeonholes must have at least two pigeons in it
 - Because there are 26 pigeons but only 25 pigeonholes
- This is
 <u>Pigeonhole Principle</u>

49

Pigeonhole Principle

Pigeonhole Principle

If k is a positive integer and k + 1 or more objects are placed into k boxes, then there is at least one box containing two or more of the objects

 Also called the Dirichlet Drawer Principle the nineteenth-century German mathematician Dirichlet

• Proof by contraposition $(p \rightarrow q \equiv \neg q \rightarrow \neg p)$

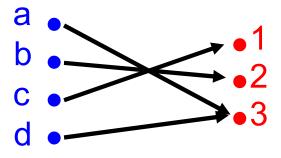
- Suppose that none of the k boxes contains more than one object
- Then the total number of objects would be at most k
- This is a contradiction

51

Pigeonhole Principle

Corollary

A function f from a set with k + 1 or more elements to a set with k elements is <u>not</u> oneto-one



Pigeonhole Principle

Example 1

How many words we should have if there must be at least two that begin with the same letter?

 27 English words, because 26 letters in the English alphabet

Example 2

How many people we should have if there must be at least two with the same birthday?

367 people because 366 possible birthdays

53

Generalized Pigeonhole Principle

- Pigeonhole Principle states that if k + 1 or more objects are placed into k boxes, then there is at least one box containing two or more of the objects
- How about if we have
 - 2k + 1 objects?
 - 3k + 2 object?
 - nk + 1 object?

Generalized Pigeonhole Principle

Generalized Pigeonhole Principle If N objects are placed into k boxes, then there is at least one box containing at least N/k objects

Proof by Contradiction

- Suppose that none of the boxes contains more than
 N/k 1 objects
- The total number of objects is at most

$$k\left(\left\lceil\frac{N}{k}\right\rceil - 1\right) < k\left(\left(\frac{N}{k} + 1\right) - 1\right) = N \qquad \left\lceil N/k \right\rceil < (N/k) + 1$$

This is a contradiction because there are a total of N objects

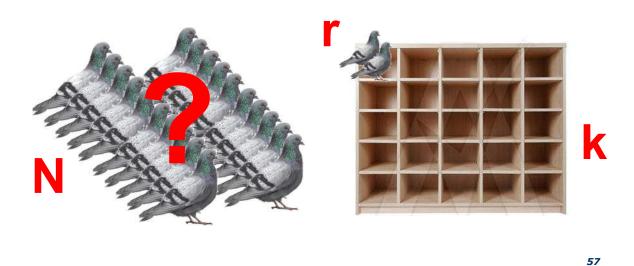
55

Generalized Pigeonhole Principle

 A common type of problem <u>asks for the</u> <u>minimum number of objects</u> such that at least r of these objects must be in one of k boxes when these objects are distributed among the boxes

Generalized Pigeonhole Principle

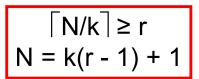
- According to generalized pigeonhole principle, when we have N objects, there must be at least r objects in one of the k boxes as long as N/k ≥ r
 - N, where N = k(r 1) + 1, is the smallest integer satisfying N/k ≥ r



Generalized Pigeonhole Principle

- [N/k] ≥ r, N = k(r 1) + 1, is the smallest integer satisfying [N/k] ≥ r
- Could a smaller value of N suffice?
- No
 - If k(r 1) objects
 - We could put r 1 of them in each of the k boxes
 - No box would have at least r objects

Generalized Pigeonhole Principle **Example 1**



- How many people out of 100 people were born in the same month?
- N = 100
- k = 12
- r = ?
- Image: 100/12 = 9 who were born in the same month

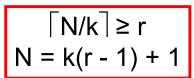
59

Generalized Pigeonhole Principle Example 2

「N/k ≥ r N = k(r - 1) + 1

- What is the least number of area codes needed to guarantee that the 25 million phones in a state can be assigned distinct 10-digit telephone numbers?
- Assume that telephone numbers are of the form NXX-NXX-XXXX, where the first three digits form the area code, N represents a digit from 2 to 9 inclusive, and X represents any digit.
- Different phone numbers for NXX-XXXX is 8 x 10⁶ = 8,000,000
- N = 25,000,000, k = 8,000,000
- At least [25,000,000 / 8,000,000] = 4 of them must have identical phone numbers
- Hence, at least four area codes are required

Generalized Pigeonhole Principle **Example 3**

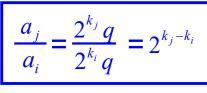


- Show that among any n + 1 positive integers not exceeding 2n there must be an integer that divides one of the other integers
- Assume we have n + 1 integers $a_1, a_2, ..., a_{n+1}$

• Let
$$a_j = 2^{k_j} q_j$$
 for $j = 1, 2, ..., n + 1$,

```
where k_j is a nonnegative integer and q_1, q_2, ..., q_{n+1} are all odd positive integers less than 2n
```

- According to pigeonhole principle, because only n odd positive integers less than 2n, two of the integers q₁, q₂, ..., q_{n+1} must be equal
- Let q be the common value of q_i and q_j , then, $a_i = 2^{k_i} q$ and $a_j = 2^{k_j} q$
- It follows that if $k_i < k_j$, then a_i divides a_j ; otherwise a_j divides a_i



61

Applications: Subsequence

- Suppose that a₁, a₂, ..., a_N is a sequence of real numbers.
- A subsequence of this sequence is a sequence of the form a_{i1}, a_{i2},..., a_{im} where 1 < i1 < i2 < ... < im < N

Applications: Subsequence **Example**

• Example:

- *a*₁ , *a*₂, ..., *a*₅ = 5, 8, 2, 3, 1
- 5, 3, 1 is a subsequence? a_1, a_4, a_5
- 8, 1 is a subsequence? a_2, a_5
- 2, 3, 5, 8 is a subsequence? a_3, a_4, a_1, a_2

Applications: Subsequence

- A sequence is called strictly increasing if each term is larger than the one that precedes it
- A sequence is called strictly decreasing if each term is smaller than the one that precedes it

Applications: Subsequence

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 that is either strictly increasing or strictly decreasing

- Example
 - Given a sequence: 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 10 term = 3² + 1
 - What is the length of the longest in / decreasing subsequences? n+1 = 4
 - - **1**, 4, 6, **1**2 1, 4, 6, 7 **1**, 4, 6, 10

1, 4, 5, 7

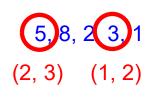
Increasing sequence • Decreasing sequence **11.9.6.5**

65

Applications: Subsequence Proof

- Let $a_1, a_2, \dots, a_{n^2+1}$ be a sequence of $n^2 + 1$ distinct real numbers
- Associate an ordered pair (i_k, d_k) to the term a_k , where
 - ik is the length of the longest increasing subsequence starting at a_k
 - d_k is the length of the longest decreasing subsequence starting at ak

Applications: Subsequence **Proof**



- Suppose no increasing or decreasing subsequences is longer than n
- i_k and d_k are both positive integers less than or equal to n, for k = 1, 2, ..., n² + 1
- By the product rule, n² possible ordered pairs for (i_k, d_k)
- By the pigeonhole principle two of n² + 1 ordered pairs are equal
- Therefore, there exist terms a_s and a_t, with s < t such that i_s = i_t and d_s = d_t

Applications: Subsequence **Proof**

There exist terms a_s and a_t , with s < t such that $i_s = i_t$ and $d_s = d_t$

- We will show that this is impossible
- Because the terms of the sequence are distinct, either a_s < a_t or a_s > a_t
- If a_s < a_t, then, because i_s = i_t, an increasing subsequence of length i_t + 1 can be built starting at a_s, by taking as followed by an increasing subsequence of length it beginning at a_t

This is a contradiction

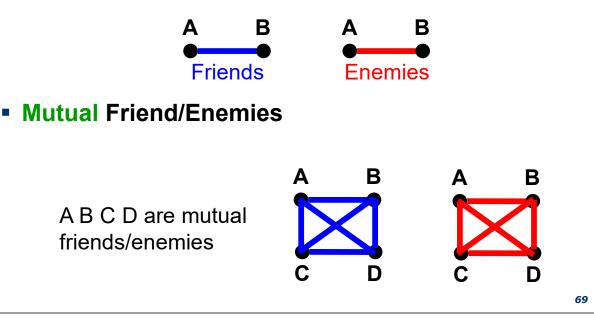
Similarly, if a_s > a_t, it can be shown that d_s must be greater than d_t, which is a contradiction

67

..., a_s, ..., a_t, ...

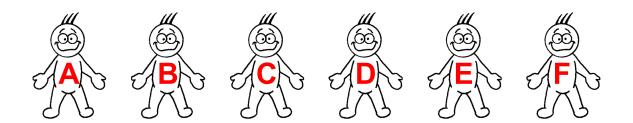
Applications: Ramsey Theory

- Ramsey theory, after the English mathematician F. Ramsey, deals with the distribution of subsets of elements of sets
 - Two people either friends or enemies



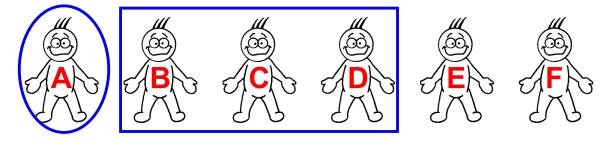
Applications: Ramsey Theory **Example 1**

- Assume that in a group of six people
- Show that there are either three mutual friends or three mutual enemies in the group



Applications: Ramsey Theory Example 1

- Let A be one of the six people
- According to pigeonhole principle (5/2 = 3), A at least has three friends, or three enemies
- Former Case: suppose that B, C, and D are friends
 - If any two of these three people are friends, then these two and A form a group of three mutual friends
 - Otherwise, B, C, and D form a set of three mutual enemies
- Similar to the latter case



71

Applications: Ramsey Theory

Ramsey number R(m, n)

- The minimum number of people at a party such that there are either m mutual friends or n mutual enemies, assuming that every pair of people at the party are friends or enemies
- m and n are positive integers greater than or equal to 2
- Example
 - What is R(3, 3)?
 - Answer should be 6
 - In a group of five people where every two people are friends or enemies, there may not be three mutual friends or three mutual enemies

Applications: Ramsey Theory

 5 people cannot guarantee having 3 mutual friends/enemies

