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Why Counting?

 The brute force attack is the most common way 
(time consumed but effective) in hacking

 How security of your password?

 5 digits at most

 Each digit either 
0-9, a-z or A-Z

 How many times a hacker
need to try in the worst 
situation?
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Why Counting?

 Counting problems arise throughout 
mathematics and computer science

 For example

 the number of experiment outcomes

 the number of operations in an algorithm 
(time complexity)
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Basic Counting Principle

 Multiplication / Addition Principle

 Inclusion-Exclusion Principle

 Permutation / Combination
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Basic Counting Principles

Multiplication (Product) Rule

 If a task can be constructed in t successive 
steps and step i can be done in ni ways, 
where i = 1…t, then the number of different 
possible ways is n1 x n2 x ...x nm
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Basic Counting Principles

Addition (Sum) Rule

 If a task can be done in one of n1 ways, in 
one of n2 ways, ... , or in one of nm ways, 
where all sets of nj ways are disjoint, then the 
number of ways is n1 + n2 + … + nm
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 How many emails are sent after 4 iterations?
 1st iteration:
 2nd iteration:
 3rd iteration:
 4th iteration:

Basic Counting Principles: Multiplication/Addition Principle 

Example 1
 In 1999, a virus named “Melissa” is 

created by David L. Smith based on a 
Microsoft Word macro

 Melissa sends an email "Here is that 
document you asked for, don't show it 
to anybody else." to the top 50 people
in the address book

6,377,551

1
1 x 50 = 50
50 x 50 = 2,500
2500 x 50 = 6,250,000

(By Multiplication Rule)

(By Addition Rule)
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Basic Counting Principles: Multiplication/Addition Principle 

Example 2

 A programming language Beginner's All-

purpose Symbolic Instruction Code (BASIC)

 GW-BASIC (1986) in MS-DOS
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Basic Counting Principles: Multiplication/Addition Principle 

Example 2

 In BASIC, the requirements of a variable name

 A string of 1 or 2 alphanumeric characters 
(a-z or 0-9)

 Begin with a letter

 Uppercase and lowercase letters are not
distinguished

 Different from the 5 strings of two characters that 
are reserved

 How many different variable names are there 
in this version of BASIC?
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Basic Counting Principles: Multiplication/Addition Principle 

Example 2

 Number of variables names containing 1 character (V1)
 V1 = 26, because a one-character variable name must be a 

letter 

 Number of variables names containing 2 characters (V2)
 For V2, by the product rule there are 26 x 36 strings of length 

two that begin with a letter and end with an alphanumeric 
character

 However, five of these are excluded, V2 = 26 x 36 – 5 = 931

 Total number is V1 + V2 = 26 + 931 = 957

 A string of 1 or 2 alphanumeric characters (number & letter)
 Begin with a letter 
 Uppercase and lowercase letters are not distinguished
 Different from the 5 strings of two characters that are reserved
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Basic Counting Principles:

Inclusion-Exclusion Principle
 Suppose that a task can be done in A or in B ways 

 But some of the set of A ways to do the task are the 
same as some of the B ways to do the task

 Avoid the overcount

| A U B | = | A | + | B | - | A ∩ B |

BA BA

overcount
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Basic Counting Principles: Inclusion-Exclusion Principle

Example 1

 How many bit strings of length 8, either start with a 1 bit
or end with the two bits 00? 

 Start with 1: 27 = 128 ways

 End with 00: 26 = 64 ways

 Some of these strings are the same

 The bit strings of length eight start with 

a 1 bit and end with the two bits 00 

 25 = 32 

 128 + 64 - 32 = 160
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Basic Counting Principles: Inclusion-Exclusion Principle

Example 2
 A computer company receives 350 applications

 Suppose that 
 220 majored in computer science
 147 majored in business
 51 majored both in computer science and in business

 How many of these applicants majored neither in 
computer science nor in business? 

 Let A1 : the set of students majored in computer science

A2 : the set of students majored in business

 | A1 U A2 |

 350 - 316 = 34 of the applicants majored neither in computer 
science nor in business

= 220 + 147 - 51 = 316 = | A1 | + | A2 | - | A1 ∩ A2 |
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 A permutation of a set of distinct
n objects is an ordered arrangement
of these objects 

 General Case
The ordering of r elements selected from n distinct
elements is called r-permutation

Basic Counting Principles

Permutation 
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Basic Counting Principles

Combination 

 The unordered selection of r elements from n 
distinct elements is called r-combination

 It is a subset of the set with r elements
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Basic Counting Principles

Combination

 C(n, r) = C(n, n - r)

 Algebraic Proof
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 Using combinatorial proof for 
C(n, r) = C(n, n - r)
Suppose that S is a set with n 
elements. 
Every subset A of S with r 
elements corresponds to a 
subset of S with n - r elements, 
namely A Consequently, 
C(n, r) = C(n, n - r)

Basic Counting Principles

Combination
 Combinatorial proof

 Using counting arguments to prove that both sides of 
the identity count the same objects but in different ways

nCr nCn-r

A A

… …

=
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Basic Counting Principles

Permutation / Combination

 Proof
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Basic Counting Principles: Permutation / Combination 

Example

 Your class has 10 students. How many 
different ways the committee can be set up:

1. A committee of four 

2. A committee of four and 

one person is to serve as chairperson

3. A committee of four and 

two co-chairpersons

4. Two committees: 

 One with four members with two co-chairs 

 One with three members and a single chair

10C4

10C4· 4C1

10C4· 4C2

10C4· 4C2 · 10C3· 3C1
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Combinatorial Proof Example 1

Pascal's Identity and Triangle
 Pascal’s Identity

Let n and k be positive integers with n ≥ k. Then 
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12C Pascal's triangle
A geometric arrangement of the 
binomial coefficients in a 
triangle
 binomial coefficient is the sum of 

two adjacent binomial coefficients
in the previous row
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Combinatorial Proof Example 1

Pascal's Identity and Triangle
 Proof

 Suppose T is a set containing n + 1 elements

 Let a be an element in T, and let S = T - {a}

 There are n+1Ck subsets of T containing k elements

 n+1Ck subsets contains either

 k - 1 elements of S and a, or

 k elements of S and not a

 Therefore, n+1Ck = nCk-1 + nCk

(nCk-1)

(nCk)

T =

a = S = 

… …

a nCk

n+1Ck = nCk-1 + nCk

nCk-1

n+1Ck
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Combinatorial Proof Example 2 

Vandermonde’s Identity
 Theorem: Vandermonde’s Identity

 Let m, n, and r be nonnegative integers with r
not exceeding either m or n. Then 
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Combinatorial Proof Example 2 

Vandermonde’s Identity
 Proof

 Suppose: m items in a first set and n items in a second set

 The total number of ways to pick r elements from the union
of these sets is m+nCr

 Another way is to pick k elements from the first set and then 
r - k elements from the second set, where k is an integer 
with 0 ≤ k ≤ r 
 There are mCr · nCr-k ways

 Therefore,
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mCr-k ∙ nCk

mC0 ∙ nC2

mC1 ∙ nC1

mC2 ∙ nC0
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Combinatorial Proof Example 3 

Theorem of Binomial Coefficients

 Theorem
Let n and r be nonnegative integers with r ≤ n. 
Then 
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Combinatorial Proof Example 3 

Theorem of Binomial Coefficients
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00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

11000 01100
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4+1C1+1 1C1 2C1 3C1 4C1

consider the possible locations of the final 1
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Combinatorial Proof Example 3 

Theorem of Binomial Coefficients
 Proof: 

 Consider n+1Cr+1 counts the bit strings of length n + 
1 containing r + 1 ones

 Another counting way is to consider the possible 
locations, named k, of the final 1

 k should equal to r + 1, r + 2, . . ., or n + 1
 r+1 ≤ k ≤ n+1

010100110...0

n+1 bits

contain r+1 1s

01110...10100

k-1 bits contain r 1s

k
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 Consider the first k-1 bits

 In this k-1 bits, there should be r 1s

 There are k-1Cr ways

 Recall, r+1 ≤ k ≤ n+1

Combinatorial Proof Example 3 

Theorem of Binomial Coefficients

01110...10100

k-1 bits contain r 1s
k
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Counting Problems

 How to apply what you have learn to solve 
the counting problems?

 Multiplication / Addition Principle

 Inclusion-Exclusion Principle

 Permutation / Combination

 List all the possibilities
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 Many counting problems can be treated as 
the ways objects can be placed into boxes

Counting Problems

Distinguishable
(labeled)

Indinguishable
(unlabeled)

Distinguishable
(labeled)

Indinguishable
(unlabeled)Objects

Boxes



Counting Problems

 General Algorithm

 First check whether “Permutation / Combination” can 
be applied, otherwise, you need to “List all the 
possibilities”

 Try to break down the problem into a subpart by using 
“Multiplication / Addition Principle” and “Inclusion-
Exclusion Principle”
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Counting Problems

Example 1
 There are five students (A, B, C, D & E)

How many ways are there to arrange them:

 into 5 seats?

 into 5 seats and A and B 
sit next to each other?

 into 5 seats and A and B 
not sit next to each other?

 into a round table?
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2 x 4!

5!

5! / 5 (each pattern counts 
5 times)

(AB and BA)

5! - 2 x 4!



Counting Problems

Example 2
 How many ways to put 3 apples, 2 oranges 

and 1 banana to 3 indistinguishable boxes 
and each box contains 2 items?

33

3
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Counting Problems

Example 3
 How many ways are there to select 5 bills from a 

cash box containing $1 bills, $2 bills, $5 bills, $10 
bills, $20 bills, $50 bills, and $100 bills? 

Assume:
 Order of selecting does not matter
 Bills of each denomination are indistinguishable
 At least five bills of each type
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Counting Problems

Example 3

100 150 20 10 5 2
Bill Bill

Bill

Bill Bill

*||**|*|||*

7 - 1 = 6 bars (lines between 7 boxes)

5 stars (5 bills)

Total, 11 characters
11C5 = 11! / (5!6!) = 462

100 150 20 10 5 2

100 150 20 10 5 2

***||*||||*

||*|*|*|*|*

Select five bills from $1, $2, $5, $10, $20, $50 and $100

Counting Problems

Example 4
 How many solutions does the equation 

x1 + x2 + x3 = 11 have? 

 where x1, x2, and x3

are nonnegative integers.

 where x1, x2, and x3 integers 
and x1 ≥ 1, x2 ≥ 2, and x3 ≥ 3.

x1 x2 x3

x1 x2 x3

unmovable

11+3-1C11 = 78

5+3-1C5 = 21

n = 3, r = 11

n =3, r = 11 – 6 = 5
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Counting Problems

Example 5
 How many ways are there to pack 6 copies of 

the same book into 4 identical boxes, where a 
box can contain as many as six books?

 By listing all the possibilities

 There are 9 ways

6, 0, 0 ,0
5, 1, 0, 0 
4, 2, 0, 0 
4, 1, 1, 0 

3, 3, 0, 0 
3, 2, 1, 0 
3, 1, 1, 1 
2, 2, 2, 0 
2, 2, 1, 1
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Generating 
Permutations & Combinations

 Sometimes permutations or combinations 
need to be generated but not just counted

 E.g. all 3-combination for the set {a, b, …, e}

 {a, b, c},  {a, b, d},  {a, b, e},  {a, c, d}, …

 How can we systemically generate all the 
combinations of the elements of a finite set?
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Generating Combinations

 Recall that the bit string representation 
corresponding to a subset

 For kth position:

 1 : ak is in the subset

 0 : ak is not in the subset

1 0 1 1

b3 b2 b1 b0
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Generating Combinations

Next Larger Bit String

 Algorithm: Generating the next bit string
(bn-1, bn-2, ..., b1, b0), where the current bit 
string is not equal to 11...11) 

1. i = 0

2. while bi = 1 

2.1 bi = 0 

2.2 i = i + 1 

3. bi = 1 

 Treat it as adding “1” to a binary number
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Generating Combinations: Next Larger Bit String 

Example

 Find out the next combination using next 
larger bit string algorithm for

 Next:

1. i = 0

2. while bi = 1 

2.1 bi = 0 

2.2 i = i + 1 

3. bi = 1 

b3 b2 b1 b0

1 0 1 1

1 1 0 0
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 Algorithm: Generating the next larger r-
combinations after {a1, a2, …, ar} by given a 
set {1, 2, 3, . . . , n}

1. i = r

2. while ai = n - r + i

2.1 i = i - 1 

3. ai = ai + 1 

4. for j = i + 1 to r

4.1 aj = ai + j - i

Generating Combinations

Next Larger r-combinations

locate the last ai

ie ai ≠ n - r + 1

From ai+1 to ar

Assign new values

add 1 to ai

{1, 2, 3, 4}
{a1, a2}

{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}
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Generating Combinations

Example 1
 Find the next larger 4-combination

of the set {1, 2, 3, 4, 5, 6} 
after {1, 2, 5, 6}

 a1 = 1, a2 = 2, a3 = 5, and a4 = 6

 The last ai such that ai ≠ n - r + 1 is a2

 Next larger 4-combination
 a2

 a3

 a4

 Hence : {1, 3, 4, 5}

a4 = 6

a3 = 5

a2 = 2

= 6 - 4 + 4

= 6 - 4 + 3

≠ 6 - 4 + 2

= a2 + 1

= a2 + j – i

= a2 + j – i

= 2 + 1 = 3

= 3 + 3 – 2 = 4

= 3 + 4 – 2 = 5

1. i = r

2. while ai = n - r + i
2.1 i = i - 1 

3. ai = ai + 1 

4. for j = i + 1 to r
4.1 aj = ai + j - i

(i = 2)
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Generating Combinations

Example 2

 List all 3-combination for the set {a, b, …, e}

 Assume {a, b, …, e} = {1, 2, …, 5}

 For all {a1, a2, a3}

1. {a, b, c}

2. {a, b, d}

3. {a, b, e}

4. {a, c, d}

5. {a, c, e}

6. {a, d, e}

7. {b, c, d}

8. {b, c, e}

9. {b, d, e}

10.{c, d, e}

1. i = r

2. while ai = n - r + i
2.1 i = i - 1 

3. ai = ai + 1 

4. for j = i + 1 to r
4.1 aj = ai + j - i
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Generating Permutations

 Any set can be placed in one-to-one 
correspondence with the set {1, 2, 3, ..., n}

 The permutations of any set of n elements can 
be listed by generating the permutations of the 
n smallest positive integers 

 The algorithms based on the lexicographic 
(or dictionary) ordering is discussed
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Generating Permutations
 Algorithm: Generating the next permutation of (a1, a2, ..., an)

in Lexicographic Order by given permutation is {1, 2, ..., n}, 
where (a1, a2, ..., an) is not equal to (n, n-1, ..., 2, 1) 
1. j = n – 1 
2. while aj > aj+1

2.1 j := j – 1 
3. k = n
4. while aj > ak

4.1 k = k – 1 
5. interchange aj and ak

6. r = n
7. s = j + 1 
8. while r > s

8.1 interchange ar and as

8.2 r = r – 1 and s = s + 1 

j is the largest subscript 
with aj < aj+1

k is the largest subscript 
with aj < ak

Sort the number 
after the jth

position in 
ascending order 

{1, 2, 3}
{a1, a2 , a3}

{1, 2, 3}

{1, 3, 2}

{2, 1, 3}

{2, 3, 1}

{3, 1, 2}

{3, 2, 1}
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Generating Permutations

Example
 What is the next permutation in lexicographic order 

after 362541? 

 The last pair of aj and aj+1 where aj < aj+1 is 

 The least integer to the right of 2 that is greater than 
2 is

 Exchange aj and as
 Hence, 4 is placed in the third position

 5, 2, 1 are placed in order in the last three positions

 Hence, the next permutation is 364125

a3 = 2 and a4 = 5

as = 4
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Generating Permutations 

r-Permutations

 How can we list all r-permutations from a 
set {1, 2, 3, . . . , n}?

1. Use “next larger 
r-combinations” lists 
all r-combinations

2. For each r-combination, 
use n-permutation to list 
all permutations

{1, 2, 3, 4}

{a1, a2 , a3}

{1, 2, 3}

{1, 3, 4}

{1, 2, 4}

{2, 3, 4}

{1, 2, 3}

{1, 3, 2}

{2, 1, 3}

{2, 3, 1}

{3, 1, 2}

{3, 2, 1}

r-combination

n-permutation



49

Pigeonhole Principle

 Suppose that a flock of 26 pigeons flies into a 
set of 25 pigeonholes to roost

 What can we conclude?
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Pigeonhole Principle

 A least one of these 25 pigeonholes must 
have at least two pigeons in it

 Because there are 26 pigeons but only 25 
pigeonholes

 This is 
Pigeonhole Principle
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Pigeonhole Principle

 Pigeonhole Principle
If k is a positive integer and k + 1 or more objects
are placed into k boxes, then there is at least one
box containing two or more of the objects
 Also called the Dirichlet Drawer Principle

the nineteenth-century German mathematician Dirichlet

 Proof by contraposition (p  q  q  p)
 Suppose that none of the k boxes contains more than 

one object

 Then the total number of objects would be at most k

 This is a contradiction
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Pigeonhole Principle

 Corollary
A function f from a set with k + 1 or more 
elements to a set with k elements is not one-
to-one

a
b
c
d

1
2
3
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Pigeonhole Principle

 Example 1
How many words we should have if there must be 
at least two that begin with the same letter?

 27 English words, because 26 letters in the English 
alphabet

 Example 2
How many people we should have if there must be
at least two with the same birthday?

 367 people because 366 possible birthdays
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Generalized Pigeonhole Principle

 Pigeonhole Principle states that if k + 1 or 
more objects are placed into k boxes, then 
there is at least one box containing two or 
more of the objects

 How about if we have 

 2k + 1 objects? 

 3k + 2 object?

 nk + 1 object?
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Generalized Pigeonhole Principle

 Generalized Pigeonhole Principle
If N objects are placed into k boxes, then there is at 
least one box containing at least N/k objects

 Proof by Contradiction
 Suppose that none of the boxes contains more than 
N/k - 1 objects

 The total number of objects is at most

 This is a contradiction because there are a total of N 
objects















1

k

N
k 
















 11

k

N
k N N/k < (N/k) + 1
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Generalized Pigeonhole Principle

 A common type of problem asks for the
minimum number of objects such that at least 
r of these objects must be in one of k boxes
when these objects are distributed among the 
boxes
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Generalized Pigeonhole Principle

 According to generalized pigeonhole principle, 
when we have N objects, there must be at least r 
objects in one of the k boxes as long as N/k ≥ r
 N, where N = k(r - 1) + 1, is the smallest integer

satisfying N/k ≥ r

N

r

k
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Generalized Pigeonhole Principle

 N/k ≥ r, N = k(r - 1) + 1, is the smallest 
integer satisfying N/k ≥ r

 Could a smaller value of N suffice?

 No

 If k(r - 1) objects

 We could put r - 1 of them in each of the k 
boxes 

 No box would have at least r objects
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Generalized Pigeonhole Principle

Example 1
 How many people out of 100 people were 

born in the same month?

 N = 100

 k = 12

 r = ?

 100/12 = 9 who were born in the same 
month

N/k ≥ r
N = k(r - 1) + 1
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Generalized Pigeonhole Principle

Example 2
 What is the least number of area codes needed to guarantee 

that the 25 million phones in a state can be assigned distinct 
10-digit telephone numbers?

 Assume that telephone numbers are of the form NXX-NXX-
XXXX, where the first three digits form the area code, N
represents a digit from 2 to 9 inclusive, and X represents any 
digit.

 Different phone numbers for NXX-XXXX is 
8 x 106 = 8,000,000

 N = 25,000,000, k = 8,000,000

 At least 25,000,000 / 8,000,000 = 4 of them must have 
identical phone numbers

 Hence, at least four area codes are required

N/k ≥ r
N = k(r - 1) + 1
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 Show that among any n + 1 positive integers not exceeding 
2n there must be an integer that divides one of the other 
integers

 Assume we have n + 1 integers a1, a2, ..., an+1

 Let                   for j = 1, 2, . . . , n + 1, 

where kj is a nonnegative integer and 
q1, q2, ..., qn+1 are all odd positive integers less than 2n

 According to pigeonhole principle, because only n odd 
positive integers less than 2n, two of the integers q1, q2, ..., 
qn+1 must be equal

 Let q be the common value of qi and qj, then,                 and 

 It follows that if ki < kj, then ai divides aj; 
otherwise aj divides ai

Generalized Pigeonhole Principle

Example 3

j

k

j qa j2

qa ik
i 2

qa jk

j 2

N/k ≥ r
N = k(r - 1) + 1

ia
ja qjk

2

qik2
= = ij kk 

2

62

Applications: Subsequence

 Suppose that a1, a2, ..., aN is a sequence of 
real numbers. 

 A subsequence of this sequence is a 
sequence of the form 
where 1 < i1 < i2 < ... < im < N

miii aaa ,...,,
21
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Applications: Subsequence

Example
 Example:

 a1 , a2, ..., a5 = 5, 8, 2, 3, 1

 5, 3, 1 is a subsequence?

 8, 1 is a subsequence?

 2, 3, 5, 8 is a subsequence?






a1, a4, a5

a2, a5

a3, a4 , a1, a2
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Applications: Subsequence

 A sequence is called strictly increasing if 
each term is larger than the one that 
precedes it

 A sequence is called strictly decreasing if 
each term is smaller than the one that 
precedes it
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Applications: Subsequence

 Theorem
Every sequence of n2 + 1 distinct real numbers
contains a subsequence of length n + 1 that is 
either strictly increasing or strictly decreasing

 Example
 Given a sequence: 8, 11, 9, 1, 4, 6, 12, 10, 5, 7

 10 term = 32 + 1

 What is the length of the longest in / decreasing 
subsequences?

 Increasing sequence
1, 4, 6, 12
1, 4, 6, 7
1, 4, 6, 10
1, 4, 5, 7

 Decreasing sequence
11, 9, 6 ,5

n+1 = 4
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Applications: Subsequence

Proof
 Let                        be a sequence of n2 + 1 distinct 

real numbers

 Associate an ordered pair (ik, dk) to the term ak, 
where 

 ik is the length of the longest increasing subsequence
starting at ak

 dk is the length of the longest decreasing subsequence
starting at ak

121 2,...,,
n

aaa

5,    8,    2,    3,    1

(i1, d1) = (2, 3) (i4, d4) = (1, 2)
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Applications: Subsequence

Proof
 Suppose no increasing or decreasing 

subsequences is longer than n

 ik and dk are both positive integers less than or 
equal to n, for k = 1, 2, . . . , n2 + 1

 By the product rule, 
n2 possible ordered pairs for (ik, dk)

 By the pigeonhole principle
two of n2 + 1 ordered pairs are equal

 Therefore, there exist terms as and at, 
with s < t such that is = it and ds = dt

5, 8, 2, 3, 1

(2, 3) (1, 2)
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Applications: Subsequence

Proof

 We will show that this is impossible

 Because the terms of the sequence are distinct, either
as < at or as > at

 If as < at, then, because is = it, an increasing 
subsequence of length it + 1 can be built starting at as, 
by taking as followed by an increasing subsequence of 
length it beginning at at

 This is a contradiction

 Similarly, if as > at, it can be shown that ds must be 
greater than dt, which is a contradiction

There exist terms as and at, 
with s < t such that is = it and ds = dt

…, as, …, at, …

5, 8, 2, 3, 1

(2, 3) (1, 2)
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Applications: Ramsey Theory

 Ramsey theory, after the English mathematician F. 
Ramsey, deals with the distribution of subsets of 
elements of sets
 Two people either friends or enemies

 Mutual Friend/Enemies

Friends Enemies

A B A B

A B

C D

A B

C D

A B C D are mutual 
friends/enemies
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Applications: Ramsey Theory

Example 1

 Assume that in a group of six people

 Show that there are either three mutual 
friends or three mutual enemies in the group

A B C D E F
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Applications: Ramsey Theory

Example 1
 Let A be one of the six people

 According to pigeonhole principle (5/2 = 3), 
A at least has three friends, or three enemies

 Former Case: suppose that B, C, and D are friends
 If any two of these three people are friends, then these two and A 

form a group of three mutual friends

 Otherwise, B, C, and D form a set of three mutual enemies

 Similar to the latter case

A B C D E F
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Applications: Ramsey Theory

 Ramsey number R(m, n)
 The minimum number of people at a party such that 

there are either m mutual friends or n mutual enemies, 
assuming that every pair of people at the party are 
friends or enemies

 m and n are positive integers greater than or equal to 2

 Example
 What is R(3, 3)? 

 Answer should be 6

 In a group of five people where every two people are 
friends or enemies, there may not be three mutual friends 
or three mutual enemies
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Applications: Ramsey Theory

 5 people cannot guarantee having 3 mutual 
friends/enemies

C

B

A

DE


