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Why Counting?

The brute force attack is the most common way
(time consumed but effective) in hacking

How security of your password?

= 5 digits at most

= Each digit either
0-9, a-zor A-Z

How many times a hacker
need to try in the worst
situation?

Why Counting?

Counting problems arise throughout
mathematics and computer science
= For example

the number of experiment outcomes

the number of operations in an algorithm
(time complexity)



Basic Counting Principle
Multiplication / Addition Principle

Inclusion-Exclusion Principle

Permutation / Combination

Basic Counting Principles

Multiplication (Product) Rule

If a task can be constructed in t successive

steps and step i can be done in n, ways,
where i = 1...t, then the number of different

possible waysisn,x n,x..xn,




Basic Counting Principles

Addition (Sum) Rule

If a task can be done in one of n, ways, in
one of n, ways, ..., or in one of n_ ways,
where all sets of n; ways are disjoint, then the
number of waysisn, +n, + ... + n_

Basic Counting Principles: Multiplication/Addition Principle

Example 1

In 1999, a virus named “Melissa’ is
created by David L. Smith based on a
Microsoft Word macro 1

Melissa sends an email "Here is that |
document you asked for, don't show it ._
to anybody else." to the top 50 people

in the address book

How many emails are sent after 4 iterations?
= 1st jteration: 1 )
= 2nd jteration: 1 x 50 = 50
= 31 jteration: 50 x 50 = 2,500
= 4™ jteration: 2500 x 50 = 6,250,000 P

(By Multiplication Rule)

> 6,377,551

(By Addition Rule)




Basic Counting Principles: Multiplication/Addition Principle

Example 2
A programming language Beginner's All-
purpose Symbolic Instruction Code (BASIC)
GW-BASIC (1986) in MS-DOS

GW-BASIC 3.22
(C) Copyright Microsoft 1983,1984,1985,1986,1987

1@ PRINT "Hello, worldt"”
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Basic Counting Principles: Multiplication/Addition Principle

Example 2

In BASIC, the requirements of a variable name

= A string of 1 or 2 alphanumeric characters
(a-z or 0-9)

= Begin with a letter

= Uppercase and lowercase letters are not
distinguished

= Different from the 5 strings of two characters that
are reserved

How many different variable names are there
in this version of BASIC?
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A string of 1 or 2 alphanumeric characters (hnumber & letter)
Begin with a letter

Uppercase and lowercase letters are not distinguished
Different from the 5 strings of two characters that are reserved

Number of variables names containing 1 character (V,)

= \V, =26, because a one-character variable name must be a
letter

Number of variables names containing 2 characters (V,)

= For V,, by the product rule there are 26 x 36 strings of length

two that begin with a letter and end with an alphanumeric
character

= However, five of these are excluded, V, =26 x 36 — 5 = 931

Total numberis V, +V, = 26 + 931 = 957
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Basic Counting Principles:
Inclusion-Exclusion Principle
Suppose that a task can be done in A or in B ways

But some of the set of A ways to do the task are the
same as some of the B ways to do the task

overcount

A B A B

Avoid the overcount
|AUB|=|A|+|B]|-|ANB|

12



Basic Counting Principles: Inclusion-Exclusion Principle

Example 1

How many bit strings of length 8, either start with a 1 bit
or end with the two bits 00?

Start with 1: 27 = 128 ways !l -

End with 00: 26 = 64 ways —————___00
Some of these strings are the same '
= The bit strings of length eight start with | 0 0
a 1 bit and end with the two bits 00 C————
= 2°=32

128 + 64 - 32 = 160
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Basic Counting Principles: Inclusion-Exclusion Principle

Example 2

A computer company receives 350 applications

Suppose that
= 220 majored in computer science
= 147 majored in business
= 51 majored both in computer science and in business

How many of these applicants majored neither in

computer science nor in business?

Let A, : the set of students majored in computer science
A, : the set of students majored in business

|A;UA | =|A | +]A,|-|ANA,| =220+ 147 -51 =316

350 - 316 = 34 of the applicants majored neither in computer
science nor in business
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Basic Counting Principles

Permutation

A permutation of a set of distinct ’ "p 3\
. . - - \ o
n objects Is an ordered arrangement

of these objects .(Q e .(ﬂ %) 1

\ J \ J \ J \ J

n-m1)-...(nr+t1)-...-1 =nl ~
General Case

The ordering of r elements selected from n distinct
elements is called r-permutation

P =P(n,r)=n(n-1)(n-2)..(n-r+1) =

n!

(n—r)!
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Basic Counting Principles

Combination

The unordered selection of r elements from n
distinct elements is called r-combination

= |t is a subset of the set with r elements

n n!
G =Cmn)= r r'(n r)!

16



Basic Counting Principles

Combination
C(n,r)=C(n,n-r)
Algebraic Proof

n!
Clnr)= rl(n—r)!
B n!
C(n—(n—-r)(n—7r)!
=C(n,n—r)
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Basic Counting Principles

Combination

Combinatorial proof

= Using counting arguments to prove that both sides of
the identity count the same objects but in different ways

= Using combinatorial proof for
C(n,r)=C(n,n-r)
Suppose that S is a set with n
elements.
Every subset A of S with r
elements corresponds to a _
subset of S with n - r elements, 4
namely A Consequently,
C(n,r)=C(n,n-r)




Basic Counting Principles

Permutation / Combma%&

Proof
6
*Q’\ umber of r-permutations ~ Number of r-permutations
2 of n elements of r elements ’\
— —r -%
P(n,r)=C(n,r)-P(r,r)
Number of r-combinations ’-‘;.?".,f
of n elements
@
P(n,r) nl/(n—r)! n! > »

P(r,r) - rr=r)!  rl(n-r)!
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Basic Counting Principles: Permutation / Combination

Example

Your class has 10 students. How many
different ways the committee can be set up:

1. A committee of four ,,C,
2. A committee of fourand .. C, - ,C,
one person is to serve as chairperson

3. A committee of four and

: 10C4 + 4G

two co-chairpersons

4. Two committees: 10Ca * 4Cy + 1oC3- 5C;
One with four members with two co-chairs
One with three members and a single chair

20



Combinatorial Proof Example 1

Pascal's Identity and Triangle

Pascal’s Identity
Let n and k be positive integers with n = k. Then

M e

1
Pascal's triangle G OO
A geometric arrangement of the 1 @ 1
binomial coefficients in a 1 3 3 1
triangle
14641

= binomial coefficient is the sum of
two adjacent binomial coefficients 15 10 10 5 1

in the previous row
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Combinatorial Proof Example 1

Pascal's Identity and Triangle

Proof ,.1Cy = ,Cyq * ,Cy
= Suppose T is a set containing n + 1 elements

" LetabeanelementinT,andletS =T - {a}

= There are .,C, subsets of T containing k elements
= _.1C, subsets contains either

(hCk1) = k - 1 elements of S and a, or
(,C,) = k elements of S and not a
= Therefore, ,,4C,=,C,4+ ,.Cy




Combinatorial Proof Example 2

Vandermonde’'s Identity
Theorem: Vandermonde’s Identity

= Let m, n, and r be nonnegative integers with r

not exceeding either m or n. Then

m+n i m n
r Je=0 r_k k
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Combinatorial Proof Example 2

r

Vandermonde’s IdeT(M"}i

k=0

Proof

i)

= Suppose: m items in a first set and n items in a second set
= The total number of ways to pick r elements from the union

of these sets is ,,,C,

= Another way is to pick k elements from the first set and then

r - k elements from the second set, where k is an integer

withOsk<r :
There are C, - ,C,, ways

n Therefore, 2 - T | 7
r B o\ — k k ’

2+3CZ

mcr-k ) nck

. mCO ) nC2

mC1 ) nC1

mC2 ) nCO
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Combinatorial Proof Example 3

Theorem of Binomial Coefficients

Theorem
Let n and r be nonnegative integers with r < n.
Then

n+1 Z”: J
r+1) Z\r
Combinatorial Proof Example 3 1 .
Theorem of Binomial Coe(" jzz@
r+l) Z\r
4+1C1+1 1C1 2 4C1
00011 l.OOO Ol 00 00LL0 00011
88%2% oo 01010 0010fL
01001 10010 01001
01010 1000]1]
01100
10001 consider the possible locations of the final 1
10010
10100

11000

26



Theorem of Binomial Coc¢

n+1j - Z(Jj
Proof: r+l) S\

Combinatorial Proof Example 3 (

= Consider ,,C,,, counts the bit strings of length n +
1 containing r + 1 ones

010100110...0 containr+11s

7

~~
n+1 bits

= Another counting way is to consider the possible
locations, named k, of the final 1

» kshould equaltor+1,r+2,...,0orn+1
r+1 <k <n+1

01110. 10@00

k-1 bits contaln r1s
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Combinatorial Proof Example 3
Theorem of Binomial Coe(

)2

01110. 10Cﬁo

k-1 bits contaln ris

= Consider the first k-1 bits
In this k-1 bits, there should be r 1s
There are ,_,C, ways
Recall, r+1 < k < n+1

£(-20)

By the change of variables j =k - 1

28



Counting Problems

How to apply what you have learn to solve
the counting problems?

= Multiplication / Addition Principle
= [nclusion-Exclusion Principle

» Permutation / Combination

= List all the possibilities_

Counting Problems o afﬁ

Many counting problems can be treated as
the ways objects can be placed into boxes

DistinguisEable Inin |

Distinguishable
(labeled)

Boxes

(unlabeled)




Counting Problems

i W
General Algorithm

= First check whether “Permutation / Combination” can
be applied, otherwise, you need to “List all the
possibilities”

= Try to break down the problem into a subpart by using
“Multiplication / Addition Principle” and “Inclusion-
Exclusion Principle”

Counting Problems [ ]

Example 1 Eﬁﬁfﬁ
There are five students (A, B, C, D & E)
How many ways are there to arrange them:
= into 5 seats? 5!

= intfo 5seatsand Aand B 2 x 4! (AB and BA)
sit next to each other?

= into 5seatsand Aand B 5! -2 x 4!
not sit next to each other?

= into a round table? 5!/5 (each pattern counts
5 times)
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Counting Problems 47.

Example 2 g TN
How many ways to put 3 apples, 2 oranges
and 1 banana to 3 indistinguishable boxes

and each box contains 2 items?

Counting Problems S
Example 3 ihilkik
How many ways are there to select 5 bills from a

cash box containing $1 bills, $2 bills, $5 bills, $10
bills, $20 bills, $50 bills, and $100 bills?

Assume:
= Order of selecting does not matter
= Bills of each denomination are indistinguishable

= At least five bills of each type

34



Counting Problems 00
Example 3 gEE o

Select five bills from $1, $2, $5, $10, $20, $50 and $100

 —
-
AL
50J20)10) 5121

iallalall B ol B I

100

| —
1

20 10

%* %k | % %*
Rk * \
Y |

7 -1 =06 bars (lines between 7 boxes)
5 stars (5 bills)

II*I*I*I*I*

Total, 11 characters 11Cs =111/ (516!) = 462
Counting Problems 00
Example 4 aﬁgg‘h

How many solutions does the equation
X4 + X, + X3 = 11 have?
= where X4, X,, and X,
are nonnegative integers.
n=3,r=11
11431C11 = 78

= where X4, X,, and X5 integers

and x, 21, x,22,and x; = 3. |O

n=3,r=11-6=5
5+3-1C5 = 21

Il unmovable




Counting Problems

Example 5

How many ways are there to pack 6 copies of
the same book into 4 identical boxes, where a
box can contain as many as six books?

By listing all the possibilities

6, 0, 0 ,0 3, 3, 0, 0
5, 1, 0, O 3, 2,1, 0
4, 2, 0, O 3, 1, 1, 1
4, 1, 1, O 2, 2, 2, 0

2, 2,1, 1

~
~
~

There are 9 ways
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Generating
Permutations & Combinations

Sometimes permutations or combinations
need to be generated but not just counted

= E.g. all 3-combination for the set {q, b, ..., ¢}
={a,b,c}, {a,b,d}, {a, b, e}, {a,c, d} ...

How can we systemically generate all the
combinations of the elements of a finite set?

38



Generating Combinations

Recall that the bit string representation
corresponding to a subset

= For k' position:
= 1:a,is in the subset
= 0 :a,is notin the subset
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Generating Combinations

Next Larger Bit String

Algorithm: Generating the next bit string
(b4, b,.5, ..., by, by), Where the current bit
string is not equal to 11...11)

1.i=0

2. while b, = 1
21 b.=0
22 i=i+1

3. b,=1

Treat it as adding “1” to a binary number

40



Generating Combinations: Next Larger Bit String

Example

Find out the next combination using next
Iarger bit string algorithm for

1. i=0
&')E\;’ - 2. w2h'i1lebib;;1
22i=i+1
3. b =1
Next:
1100 A' (&,)H
?"\t / L_/J “«“‘ "
w{g b3 b, b, bo

41

Generating Combinations

Next Larger r-combinations

Algorithm: Generating the next larger r-
combinations after {a,, a,, ..., a.} by given a

Set {1, 21 3’ LI n} {a15 a2}

1.i=r {1,2,3, 4}

2. whileg;=n-r+i locate the last ¢, {1, 2}
21 i=i-1 e #n-r+1 {1, 3}

3.a;,=a;+1 }add1t0a,- {1, 4}

4. fOFj =i+1tor From a,,, to a, {2, 3}
4.1 a; = q +j-1i Assign new values {2 4}

{3, 4}

42



Generating Combinations

1. i=r

Example 1 2. whilea,=n-r+i
Find the next larger 4-combination |, a2'=1a ’:1’ !
of the set {1, 2, 3, 4, 5, 6} 4 forj=i+1tor
after{1,2, S5, 6} . 41 a;=a,+j-i

a;=1,a,=2,a;=5,and a, =6
The last g, such thata, #n-r+1isa, (i=2)

Next larger 4-combination i =6-6-4+4
.a2=a2+1 =2+ 1 =3 _ _

" a, =a2+j_i=3+3_2 =4 a3—5—6-4+3
"ay =a,+j—-i=3+4-2 =5 a,=2 #6-4+2

Hence : {1, 3, 4, 5}

43

Generating Combinations

Example 2
List all 3-combination for the set {q, b, ..., ¢}
= Assume {a, b, ...,e}={1,2, ..., 5}
= For all {a,, a,, as}

1. i=r
1 {a, b, C} 6. {Cl, d, 8} 2. V\éhi]|e.al.=n1-r+i
di=1-
2 {aa b!d} /. {b’ C’d} 3. aizai+1
3. {a, b, €} 8. {b, ¢, e} 4. forj=i+1tor
4 {a, e dy 9. {b,d, ¢} 41 g =av)e
5. {a, c, e} 10.{c, d, €}

44



Generating Permutations

Any set can be placed in one-to-one
correspondence with the set {1, 2, 3, ..., n}
* The permutations of any set of n elements can

be listed by generating the permutations of the
n smallest positive integers

The algorithms based on the lexicographic
(or dictionary) ordering is discussed

45

Generating Permutations

Algorithm: Generating the next permutation of (a4, a,, ..., a,)
in Lexicographic Order by given permutation is {1, 2, ..., n},
where (a4, a,, ..., a,) is not equal to (n, n-1, ..., 2, 1)

1. j=n—-1

2. while ;> a;, J is the largest subscript {31, d, , 83}

; k2.1 ji=j—1 with ¢, < a,, {1, 2, 3}

. k=n

4 while a,> a k!tshthe<largest subscript {1, 2, 3}
41 k=k—1 WG = {1, 3, 2}

S. interchange a; and g, S

6. r=n N {2, 1, 3}

7.s=j+1 Sort the number 2 31

8. while r> s  after the j® 2,3, 1}

8.1 interchange a, and a,

82r=r—-1and s=s+1j

position in {3, 1, 2}
ascending order

{3, 2,1}

46



Generating Permutations

Example

What is the next permutation in lexicographic order
after 3625417

The last pair of a;, and a4 Where a; < a4 is
a;=2and a, =

The least integer to the right of 2 that is greater than
2is a,=4

Exchange 4; and a;

= Hence, 4 is placed in the third position

9, 2, 1 are placed in order in the last three positions

Hence, the next permutation is 364125

47

Generating Permutations

r-Permutations

How can we list all r-permutations from a
set {1, 2,3,..., n}? r-combination

{ay, a,, ag}

1,2, 3,4 -

Use “next larger { } n-permutation
r-combinations” lists {1, 2, 3}| {1, 2, 3}
all r-combinations 1,2,4 {1,3,2}
For each r-combination, {1, 3,4 {2,1, 3}
use n-permutation to list " {2, 3, 1)
all permutations {2, 3, 4} (3,1, 2}

{3, 2, 1}

48



Pigeonhole Principle

= Suppose that a flock of 26 pigeons flies into a
set of 25 pigeonholes to roost

= What can we conclude?

49

Pigeonhole Principle

= A least one of these 25 pigeonholes must
have at least two pigeons in it

= Because there are 26 pigeons but only 25
pigeonholes

= This is - Jhe
ged e np

Pigeonhole Principle

50



Pigeonhole Principle

Pigeonhole Principle

If k is a positive integer and k + 1 or more objects
are placed into k boxes, then there is at least one
box containing two or more of the objects

= Also called the Dirichlet Drawer Principle
the nineteenth-century German mathematician Dirichlet

Proof by contraposition (p > q=—-q > —p)

= Suppose that none of the k boxes contains more than
one object

= Then the total number of objects would be at most k
= This is a contradiction

51

Pigeonhole Principle

Corollary

A function f'from a set with k + 1 or more
elements to a set with k elements is not one-
to-one

d ¢

b. 01

Coe o2
3

d e— °
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Pigeonhole Principle

Example 1
How many words we should have if there must be
at least two that begin with the same letter?

= 27 English words, because 26 letters in the English
alphabet

Example 2
How many people we should have if there must be
at least two with the same birthday?

= 367 people because 366 possible birthdays

53

Generalized Pigeonhole Principle

Pigeonhole Principle states that if k + 1 or
more objects are placed into k boxes, then
there is at least one box containing two or
more of the objects

How about if we have
= 2k + 1 objects?

= 3k + 2 object?

= nk + 1 object?

54



Generalized Pigeonhole Principle

Generalized Pigeonhole Principle
If N objects are placed into k boxes, then there is at
least one box containing at least | N/k | objects

Proof by Contradiction

= Suppose that none of the boxes contains more than
N/k |- 1 objects

» The total number of objects is at most

kqﬁ—lj <k((%+lj—lj _n  [TNKT< (N/K) + 1

= This is a contradiction because there are a total of N
objects

55

Generalized Pigeonhole Principle

A common type of problem asks for the
minimum number of objects such that at least
r of these objects must be in one of k boxes

when these objects are distributed among the
boxes

56



Generalized Pigeonhole Principle

According to generalized pigeonhole principle,
when we have N objects, there must be at least r
objects in one of the k boxes as long as | N/k |=r

= N, where N =Kk(r-1) + 1, is the smallest integer
satisfying [ N/k | > r

57

Generalized Pigeonhole Principle

IN/k|=r, N=k(r-1)+1,is the smallest
integer satisfying | N/k | > r

Could a smaller value of N suffice?

No
= [f k(r - 1) objects

= We could put r - 1 of them in each of the k
boxes

= No box would have at least r objects
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Generalized Pigeonhole Principle |_N/k—| >r

Example 1 N =k(r-1)+1

How many people out of 100 people were
born in the same month?

N =100
k=12
r="72

1100/12 ] = 9 who were born in the same
month

59

Generalized Pigeonhole Principle |_N/k—| >r

Example 2 N =K(r-1)+1

What is the least number of area codes needed to guarantee
that the 25 million phones in a state can be assigned distinct
10-digit telephone numbers?

Assume that telephone numbers are of the form NXX-NXX-
XXXX, where the first three digits form the area code, N
represents a digit from 2 to 9 inclusive, and X represents any
digit.

Different phone numbers for NXX-XXXX is

8 x 10 = 8,000,000

N = 25,000,000, k = 8,000,000

At least | 25,000,000 / 8,000,000 | = 4 of them must have
identical phone numbers

Hence, at least four area codes are required
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Generalized Pigeonhole Principle |_N/k—| >r

Example 3 N =k(r-1)+1

Show that among any »n + 1 positive integers not exceeding
2n there must be an integer that divides one of the other
integers

Assume we have n + 1 integers ay, a,, ..., @,

Let a,=2"¢q, forj=1,2,...,n+1,

where k; is a nonnegative mteger and
d1: 42, ---, 4o+ @re all odd positive integers less than 2n

Accordlng to pigeonhole principle, because only n odd
positive integers less than 2#, two of the integers ¢4, ¢, ...,
¢.+4 Must be equal

Let g be the common value of ¢, and g, then, a, = =24 and

a = 2" q
it follows that if k. < k,, then a, divides a; | i _ 2Yq _ ki h
2"q

otherwise ¢, divides a a k;

i
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Applications: Subsequence

Suppose that a4, a,, ..., ayis a sequence of
real numbers.

A subsequence of this sequence is a

sequence of the form a. ,a. ,...,a,
1 2 m

where 1 <i, <i, <..<i <N
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Applications: Subsequence

Example

Example:

"a,,d,, ..,a5=9,8,2,3,1

= 5, 3, 1is asubsequence? ay,ay, as /
= 8, 1is a subsequence? a,, as

= 2,3, 95, 8is asubsequence? as, asz
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Applications: Subsequence

A sequence is called strictly increasing if
each term is larger than the one that
precedes it

A sequence is called strictly decreasing if
each term is smaller than the one that
precedes it
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Applications: Subsequence

Theorem

Every sequence of n? + 1 distinct real numbers
contains a subsequence of length n + 1 that is
either strictly increasing or strictly decreasing

Example
= Given a sequence: 8,11,9,1,4,6,12,10,5,7
10 term = 32 + 1

= What is the length of the longest in / decreasing
subsequences? n+1 =4

Increasing sequence Decreasing sequence
1,4,6,12 11,9,6,5
1,4,6,7
1 , 4,6, 10
1,4,5,7
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Applications: Subsequence

Proof

Let a,,a,,...,a o be a sequence of n? + 1 distinct
n
real numbers

Associate an ordered pair (i, d,) to the term a,,
where

= i, is the length of the longest increasing subsequence
starting at a,

= d, is the length of the longest decreasing subsequence
starting at a,

G) 8 2 (3) 1
(iy, dq) = (2, 3) (i3, dg) = (1, 2)
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Applications: Subsequence
8, 2( ::)1
Proof ®

Suppose no increasing or decreasing
subsequences is longer than n

I, and d, are both positive integers less than or
equalton,fork=1,2,...,n%+1

(2,3) (1,2)

By the product rule,
n? possible ordered pairs for (i, d,)

By the pigeonhole principle
two of n?2 + 1 ordered pairs are equal

Therefore, there exist terms a_ and a,
with s <t such that ii, =i, and d, = d,
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Applications: Subsequence

Proof nny as, RN at, Ty
There exist terms a_ and a,, @8, 1
with s <t such that ii =i, and d = d, 2.3) (1,2

We will show that this is impossible

Because the terms of the sequence are distinct, either
a, <a;orag > a,

If a, < a,, then, because ig = i, an increasing
subsequence of length i, + 1 can be built starting at a,
by taking as followed by an increasing subsequence of
length it beginning at a,

This is a contradiction

Similarly, if a. > a;, it can be shown that d, must be
greater than d,, which is a contradiction
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Applications: Ramsey Theory

Ramsey theory, after the English mathematician F.
Ramsey, deals with the distribution of subsets of
elements of sets

= Two people either friends or enemies

A B A B
(T ) @l
Friends Enemies

= Mutual Friend/Enemies

A B A B
A B C D are mutual
friends/enemies

C D C D

Applications: Ramsey Theory

Example 1
Assume that in a group of six people

Show that there are either three mutual
friends or three mutual enemies in the group
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Applications: Ramsey Theory
Example 1
Let A be one of the six people

According to pigeonhole principle (r5/2—| = 3),
A at least has three friends, or three enemies

Former Case: suppose that B, C, and D are friends

= |f any two of these three people are friends, then these two and A
form a group of three mutual friends

= Otherwise, B, C, and D form a set of three mutual enemies
Similar to the latter case
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Applications: Ramsey Theory

Ramsey number R(m, n)

= The minimum number of people at a party such that
there are either m mutual friends or n mutual enemies,

assuming that every pair of people at the party are
friends or enemies

= m and n are positive integers greater than or equal to 2

Example
= Whatis R(3, 3)7?
Answer should be 6

In a group of five people where every two people are
friends or enemies, there may not be three mutual friends
or three mutual enemies
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Applications: Ramsey Theory

5 people cannot guarantee having 3 mutual
friends/enemies

B




