Discrete Mathematic

Chapter 5: Relation

5.6 Partial Orderings

Dr Patrick Chan

School of Computer Science and Engineering South China University of Technology

Agenda

- Partial Order
- Total Order
- Lexicographic Order
- Hasse Diagrams
- Minimal/Maximal Element
- Least/Greatest Element
- Lower/Upper Bound
- Greatest Lower/Least Upper Bound

What is Order?

- Equivalence (=) concept is discussed
- The abstraction of the following relations will be discussed in this chapter
 - Bigger or Equal / Smaller or Equal (\leq , \geq)
 - Bigger / Smaller (<, >)

What is Order? What properties "≤" or "≥" should have? Reflexive Irreflexive Transitive Symmetric Asymmetric Antisymmetric What properties "<" or ">" should have? Reflexive Irreflexive Transitive Symmetric Asymmetric Antisymmetric

Chapter 5.6 Partial Orderings

Partially Ordered Set

Partially Ordered Set

- When R is a partial order in A, (A, R) is called a partially ordered set or a poset
- Recall, aRb denotes that (a,b) ∈ R
- If R is a partial ordering relation

```
a \leq b denotes that (a,b) \in \leq
```

■ (A, ≤) is a poset

Chapter 5.6 Partial Orderings

Partially Ordered Set Example 1

Show that the "greater than or equal" relation (≥) is a partial ordering on the set of integers

Reflexive

- $a \ge a$ for every integer a
- Antisymmetric

If $a \ge b$ and $b \ge a$, then a = b

Transitive

 $a \ge b$ and $b \ge c$ imply that $a \ge c$

(Z, ≥) is a poset

Partially Ordered Set Example 2

(Z⁺,) is a poset

The divisibility relation | is a partial ordering on the set of positive integers.

- i.e. a divides b
- (P(S), ⊆) is a poset

The inclusion relation \subseteq is a partial ordering on the power set of a set S

• i.e. a is the subset of b

Comparability

- The elements a and b of a poset(S, ≤) are called comparable if either a ≤ b or b ≤ a
- Otherwise, a and b are imcomparable
- Example
 - In the **poset (Z⁺, |)**,
 - Are 3 and 9 comparable? Yes, since 3 | 9
 - Are 5 and 7 comparable? No

Non-Strict & Strict Partial Order

- Non-strict (or reflexive) Partial Order \preccurlyeq
 - Property: <u>Reflexive</u>, Antisymmetric, Transitive
- Strict (or irreflexive) Partial Order <</p>
 - i.e. a ≺b denotes that a ≼ b, but a≠b
 - Property: <u>Irreflexive</u>, Antisymmetric, Transitive

asymmetric

• Generally, partial order refers to \preccurlyeq

Chapter 5.6 Partial Orderings

Total Ordered

- If (S, R) is a poset and every two elements are comparable, S is called a total ordered or linear ordered or simple ordered set
- In this case (S, R) is called a chain

Partial Order Not Total Order

Partial Order Total Order

Total Ordered Example

- **Poset (Z,** \leq)? Totally Ordered
 - Since a ≤ b or b ≤ a whenever a and b are integers
- Poset (Z⁺,)? Not totally Ordered
 - It contains elements that are incomparable, such as 5 and 7
- Not totally Ordered **Poset (P(S),** \subseteq), where S is a set
 - It may not be the case that $A \subseteq B$ or $B \subseteq A$

Chapter 5.6 Partial Orderings

13

Lexicographic Order

- What is the order of a letter?
 A << C ?</p>
 - Alphabetical order

A≼C? C≼A?

- What is the order of a word?
 - Lexicographic Order
 - Generalization of Alphabetical order

discrete \preccurlyeq discreet ?

discreetness \leq discreet ?

Lexicographic Order Special Case

- Lexicographic Order is a generalization of the way the alphabetical order of words is based on the alphabetical order of letters
 - Also known as lexical order, dictionary order, alphabetical order or lexicographic(al) product
- Given two posets (A₁, ≼₁) and (A₂, ≼₂) we construct an Lexicographic Order ≼ on A₁ × A₂:

 $\langle x_1, y_1 \rangle \leq \langle x_2, y_2 \rangle$ iff $x_1 \prec_1 x_2$ or $(x_1 = x_2 \text{ and } y_1 \leq_2 y_2)$

Lexicographic Or For (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) Special Case $x_1, y_1 > R < x_2, y_2 > iff x_1 \prec_1 x_2 \text{ or } (x_1 = x_2 \text{ and } y_1 \preccurlyeq_2 y_2)$

- Let $A_1 = A_2 = Z^+$ and $R_1 = R_2 = 'divides'$.
- If the following relation is Lexicographic Order R?
 - (2, 4) R (2, 8)? Condition 1 Condition 2
 (2, 4) R (2, 6)? Condition 1 Condition 1
 (2, 4) R (2, 6)? Condition 1 Condition 2
 (2, 4) R (2, 6)? Condition 1 (2, 4) R (2, 6)? Condition 1
 (2 = 2) (4 does not divide 6)
 - (2, 4) R (4, 5)? Condition 1
 Condition 2
 2 divides 4
 4 does not divide 5
 - 1. $(x_1 \neq x_2)$ and x_1 divides x_2 ?

2. $(x_1 = x_2)$ and $(y_1 \neq y_2)$ and $(y_1$ divides $y_2)$?

Chapter 5.6 Partial Orderings

Lexicographic Order General Case

• Given $(A_1, \preccurlyeq_1), (A_2, \preccurlyeq_2), \dots, (A_n, \preccurlyeq_n)$

The Lexicographic Order ≺ on multiple Cartesian products: A₁ × A₂ × A₃ × . . . × A_n

$$(a_1, a_2, ..., a_n) \prec (b_1, b_2, ..., b_n)$$

iff

- If $\mathbf{a}_1 \prec_1 \mathbf{b}_1$, or
- if there is an integer i>0 such that
 - $a_1 = b_1, ..., a_i = b_i \text{ and } a_{i+1} \prec_{i+1} b_{i+1}$

For two posets,
$$(A_1, \preccurlyeq_1)$$
 and (A_2, \preccurlyeq_2)
 $\langle x_1, y_1 \rangle \prec \langle x_2, y_2 \rangle$ iff $x_1 \prec_1 x_2$ or $(x_1 = x_2 \text{ and } y_1 \prec_2 y_2)$

17

Chapter 5.6 Partial Orderings

Lexicographic Order General Case: Example

- Let $A_1 = A_2 = ... = A_n = Z^+$ and $R_1 = R_2 = ... = R_i = 'divides'$
- If the following relation is Lexicographic Order R?

Lexicographic Order String

- Lexicographic order is applied to strings of symbols where there is an underlying 'alphabetical' order
- Consider the different strings a₁a₂...a_m and b₁b₂...b_n on a partial ordered set S
- Let t = min(m, n), the definition of <u>lexicographic</u> ordering for string is that the string a₁a₂...a_m is less than b₁b₂...b_n if and only if

• (
$$(a_1, a_2, ..., a_t) = (b_1, b_2, ..., b_t)$$
 and m < n) or $(a_1, a_2, ..., a_t) \le (b_1, b_2, ..., b_t)$

 lexicographic ordering using 'alphabetical' order

Chapter 5.6 Partial Orderings

19

- If $a_1 \prec_1 b_1$, or ■ if there is an integer i>0 such that $a_1 = b_1$, ..., $a_i = b_i$ and $a_{i+1} \prec_{i+1} b_{i+1}$ ■ $(a_1, a_2, ..., a_t) = (b_1, b_2, ..., b_t)$ and m<n ■ $(a_1, a_2, ..., a_t) = (b_1, b_2, ..., b_t)$
 - Consider the set of strings of lowercase English letters.

discrete'length = 8t = 8alphabetical order:e < t</td>discreet'length = 8discreet < discrete</td>

fiscrete ' length = 8
discreteen'' length = 12

t = 8
alphabetical order: d < f
discreteen ≺ fiscrete

 Find the lexicographic ordering of the bit strings 0,01,11,001,010,011,0001 and 0101 based on the ordering 0 ≺ 1

Chapter 5.6 Partial Orderings

21

It is Hasse Diagram

Hasse Diagrams

 By assuming all edges are pointed upward, the direction of edges is not necessary

Hasse Diagrams

- To construct a Hasse diagram:
 - 1. Construct a digraph representation of the poset (A, R) so that all arcs point up (except the loops).
 - 2. Eliminate all loops
 - 3. Eliminate all redundant arcs
 - Start to eliminate from the top
 - 4. Eliminate the direction of the edge

Hasse Diagrams **Example 1**

 Draw the Hasse diagram representing the partial ordering { (a,b) | a divides b } on A={1,2,3,4,6,8,12}

23

12

6

3

Covering Relation

- Let (S, ≤) be a poset. (x,y) such that y cover x is called the covering relation of (S, ≤) if x ≺ y and there is no element z ∈ S such that x ≺ z ≺ y

Minimal & Maximal Elements

Let (A, R) be a poset and S ⊂ A.
 s (b) in S is a minimal element (maximal element) of S iff there does not exist an element x in S such that xRs (bRx)

Least & Greatest Elements

- Let (A, R) be a poset and S ⊆ A.
 s (b) in S is a least element (greatest element) of S iff sRx (xRb) for every x in S
- It is unique if it exits

е

d

Small Exercise

Well Ordered

- A chain (A, R) is well-ordered iff every nonempty subset of A has a least element
- Examples:
 - (Z, ≤) is a chain but not well-ordered
 - Z does not have least element
 - (N, ≤) is well-ordered
 - (N, \geq) is not well-ordered

Upper & Lower Bound

Let (A, R) be a poset and S ⊆ A.
 s (b) in A is an lower bound (upper bound) of S iff sRx (xRb) for every x in S

Greatest Lower & Least Upper Bounds

Let (A, R) be a poset and S ⊆ A.
 s (b) is the least upper bound (greatest lower bound), denoted lub(S) (glb(S)), iff s (b) is an upper bound (lower bound) for S and sRx (yRb) for all other upper bounds x (lower bounds y) of S

Small Exercise				h	• i
	{a,b,c}	{b,c,d,g}	{h,i}	f	g
Minimal Element	а	b,c	h,i	d	е
Maximal Element	b,c	g	h,i	b	C
Least Element	а	1	1		
Greatest Element	1	g	1	•4	
Lower Bound	а	а	a,b,c	,e,d,g	
Upper Bound	e,g,i,h	g,i,h	1		
Greatest Lower Bound	а	а	g		
Least Upper Bound	е	g	1		

Chapter 5.6 Partial Orderings

Lattice

 A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice

Lattice: Example

- Poset ({1,2,3,4,5}, |) ? Not Lattice
 - 2,3 have no upper bounds in {1,2,3,4,5}
- Poset ({1,2,4,8,16}, |) ? Lattice

Lattice: Theorem

- Theorem: If L is a lattice, least upper bound and greatest lower bound of a and b can be defined as a ∨ b and a ∧ b, respectively. ∨ and ∧ satisfy the following properties for a,b,c ∈ L.
 - 1. Commutative laws $a \lor b = b \lor a$ and $a \land b = b \land a$
 - 2. Associative laws $a \lor (b \lor c) = (a \lor b) \lor c$ and $a \land (b \land c) = (a \land b) \land c$
 - 3. Idempotent laws

 $a \lor a = a$ and $a \land a = a$

4. Absorption laws

 $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$

Be noted that ∨ and ∧ does not necessary to be OR and AND. They can be any binary operation which fulfill the following properties

Chapter 5.6 Partial Orderings

Lattice: Theorem: Example 1

Lattice: Theorem: Example 2

- Given L as (P({a, b, c}), ⊆),
 ∨ = ∪ and ∧ = ∩
- Recall, lub: a ∨ b
 glb: a ∧ b

- Iub of {a} & {a,b}? {a} ∪ {a,b} = {a,b}
- Iub of {a} & {b,c}? {a} ∪ {b,c} = {a,b,c}
- glb of {a,b} & {b,c}? {a,b} ∩ {b,c} = {b}

Distributive Lattice

 A lattice (L,∨, ∧) is distributive if the following identity holds for all a, b, c ∈ L:

- a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
- $a \land (b \lor c) = (a \land b) \lor (a \land c)$

Bounded Lattice

- A lattice (L,≤) is called bounded lattice if there exist elements α, β ∈ L such that for each x ∈ L, x ≤ α and β ≤ x.
 - α is the largest element of L (denoted by 1)
 - β is the smallest element of L (denoted by 0)
- If a lattice is bounded, then
 - 1 is the lub of the lattice
 - 0 is the glb of the lattice

Complemented Lattice

- A bounded lattice (L, ≤) is complemented lattice if for each x ∈ L, there exists y ∈ L such that x ∨ y = 1 and x ∧ y = 0
 - y is a complement of x (denoted by ¬x)
- In general an element may have more than one complement

Lattice: Principle of Duality

 Any statement that is true for lattice remains true when ≼ is replaced by ≽ and ∧ and ∨ are interchanged throughout the statement.

