## Discrete Mathematic

Chapter 5: Relation

# 5.6 <br> Partial Orderings 

Dr Patrick Chan

School of Computer Science and Engineering South China University of Technology

## Agenda

- Partial Order
- Total Order
- Lexicographic Order
- Hasse Diagrams
- Minimal/Maximal Element
- Least/Greatest Element
- Lower/Upper Bound
- Greatest Lower/Least Upper Bound


## What is Order?



## What is Order?

- Equivalence (=) concept is discussed
- The abstraction of the following relations will be discussed in this chapter
- Bigger or Equal / Smaller or Equal ( $\leq, \geq$ )
- Bigger / Smaller (<, >)


## What is Order?

- What properties " $\leq$ " or " $\geq$ " should have?

Reflexive
Symor


Aswenic Antisymmetric

- What properties "<" or ">" should have?


Irreflexive
Asymmetric Antisymmetric

## Partially Ordered Set

- Definition

Let $R$ be a relation on $A$.
Then $R$ is a partial order iff $R$ is


- Reflexive
$\forall \mathrm{a}((\mathrm{a}, \mathrm{a}) \in \mathrm{R})$
- Antisymmetric
$\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R} \wedge(\mathrm{b}, \mathrm{a}) \in \mathrm{R}) \rightarrow(\mathrm{a}=\mathrm{b}))$
- Transitive
$\forall a \forall b \forall c(((a, b) \in R \wedge(b, c) \in R) \rightarrow((a, c) \in R))$


Not Partial Order


Partial Order


Partial Order

## Partially Ordered Set

- When $R$ is a partial order in $A,(A, R)$ is called a partially ordered set or a poset
- Recall, aRb denotes that $(a, b) \in R$
- If $R$ is a partial ordering relation $a \preccurlyeq b$ denotes that $(a, b) \in \preccurlyeq$
- ( $\mathrm{A}, \preccurlyeq$ ) is a poset


## Partially Ordered Set <br> Example 1

" Show that the "greater than or equal" relation $(\geq)$ is a partial ordering on the set of integers

- Reflexive
$\mathrm{a} \geq$ a for every integer a
- Antisymmetric

If $\mathrm{a} \geq \mathrm{b}$ and $\mathrm{b} \geq \mathrm{a}$, then $\mathrm{a}=\mathrm{b}$

- Transitive
$a \geq b$ and $b \geq c$ imply that $a \geq c$
- $(Z, \geq)$ is a poset

Partially Ordered Set
Example 2

- ( $\left.\mathbf{Z}^{+}, \mid\right)$is a poset

The divisibility relation | is a partial ordering on the set of positive integers.

- i.e. a divides b
$(P(S), \subseteq)$ is a poset
The inclusion relation $\subseteq$ is a partial ordering on the power set of a set $S$
- i.e. $a$ is the subset of $b$


## Comparability

- The elements $a$ and $b$ of a poset $(S, \preccurlyeq)$ are called comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$
- Otherwise, a and b are imcomparable
- Example
- In the poset ( $\left.\mathbf{Z}^{+}, \mid\right)$,
- Are 3 and 9 comparable? Yes, since $3 \mid 9$
- Are 5 and 7 comparable? No


## Non-Strict \& Strict Partial Order

- Non-strict (or reflexive) Partial Order $\preccurlyeq$
- Property: Reflexive, Antisymmetric, Transitive
- Strict (or irreflexive) Partial Order $\prec$
- i.e. $a<b$ denotes that $a \preccurlyeq b$, but $a \neq b$
- Property: Irreflexive, Antisymmetric, Transitive
asymmetric
- Generally, partial order refers to $\preccurlyeq$


## Total Ordered

- If $(S, R)$ is a poset and every two elements are comparable, S is called a total ordered or linear ordered or simple ordered set
- In this case $(S, R)$ is called a chain


Not Partial Order Not Total Order


Partial Order Not Total Order


Partial Order

Total Order

Total Ordered

## Example

- Poset (Z, $\leq$ )? Totally Ordered
- Since $a \leq b$ or $b \leq a$ whenever $a$ and $b$ are integers
- Poset ( $\left.Z^{+}, \mid\right)$? Not totally Ordered
- It contains elements that are incomparable, such as 5 and 7

Not totally Ordered

- Poset ( $\mathrm{P}(\mathrm{S}), \subseteq)$, where $S$ is a set
- It may not be the case that $A \subseteq B$ or $B \subseteq A$


## Lexicographic Order

- What is the order of a letter? $\mathrm{A} \preccurlyeq \mathrm{C}$ ?
- Alphabetical order
$C \preccurlyeq A$ ?
- What is the order of a word?
- Lexicographic Order
- Generalization of Alphabetical order
discrete $\preccurlyeq$ discreet? discreetness $\preccurlyeq$ discreet ?


## Lexicographic Order

## Special Case

- Lexicographic Order is a generalization of the way the alphabetical order of words is based on the alphabetical order of letters
- Also known as lexical order, dictionary order, alphabetical order or lexicographic(al) product
- Given two posets $\left(\mathrm{A}_{1}, \preccurlyeq_{1}\right)$ and $\left(\mathrm{A}_{2}, \preccurlyeq_{2}\right)$ we construct an Lexicographic Order $\preccurlyeq$ on $A_{1} \times A_{2}$ :
$\left.\left\langle\mathrm{x}_{1}, \mathrm{y}_{1}\right\rangle \preccurlyeq<\mathrm{x}_{2}, \mathrm{y}_{2}\right\rangle$ iff $\mathrm{x}_{1} \prec_{1} \mathrm{x}_{2}$ or $\left(\mathrm{x}_{1}=\mathrm{x}_{2}\right.$ and $\left.\mathrm{y}_{1} \preccurlyeq 2 \mathrm{y}_{2}\right)$


## Lexicographic Or For $\left(\mathrm{A}_{1}, \preccurlyeq_{1}\right)$ and $\left(\mathrm{A}_{2}, \preccurlyeq_{2}\right)$

Special Ceci, $<x_{1}, y_{1}>R<x_{2}, y_{2}>$ iff $x_{1}<\prec_{1} x_{2}$ or $\left(x_{1}=x_{2}\right.$ and $\left.y_{1} \preccurlyeq_{2} y_{2}\right)$

- Let $\mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{Z}^{+}$and $\mathrm{R}_{1}=\mathrm{R}_{2}=$ 'divides'.
- If the following relation is Lexicographic Order R?
- $(2,4) R(2,8)$ ? Condition 1
$\boldsymbol{x} \quad 2=2$
4 divides 8

Condition 2

- $\quad$ Condition $1 \underset{~}{x}$
$2=2$
4 does not divide 6
- $(2,4) R(4,5)$ ? Condition 1 ل 2 divides 4

Condition $2 \times 4$ does not divide 5

> | 1. $\left(x_{1} \neq x_{2}\right)$ and $x_{1}$ divides $x_{2}$ ? |
| :--- |
| 2. $\left(x_{1}=x_{2}\right)$ and $\left(y_{1} \neq y_{2}\right)$ and $\left(y_{1}\right.$ divides $\left.y_{2}\right)$ ? |

## Lexicographic Order

## General Case

- Given $\left(A_{1}, \preccurlyeq_{1}\right),\left(A_{2}, \preccurlyeq_{2}\right), \ldots,\left(A_{n}, \preccurlyeq_{n}\right)$
- The Lexicographic Order $\prec$ on multiple Cartesian products: $A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}$

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \prec\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

iff

- If $a_{1} \prec_{1} b_{1}$, or
- if there is an integer $i>0$ such that $a_{1}=b_{1}, \ldots, a_{i}=b_{i}$ and $a_{i+1} \prec_{i+1} b_{i+1}$

For two posets, $\left(\mathrm{A}_{1}, \preccurlyeq_{1}\right)$ and $\left(\mathrm{A}_{2}, \preccurlyeq_{2}\right)$ $\left.<\mathrm{x}_{1}, \mathrm{y}_{1}\right\rangle \prec<\mathrm{x}_{2}, \mathrm{y}_{2}>$ iff $\mathrm{x}_{1} \prec_{1} \mathrm{x}_{2}$ or $\left(\mathrm{x}_{1}=\mathrm{x}_{2}\right.$ and $\left.\mathrm{y}_{1} \prec \prec_{2} \mathrm{y}_{2}\right)$

## Lexicographic Order

## General Case: Example

- Let $A_{1}=A_{2}=\ldots=A_{n}=Z^{+}$and $R_{1}=R_{2}=\ldots=R_{i}=$ 'divides'
- If the following relation is Lexicographic Order R ?

$\mathrm{i}=3 \quad 2=2$ and $3=3$ and $4 \prec_{3} 8 ?$
$2 \prec_{1} 3$ ?
$2=3$ and $3 \prec_{2} 6$ ?
Do not need to check the rest as $\mathrm{a}_{1} \neq \mathrm{b}_{1}$
- If $a_{1} \prec_{1} b_{1}$, or
- if there is an integer $i>0$ such that $a_{1}=b_{1}, \ldots, a_{i}=b_{i}$ and $a_{i+1} \prec_{i+1} b_{i+1}$

Lexicographic Order

## String

- Lexicographic order is applied to strings of symbols where there is an underlying 'alphabetical' order
- Consider the different strings $a_{1} a_{2} \ldots a_{m}$ and $b_{1} b_{2} \ldots b_{n}$ on a partial ordered set S
- Let $t=\min (m, n)$, the definition of lexicographic ordering for string is that the string $a_{1} a_{2} \ldots a_{m}$ is less than $b_{1} b_{2} \ldots b_{n}$ if and only if
- $\left(\left(a_{1}, a_{2}, \ldots, a_{t}\right)=\left(b_{1}, b_{2}, \ldots, b_{t}\right)\right.$ and $\left.m<n\right)$ or

lexicographic ordering using 'alphabetical' order

| - If $a_{1} \prec_{1} b_{1}$, or |  |
| :--- | :--- |
| $=$ | if there is an integer $i>0$ such that |
| $a_{1}=b_{1}, \ldots, a_{i}=b_{i}$ and $a_{i+1} \prec_{i+1} b_{i+1}$ |  |$\quad$| $\left(a_{1}, a_{2}, \ldots, a_{t}\right)=\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ and $m<n$ |
| :--- |
| or |

Consider the set of strings of lowercase English letters. $\quad \mathrm{t}=\min (\mathrm{m}, \mathrm{n})$

- "disispatel length $=8 \mathrm{t}=8$ alphabetical order: $\mathrm{e}<\mathrm{t}$ length $=8 \quad$ discreet $\prec$ discrete

- *| iscrete, $\begin{aligned} & \text { length }=8 \\ & \text { discreteten" length }=12\end{aligned}$
$\mathrm{t}=8$
alphabetical order: $\mathrm{d}<\mathrm{f}$ discreteen $\prec$ fiscrete
- Find the lexicographic ordering of the bit strings $0,01,11,001,010,011,0001$ and 0101 based on the ordering $0 \prec 1$



## Hasse Diagrams

It is Hasse Diagram

- Show the partial ordering using a graph
- For example $\{(a, b)$ I $a \leq b\}$ on the set $\{1,2,3,4\}$

- The graph is too complicated and try to simplify it:
- A partial ordering must be reflexive: the loops are not necessary
- A partial ordering must be transitive: some edges can be removed
- By assuming all edges are pointed upward, the direction of edges is not necessary


## Hasse Diagrams

- To construct a Hasse diagram:

1. Construct a digraph representation of the poset (A, R) so that all arcs point up (except the loops).
2. Eliminate all loops
3. Eliminate all redundant arcs

- Start to eliminate from the top

4. Eliminate the direction of the edge

## Hasse Diagrams

## Example 1

- Draw the Hasse diagram representing the partial ordering $\{(\mathrm{a}, \mathrm{b}) \mid$ a divides b \} on $A=\{1,2,3,4,6,8,12\}$



## © Small Exercise :

- Construct the Hasse diagram of ( $\mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})$ ) $\subseteq$ )
- The elements of $P(\{a, b, c\})$ are $\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}$, $\{a, b, c\}$
- The digraph is



## Covering Relation

- Let $(\mathrm{S}, \preccurlyeq)$ be a poset. ( $\mathrm{x}, \mathrm{y}$ ) such that y cover $x$ is called the covering relation of $(S, \preccurlyeq)$ if $x \prec y$ and there is no element $z \in S$ such that $x \prec z \prec y$
- Example
- For ( $\mathrm{P}(\{a, b, c\}), \subseteq)$, if it is a covering relation?

$$
\begin{aligned}
& \text { = (\{a,b\}, \{a\})? X } \quad\{a\} \prec\{a, b\} \\
& \text { - ( }\{a\},\{a, b\}) \text { ? } \\
& =(\{ \},\{a, b\}) ? \times \quad\{ \} \prec\{a\} \prec\{a, b\} \text { or }\} \prec\{b\} \prec\{a, b\} \\
& \text { " }(\{a\},\{a\}) ? \times \quad\{a\}=\{a\}
\end{aligned}
$$

## Minimal \& Maximal Elements

- Let $(A, R)$ be a poset and $S \subseteq A$.
$s(b)$ in $S$ is a minimal element (maximal element) of $S$ iff there does not exist an element $x$ in $S$ such that $x R s(b R x)$



## Least \& Greatest Elements

- Let $(A, R)$ be a poset and $S \subseteq A$.
$s(b)$ in $S$ is a least element (greatest element) of $S$ iff $s R x(x R b)$ for every $x$ in $S$
- It is unique if it exits



## © Small Exercise ©

- Minimal element: a b f h
- Not exist an element $x$ in $S$ such that $x R s$
- Maximal element: e i g h
- Not exist an element $x$ in $S$ such that bRx
- Least element: /
- sRx for every x in S
- Greatest element: /
- xRb for every x in S

$$
\mathrm{S}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\}
$$



## Well Ordered

- A chain (A, R) is well-ordered iff every nonempty subset of $A$ has a least element
- Examples:
- ( $Z, \leq$ ) is a chain but not well-ordered
- $Z$ does not have least element
- $(\mathrm{N}, \leq)$ is well-ordered
- $(\mathrm{N}, \geq)$ is not well-ordered


## Upper \& Lower Bound

- Let $(A, R)$ be a poset and $S \subseteq A$.
s (b) in A is an lower bound (upper bound) of $S$ iff $s R x(x R b)$ for every $x$ in $S$

| Upper <br> Bound <br> $b$ | Lower <br> Bound |  |
| :---: | :---: | :---: |
| $\{\mathrm{a}, \mathrm{d}\}$ | b | c |
| $\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$ | $\mathrm{d}, \mathrm{b}$ | $/$ |

## Greatest Lower \& Least Upper Bounds

- Let $(A, R)$ be a poset and $S \subseteq A$.
$s$ (b) is the least upper bound (greatest lower bound), denoted $\operatorname{lub}(S)(\mathrm{glb}(S))$, iff $s(b)$ is an upper bound (lower bound) for $S$ and $s R x$ ( $y R b$ ) for all other upper bounds $\times$ (lower bounds $y$ ) of $S$
- It is unique if it exits
$\left.\begin{array}{|r}\begin{array}{r}\text { Upper Lower } \\ \{a, d\} \\ \text { Bound Bound } \\ \text { b }\end{array} \\ \{c, d, e\} \\ d, b\end{array}\right]$



## ;) Small Exercise ;

Minimal Element
Maximal Element
Least Element
Greatest Element
Lower Bound
Upper Bound
Greatest Lower Bound
Least Upper Bound

## Lattice

- A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice

Lower Bound: b, c, a
No Greatest Lower Bound




Upper Bound: d, e, f
No Least Upper Bound

## Lattice: Example

- Poset (\{1,2,3,4,5\},|) ? Not Lattice
- 2,3 have no upper bounds in $\{1,2,3,4,5\}$

Poset (\{1,2,4,8,16\},|) ? Lattice


## Lattice: Theorem

- Theorem: If $L$ is a lattice, least upper bound and greatest lower bound of $a$ and $b$ can be defined as $\mathbf{a} \vee \mathbf{b}$ and $\mathbf{a} \wedge \mathbf{b}$, respectively. $\vee$ and $\wedge$ satisfy the following properties for $a, b, c \in L$.

1. Commutative laws
$a \vee b=b \vee a$ and $a \wedge b=b \wedge a$
2. Associative laws

$$
a \vee(b \vee c)=(a \vee b) \vee c \text { and } a \wedge(b \wedge c)=(a \wedge b) \wedge c
$$

3. Idempotent laws
$a \vee a=a$ and $a \wedge a=a$
4. Absorption laws
$a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$
Be noted that $\vee$ and $\wedge$ does not necessary to be OR and AND.
They can be any binary operation which fulfill the following properties

## Lattice: Theorem: Example 1

- Given (P(\{x,y\}), $\preccurlyeq)$
- Is it a partial order?

1. Reflexive
2. Antisymmetric $\sqrt{ }$
3. Transitive

- Is it a lattice?
- What should be $\vee$ or $\wedge$ ?
- $V=\cup$,
- $v=\cap$, $\wedge=\cap$

$$
\Lambda=\bigcup
$$

$$
\preccurlyeq=\subseteq
$$

$$
\preccurlyeq=\supseteq
$$


lab: $a \vee b$ glob: $a \wedge b$

1. Commutative laws $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$
2. Associative laws
$a \vee(b \vee c)=(a \vee b) \vee c$ and
$a \wedge(b \wedge c)=(a \wedge b) \wedge c$
3. Idempotent laws $a \vee a=a$ and $a \wedge a=a$
4. Absorption laws $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$

## Lattice: Theorem: Example 2

- Given L as (P(\{a, b, c\}), $\subseteq$ ), $\vee=\cup$ and $\wedge=\cap$
- Recall, lab: $a \vee b$ gIb: $a \wedge b$

- lab of $\{a\} \&\{a, b\} ? \quad\{a\} \cup\{a, b\}=\{a, b\}$
- lu of $\{a\} \&\{b, c\} ? \quad\{a\} \cup\{b, c\}=\{a, b, c\}$
gIb of $\{a, b\} \&\{b, c\} ?\{a, b\} \cap\{b, c\}=\{b\}$


## Distributive Lattice

- A lattice $(L, \vee, \wedge)$ is distributive if the following identity holds for all $a, b, c \in L$ :
- $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
- $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$

Example,

- Are they distributive?

$b \wedge(e \vee c)=b \wedge d=b$
$(b \wedge e) \vee(b \wedge c)=a \vee a=a$



## Bounded Lattice

- A lattice (L, $\preccurlyeq)$ is called bounded lattice if there exist elements $\alpha, \beta \in L$ such that for each $x \in L, x \preccurlyeq \alpha$ and $\beta \preccurlyeq x$.
- $\alpha$ is the largest element of $L$ (denoted by 1 )
- $\beta$ is the smallest element of $L$ (denoted by 0 )
- If a lattice is bounded, then
- 1 is the lub of the lattice
- 0 is the glb of the lattice


# Complemented Lattice 

- A bounded lattice ( $\mathrm{L}, \preccurlyeq$ ) is complemented lattice if for each $x \in L$, there exists $y \in L$ such that $x \vee y=1$ and $x \wedge y=0$
- y is a complement of x (denoted by $\neg \mathrm{x}$ )
- In general an element may have more than one complement

$$
y \text { is } \neg x \text { if } x \vee y=1 \text { and } x \wedge y=0
$$



## Lattice: Principle of Duality

- Any statement that is true for lattice remains true when $\preccurlyeq$ is replaced by $\succcurlyeq$ and $\wedge$ and $\vee$ are interchanged throughout the statement.
- Example of dual


