5.4

 Closures of Relations

 Closures of Relations}

5.5 Equivalence Relations

Dr Patrick Chan
School of Computer Science and Engineering
South China University of Technology

Agenda

- 5.4 Closures of Relations
- Reflexive Closure
- Symmetric Closure
- Transitive Closure
- 5.5 Equivalence Relations
- Equivalence Relations
- Equivalence Class
- Partition

Introduction: Closures

- Is it symmetric?
- How can we produce a symmetric relation containing R that is as small as possible?

Closure

- Let R be a relation on a set A
- S is called the closure of R with respect to property P if
- S with property P
- S is a subset of every relation with property P containing R
- Minimum terms are added to R to fulfill the requirements of property P

Closure

- Reflexive Closure
- $\forall \mathrm{a}(\mathrm{a}, \mathrm{a}) \in \mathrm{R})$
- Symmetric Closure

- Transitive Closure
- $\forall \mathrm{a} \forall \mathrm{b} \forall \mathrm{c}\left(\left((\mathrm{a}, \mathrm{b}) \in \mathrm{R}_{\wedge}(\mathrm{b}, \mathrm{c}) \in \mathrm{R}\right) \rightarrow((\mathrm{a}, \mathrm{c}) \in \mathrm{R})\right)$

Closure

Reflexive Closure

$=r(R)$ denotes the reflexive closure of R

- How to create a reflexive closure for R ?
- Graphical view
- Add loop for each element
- Mathematical View
- Let \mathbf{D} (or I) be the diagonal relation (equality relation) on R, where $D=\{(x, x) \mid x \in R\}$
- The reflexive closure of R is $\mathbf{R} \cup \mathbf{D}$

Closure

Symmetric Closure: Example

- $R=\{(1,2),(1,2),(2,2),(2,3)$, $(3,1),(3,2)\}$ on $\{1,2,3\}$
- R is not symmetric

- How can we produce a symmetric relation containing R that is as small as possible?
- Add $(2,1)$ and $(1,3)$
- $R^{\prime}=\{(1,2),(1,2),(2,2),(2,3)$, $(3,1),(3,2),(2,1),(1,3)\}$
- R^{\prime} is symmetric closure of R
- Any symmetric relation that contains R must contain R'

Closure

Symmetric Closure

- $s(R)$ denotes the symmetric closure of R
- How to create a symmetric closure for R ?
- Graphical view
- Add edges in the opposite direction
- Mathematical View
- Let \mathbf{R}^{-1} be the inverse of R, where $R^{-1}=\{(\overline{y, x}) \mid(x, y) \in R\}$
- The symmetric closure of R is $\mathbf{R} \cup \mathbf{R}^{-1}$
- Theorem: R is symmetric iff $R=R^{-1}$

Ch 5.4 \& 5.5

Closure

Transitive Closure: Example

- $R=\{(1,2),(1,3),(2,3),(3,4)\}$ on $\{1,2,3,4\}$

- R is not transitive
- How can we produce a transitive relation containing R that is as small as possible? - Add (1,4), (2,4)
- $R^{\prime}=\{(1,2),(1,3),(2,3),(3,4)$, $(1,4),(2,4)\}$
- R^{\prime} is transitive closure of R
- Any transitive relation that contains R must also contain R^{\prime}

Closure

Transitive Closure

- $t(R)$ denotes the transitive closure of R
- How to create a transitive closure for R ?
- Graphical view
- If there is a path from a to b and b to c, add an edge from a to c
- However, it is not easy
- Example:
- Mathematical View

- Transitive Closure of R is R^{*}

Ch 5.4 \& 5.5

Closure

Transitive Closure

- The connectivity relation of the relation R, denoted R^{*}, is the union of R^{i}, where $\mathrm{i}=$ 1,2,3, \ldots

$$
R^{*}=\bigcup_{n=1}^{\infty} R^{n}
$$

- Transitive Closure of R is R^{*}

Closure

Transitive Closure

- Theorem

If $R \subset S$, then R o $S \subset S$ o S

- Theorem

If R is transitive then so is R^{n}

- Theorem
R is transitive iff $R^{n} \subseteq R$ for $n>0$

Closure

Transitive Closure

Proof: 1. \mathbf{R}^{*} is a transitive relation

- Suppose (x, y) and (y, z) are in R^{*} Show (x, z) is in R^{*}
- By definition of $R^{*},(x, y)$ is in R^{m} for some m and (y, z) is in R^{n} for some n.
- Then (x, z) is in R^{n} o $R^{m}=R^{m+n}$ which is contained in R^{*}
- Hence, R^{*} must be transitive

Proof: 2. \mathbf{R}^{*} contains \mathbf{R}

- The proof is obvious by the definition of R^{*}

Ch 5.4 \& 5.5

Closure
 Transitive Closure

Proof: 3. \mathbf{R}^{*} is the smallest transitive relation which contains \mathbf{R}

- Now suppose S is any transitive relation that contains

R

Theorem:

- Show S contains $R^{*} \quad R$ is transitive iff $R^{n} \subseteq R$ for $n>0$
- Since S is transitive, $S^{n} \subset S$
- For the power is 2 , $R^{2}=R \circ R \subset S$ o $R \subset S$ o S

Theorem:

 If $R \subset S$, then R o $S \subset S$ o S- It is true for $n, R^{n} \subset S^{n}$
- Therefore $R^{n} \subset S^{n} \subset S$ for all n
- Hence S must contain R^{*} since it must also contain the union of all the powers of R

Closure

Transitive Closure

- How can we calculate the infinite union?

$$
R^{*}=\bigcup_{n=1}^{\text {Infinity }} R^{n}
$$

- If it is necessary to calculate all Ri?

- Proof

- Suppose there is a path from a to b in R
- Let m be the length of the shortest path, which is x_{0}, x_{1}, $x_{2}, \ldots, x_{m-1}, x_{m}$, where $x_{0}=a$ and $x_{m}=b$
- Assume m > n
- Because n vertices in A and there are m vertices in the path, at least two vertices in the path are equal
- Suppose that $x_{i}=x_{j}$ with $0 \leq i<j \leq m$
- There is a path contained a cycle from x_{i} to itself $\left(x_{j}\right)$
- This cycle can be removed to shorten the path
- Hence, the shortest length must be less than or equal to n

Closure

Transitive Closure

- From the Theorem, we know that R^{k} for $k>n$ does not contain any edge that does not already appear in the first n powers of R
- Assume R is the relation on set A

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}=\bigcup_{k=1}^{|A|} R^{k}
$$

Closure

Transitive Closure

Theorem

Let M_{R} be the zero-one matrix of the relation R on a set with n elements. Then the zeroone matrix of the transitive closure R^{*} is

$$
M_{R^{*}}=M_{R}^{[1]} \vee M_{R}^{[2]} \vee M_{R}^{[3]} \vee \cdots \vee M_{R}^{[n]}
$$

Remark: $M_{R^{k}}=M_{R}^{[k]}$

$$
M_{R}=M_{R}^{[1]}
$$

Closure

Transitive Closure: Example

- Find the zero-one matrix of the transitive closure of the relation R where

$$
\begin{aligned}
& M_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \quad M_{R}^{[2]}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad M_{R}^{[3]}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \\
& M_{R^{*}}=M_{R} \vee M_{R}^{[2]} \vee M_{R}^{[3]} \\
& M_{R^{*}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \vee\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Ch 5.4 \& 5.5

Closure: Transitive Closure
 Warshall's Algorithm

- Warshall's Algorithm can reduce the complexity of R^{*} calculation
- For the path

$$
\text { a } x_{1}, x_{2}, \ldots, x_{m-1} \text { b. }
$$

the interior vertices are $x_{1}, x_{2}, \ldots, x_{m-1}$

- All the vertices of the path except the first and last vertices

Closure: Transitive Closure

Warshall's Algorithm

- Warshall's algorithm is based on the construction of a sequence of zero-one matrices, $W_{0}, W_{1}, \ldots, W_{n}$, where $W_{0}=M_{R}$

$$
\begin{aligned}
& W_{k}=\left[\begin{array}{cccc}
w_{11}(k) & w_{12}(k) & \ldots & \ldots \\
w_{21}(k) & \ddots & & \vdots \\
\vdots & & w_{i j}(k) & \vdots \\
\vdots & \ldots & \ldots & \ddots
\end{array}\right] \\
& w_{14}(0)=0 \\
& w_{14}(1)=0 \\
& w_{14}(2)=1
\end{aligned}
$$

- $w_{i j}(k)=\mathbf{1}$ if there is a path from v_{i} to v_{j} such that all the interior vertices of this path are in the set $\left\{v_{1}\right.$, $\left.v_{2}, \ldots, v_{k}\right\}$, otherwise is 0

Closure: Transitive Closure

Warshall's Algorithm

- The $(\mathrm{i}, \mathrm{j})^{\text {th }}$ entry of $\mathrm{M}_{\mathrm{R}^{*}}$ is 1 iff there is a path from v_{i} to v_{j} with all the interior vertices in the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$, therefore, $\mathrm{W}_{\mathrm{n}}=\mathrm{M}_{\mathrm{R}^{*}}$

- Algorithm

- $W_{0}=M_{R}$
- For $\mathrm{k}=1 \ldots \mathrm{n}$
- Update each element in W_{k} by using:

$$
w_{i j}^{[k]}=w_{i j}^{[k-1]} \vee\left(w_{i k}^{[k-1]} \wedge w_{k j}^{[k-1]}\right)
$$

Closure: Transitive Closure

Warshall's Algorithm: Example

- Find the matrices $W_{0}, W_{1}, W_{2}, W_{3}$ and W_{4} for the R shown in the directed graph

- Let $\mathrm{v}_{1}=\mathrm{a}, \mathrm{v}_{2}=\mathrm{b}, \mathrm{v}_{3}=\mathrm{c}, \mathrm{v}_{4}=\mathrm{d}$. W_{0} is the matrix of the relation. Hence,

$$
W_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Ch 5.4 \& 5.5

Closure: Transitive Closure
Warshall's Algorithm: Example
$\left.W_{0}=\begin{array}{|l|lll|}\hline 0 & 0 & 0 & 1 \\ \hline & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& k=3 \\
& W_{3}= \\
& \hline 1
\end{aligned} \begin{array}{lll|l|l|}
0 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 1 \\
\hline
\end{array}
$$

$$
k=4=\left[\begin{array}{c|c|c|c}
1 & 0 & 1 & 1 \\
\hline 1 & 0 & 1 & 1 \\
\hline 1 & 0 & 1 & 1 \\
\hline 1 & 0 & 1 & 1
\end{array}\right]
$$

Closure: Theorem

- Let R be binary relation on a nonempty set A
- $r(R)=R \cup D$
where D is diagonal relation $=\{(x, x) \mid x \in R\}$
- $s(R)=R U R^{-1}$
where R^{-1} is inverse $=\{(y, x) \mid(x, y) \in R\}$
- $t(R)=R^{*}$
where \mathbf{R}^{*} is connectivity relation $=\bigcup_{k=1}^{|A|} R^{k}$

Closure: Theorem

- Let R be binary relation on a nonempty set A
- If R is reflexive, $r(R)=R$
- If R is symmetric, $s(R)=R$
- If R is transitive, $t(R)=R$

Closure: Theorem

- Let R be binary relation on a nonempty set A
- If R is reflexive, $s(R)$ and $t(R)$ are reflexive
- If R is symmetric, $t(R)$ and $r(R)$ are symmetric
- If R is transitive, $r(R)$ is transitive

Closure: Theorem

- Suppose R is transitive, is $s(R)$ transitive?
- Let $R=\{(1,2),(3,2)\}$
- R is transitive
- $s(R)=\{(1,2),(2,1),(3,2),(2,3)\}$
- $s(R)$ is not transitive

Closure: Theorem

- Let R be binary relation on a nonempty set A
- If R is reflexive, $s(R)$ and $t(R)$ are reflexive
- If R is symmetric, $t(R)$ and $r(R)$ are symmetric
- If R is transitive, $r(R)$ is transitive
- $r(s(R))=s(r(R))$?
- $r(t(R))=t(r(R))$?
- $s(t(R))=t(s(R))$?

Closure: Theorem

- Do the closure operations distribute
- over the set operations?
- over inverse?
- over complement?
- over set inclusion?
- Example:

$$
\begin{aligned}
& =t\left(R_{1}-R_{2}\right)=t\left(R_{1}\right)-t\left(R_{2}\right) ? \\
& =\quad r\left(R^{-1}\right)=(r(R))^{-1} ?
\end{aligned}
$$

Equivalence

- What is Equivalence?

- What properties the equivalence should have?

Reflexive	Inreflovine	Transitive
Symmetric	Asymetic	Antisymenetiric

Equivalence

" How to represent "2" in clock system?
" How to represent "14" in clock system?

- Clock System is Arithmetic modulo 12
-"2", "14", "26", "38"... are equivalence in clock system

Equivalence Relations

- Definition

A relation R on a set A is an equivalence relation iff R is reflexive, symmetric and transitive

Equivalence Relation

Equivalence Relations

Example 1

- Suppose that \mathbf{R} is the relation on the set of strings of English letters such that $\mathbf{a R b}$ iff $g(a)=g(b)$, where $g(x)$ is the length of the string x.
Is R an equivalence relation?
- Reflexive
- Since $g(a)=g(a)$, it follows that aRa whenever a is a string
- Symmetric
- Let aRb , so $\mathrm{g}(\mathrm{a})=\mathrm{g}(\mathrm{b})$, bRa . Therefore, $\mathrm{g}(\mathrm{b})=\mathrm{g}(\mathrm{a})$
- Transitive
- Let aRb and bRc , then $\mathrm{g}(\mathrm{a})=\mathrm{g}(\mathrm{b})$ and $\mathrm{g}(\mathrm{b})=\mathrm{g}(\mathrm{c})$, so aRc
- Consequently, R is an equivalent relation

Ch 5.4 \& 5.5

Equivalence Relations

Example 2

- Definition of Congruence
$\mathrm{b}=\mathrm{x} \cdot \mathrm{m}+\mathrm{a}$ where x is an integer $x=(b-a) / m$

$$
\mathrm{a} \equiv \mathrm{~b}(\bmod \mathrm{~m})
$$

a is congruent to b modulo m if m divides $\mathrm{a}-\mathrm{b}$

- Let m be a positive integer greater than 1 . Show that the relation $R=\{(a, b) \mid a \equiv b(\bmod$ $m)\}$ is an equivalence relation on the set of integers

Equivalence Relations

Example 2

- Reflexive

$$
\begin{aligned}
& R=\{(a, b) \mid a \equiv b(\bmod m)\} \\
& b=x \cdot m+a \\
& \quad \text { where } x \text { is an integer } \\
& x=(b-a) / m
\end{aligned}
$$

- $\mathrm{a}-\mathrm{a}=0$ is divisible by m , hence, $\mathrm{a} \equiv \mathrm{a}(\bmod \mathrm{m})$
- Symmetric
- Suppose that $(a, b) \in R$, so $x=(b-a) / m$, where x is an integer
- $(-x)=(a-b) / m,-x$ is also an integer, $(b, a) \in R$
- Transitive
- Suppose that $(a, b) \in R$ and $(b, c) \in R$
- $x m=(b-a)$ and $y m=(c-b), x$ and y are integers
- $a-c=x m+y m=(x+y) m, x+y$ is also an integer
- Thus, $(a, c) \in R$

Ch 5.4 \& 5.5

Equivalence Relations

Example 3

- Show that the "divides" relation on the set of positive integers is an equivalence relation.
- "Divide" relation is not symmetric
- E.g., 2 divide 4 but 4 does not divide 2
- It is not an equivalence relation

Equivalence

- Two elements a and b that are related by an equivalence relation are called equivalent
- Notation: a ~ b

Equivalence: Examples

- R is the relation on the set of strings of English letters, where $a R b$ iff $g(a)=g(b)$ and $g(x)$ is the length of the string x
- "Peter" ~ "Susan"
- "Ann" ~ "May"
- $R=\{(a, b) \mid a \equiv b(\bmod m)\}$ on the set of integers
- For m = 7, 5 ~ 12
- For $m=12,14 \sim 2$

Equivalence Classes

- Definition

Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a

- Example (clock system)
- "2", "14", "26", "38"... are equivalence
- Therefore, they form an equivalence class

Equivalence Classes

- The equivalence class of a with respect to R is denoted by $[a]_{R}$

$$
[a]_{R}=\{s \mid(a, s) \in R\}
$$

- If $b \in[a]_{R}, b$ is called a representative of this equivalence class

Equivalence Classes

Example 1

$$
[a]_{R}=\{s \mid(a, s) \in R\}
$$

- Equivalence class of
- [a] = \{a, b, c $\}$
- [b] = \{a, b, c $\}$
- $[\mathrm{c}]=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $[\mathrm{a}]=[\mathrm{b}]=[\mathrm{c}]$

- [d] = \{d\}

Equivalence Classes

Example 2

$[\mathrm{a}]_{\mathrm{R}}=\{\mathrm{s} \mid(\mathrm{a}, \mathrm{s}) \in \mathrm{R}\}$

- $R=\{(a, b) \mid a \equiv b(\bmod m)\}$ is an equivalence relation on the set of integers, where m be a positive integer greater than 1
- Let $m=5$

$$
\begin{aligned}
& =R=\{(a, b) \mid a \equiv b(\bmod 5)\} \\
& =[0]=\{\ldots,-10,-5,0,5,10, \ldots\} \\
& =[1]=\{\ldots,-9,-4,1,6,11, \ldots\} \\
& =[a]=\{\ldots, a-10, a-5, a, a+5, a+10, \ldots\}
\end{aligned}
$$

- General Case, for any m,

$$
=[a]=\{\ldots, a-2 m, a-m, a, a+m, a+2 m, \ldots\}
$$

Equivalence Classes

Example 3

$$
[a]_{R}=\{s \mid(a, s) \in R\}
$$

- R is the relation on the set of strings of English letters, where $a R b$ iff $g(a)=g(b)$ and $g(x)$ is the length of the string x
- [e] = \{a, b, c, ..., z \}
- [Susan] = \{ happy, email, ... \}
- For any a,
[a] = the set of all strings of the same length as a

Equivalence Classes

Theorem: Proof

```
1. aRb
2. [a] = [b]
- Show (1) implies (2)
- Assume that aRb
- Suppose c \(\in\) [a]. Then aRc
- As \(a R b\) and \(R\) is symmetric, we have bRa
- Furthermore, since \(R\) is transitive and bRa and aRc, it follows that bRc
- Hence, \(c \in[b]\)
- This shows that \([\mathrm{a}] \subseteq[\mathrm{b}]\)
- The proof that \([b] \subseteq[a]\) is similar.
- Show (2) implies (3)
- Assume that \([\mathrm{a}]=[\mathrm{b}]\)
- It follows that \([\mathrm{a}] \cap[\mathrm{b}] \neq \varnothing\) since \([\mathrm{a}]\) is nonempty

Ch 5.4 \& 5.5

\section*{Equivalence Classes \\ Theorem: Proof}
- Show that (3) implies (1)
```

1. aRb
2. [a] = [b]
3. }[\textrm{a}]\cap[b]\not=
```
- Suppose that \([\mathrm{a}] \cap[\mathrm{b}] \neq \varnothing\)
- Then there is an element \(c \in[a]\) and \(c \in[b]\)
- In other words, aRc and bRc
- By the symmetric property, cRb
- Then by transitive, since aRc and cRb, we have aRb.
- Since (1) implies (2),(2) implies (3), and (3) implies (1), the three statements are equivalent.

\section*{Equivalence Classes \& Partitions}
- Definition

Let \(\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}\) be a collection of subsets of A. The collection forms a partition of \(A\) if the subsets are
1. Nonempty
\[
\mathrm{S}_{\mathrm{i}} \neq \varnothing
\]
2. Disjoint
\[
\mathrm{S}_{\mathrm{i}} \cap \mathrm{~S}_{\mathrm{j}}=\varnothing \text { if } \mathrm{i} \neq \mathrm{j}
\]
3. Exhaust \(A\) \(\bigcup_{i=1}^{n} S_{i}=A\)


\section*{Equivalence Classes \& Partitions}

\section*{Theorem 1}
- Let \(R\) be an equivalent relation on a set \(A\). Then the equivalence classes of \(R\) form a partition of \(A\)
- Conversely, given a partition \(\left\{\boldsymbol{S}_{\boldsymbol{i}} \mid \boldsymbol{i} \in \mathbf{C}\right\}\) of the set A , there is an equivalence relation R that has the sets \(S_{i}\), where \(\boldsymbol{i} \in \mathbf{C}\), as its equivalence classes

\section*{Equivalence Classes \& Partitions}

\section*{Theorem 2}
- Equivalence classes of an equivalence relation \(R\) partition the set \(A\) into disjoint nonempty subsets whose union is entire set
- This partition is denoted \(A / R\) and called
- Quotient set, or
- Partition of A induced by R, or
- A modulo R
- The partition is a set of equivalence classes whose union is the entire set

Ch 5.4 \& 5.5

\section*{Equivalence Classes \& Partitions}

\section*{Example 1}
- What are the sets in the partition of the integers arising from congruence modulo 4?
- There are four congruence classes, corresponding to \([0]_{4},[1]_{4},[2]_{4}\) and \([3]_{4}\).
- \([0]_{4}=\{\ldots,-8,-4,0,4,8, \ldots\}\)
- \([1]_{4}=\{\ldots,-7,-3,1,5,9, \ldots\}\)
- \([2]_{4}=\{\ldots,-6,-2,2,6,10, \ldots\}\)
- \([3]_{4}=\{\ldots,-5,-1,3,7,11, \ldots\}\)
- The quotient set: \(\mathrm{Z} / \mathrm{R}=\left\{[0]_{4},[1]_{4},[2]_{4},[3]_{4}\right\}\)

\section*{Equivalence Classes \& Partitions}

\section*{Example 2}
- Let \(A=\{1,2,3\}\), give all the possible partitions on A .

\{\{1,2,3\}\}

\(\{\{1\},\{2,3\}\}\)

\(\{\{2\},\{1,3\}\}\)

\(\{\{3\},\{1,2\}\}\)

\{11\}, \{2\}, \{3\}\}

\section*{Equivalence Classes \& Partitions}

\section*{Theorem 3}
- Let R be a relation on A .

Reflexive, Symmetric, Transitive closure of R, \(\operatorname{tsr}(R)=t(s(r(R)))\), is an equivalence relation on \(A\), called the equivalence relation induced by \(R\)

\section*{Equivalence Classes \& Partitions}

\section*{Example 3}
- List the ordered pairs in the equivalence relation \(R\) produced by the partition \(A_{1}=\{1,2,3\}, A_{2}=\{4,5\}\), and \(A_{3}=\{6\}\) of \(S=\{1,2,3,4,5,6\}\)
- For \(A_{1}\) : (1,2), (1,3), (2,3), (2,1), (3,1), (3,2), \((1,1),(2,2),(3,3)\)
- For \(A_{2}\) : \((4,5),(5,4),(4,4),(5,5)\)
- For \(A_{3}\) : \((\mathbf{6}, 6)\)

Equivalence Classes \& Partitions Theorem 3
- \(\mathrm{t}(\mathrm{s}(\mathrm{r}(\mathrm{R})))\)
1. \(r(R)\)
2. \(s(r(R))\)
3. \(t(s(r(R)))\)


\section*{Equivalence Classes \& Partitions}

\section*{Theorem 3: Proof}
- Proof: \(\operatorname{tsr}(R)\) is an equivalence relation
- Reflexive
- When constructing \(r(R)\), a loop is added at every element in A, therefore, \(\operatorname{tsr}(R)\) must be reflexive
- Symmetric
- If there is an edge ( \(x, y\) ) then the symmetric closure of \(r(R)\) ensures there is an edge \((y, x)\)

\section*{Equivalence Classes \& Partitions}

Theorem 3

\section*{- Transitive}
- When we construct the transitive closure of \(\operatorname{sr}(\mathrm{R})\), an edge \((a, c)\) is added if \((a, b)\) and \((b, c)\)
- \(\operatorname{tsr}(\mathrm{R})\) must be transitive
- As \(\operatorname{sr}(R)\) is symmetric, if \((a, b)\) and (b, c) in \(\operatorname{sr}(R)\), (b, a) and (c, b) are also in \(\operatorname{sr}(\mathrm{R})\). Therefore, another edge (c, a) is also added
- It guarantees that \(\operatorname{tsr}(\mathrm{R})\) is symmetric```

