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Agenda Closure

5.4 Closures of Relations
= Reflexive Closure

= Symmetric Closure

= Transitive Closure

Let R be a relation on a set A

S is called the closure of R with respect to
property P if

= S with property P

5.5 Equivalence Relations = S is a subset of every relation with property P
= Equivalence Relations containing R

= Equivalence Class Minimum terms are added to R to fulfill the
o requirements of property P
= Partition
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Closure qj‘e‘
Reflexive Closure

"Va((a,a) eR)

Symmetric Closure .
= va Vb (((a, b)eR) - ((b, a)eR)) e

Transitive Closure =
= Yavbvce ( ((a,b)eRa(b,c)eR) - ((a,c)eR))
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Closure

Reflexive Closure
r(R) denotes the reflexive closure of R

How to create a reflexive closure for R?
= Graphical view

Add loop for each element
= Mathematical View

Let D (or I) be the diagonal relation (equality
relation) on R, where D = {(x, x) | x € R}

The reflexive closure of RisRuD

Ch54&5.5 7

Closure

Reflexive Closure: Example
R={(1,1), (1,2), (2,1), (3,2)}
on the setA={1, 2, 3}
R is not reflexive

1 2 How can we produce a

COOOO reflexive relation containing
R that is as small as possible?
= Add (2,2) and (3,3)
R ={(1,1), (1,2), (2,1), (3,2),

3 (2,2), (3,3)}

R’ is reflexive closure of R

= Any reflexive relation that
contains R must contain R’
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Closure

Symmetric Closure: Example

R={(12), (1,2), (2,2), (2,3),
(3,1), (3,2)yon {1, 2, 3}

R is not symmetric
1 2 How can we produce a
QO symmetric relation containing R
that is as small as possible?
= Add (2,1) and (1,3)
R ={(1,2), (1,2), (2,2), (2,3),
(3,1), (3,2), (2,1), (1,3)}

R’ is symmetric closure of R

= Any symmetric relation that
contains R must contain R’
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Closure

Symmetric Closure
s(R) denotes the symmetric closure of R

How to create a symmetric closure for R?
= Graphical view

Add edges in the opposite direction
= Mathematical View

Let R be the inverse of R,
where R = {(y,x) | (x,y) € R}

The symmetric closure of R is R U R

Theorem: R is symmetric iff R = R-"
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Closure

Transitive Closure
t(R) denotes the transitive closure of R

How to create a transitive closure for R?

= Graphical view

If there is a path from a to b and b to c,
add an edge fromatoc b

However, it is not easy aa/' ? o°
Example: \ /

=

—

= Mathematical View
Transitive Closure of R is R*
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Closure

Transitive Closure: Example

R = {(1 ;2); (1 ’3)’ (2’3)’ (3’4)}
1 2
o
4

on {1,2,3,4}
R is not transitive

How can we produce a
transitive relation containing
R that is as small as possible?

= Add (1,4), (2,4)

R’ ={(1,2), (1,3), (2,3), (3,4),
(1,4), (2,4);

R’ is transitive closure of R

= Any transitive relation that

contains R must also contain R’

Closure

Transitive Closure

The connectivity relation of the relation R,
denoted R*, is the union of R, where i =
1,2,3,...

Transitive Closure of R is R*
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Closure

Transitive Closure

Theorem
IfRcS,thenRoScSo0oS

Theorem
If R is transitive then so is R"

Theorem
R is transitive if R c Rforn >0

Ch54&5.5
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Closure *

[ R =| |R"
Transitive Closure U1

Proof: 1. R* is a transitive relation

= Suppose (x, y) and (y, z) are in R*
Show (x, z) is in R*

= By definition of R*, (x, y) is in R™ for some m
and (y, z) is in R" for some n.

= Then (x, z) is in R" o R™ = R™*" which is
contained in R*

= Hence, R* must be transitive

Proof: 2. R* contains R
= The proof is obvious by the definition of R*
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Closure

Transitive Closure

Proof: Transitive Closure of R is R*
1. R* is a transitive relation
2. R* contains R

3. R* is the smallest transitive relation which
contains R

Ch54&5.5
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Closure *

Transitive Closure e

Proof: 3. R* is the smallest transitive relation
which contains R

= Now suppose S is any transitive relation that contains

R Theorem:
= Show S contains R* R is transitive iff R" = R forn > 0

= Since S is transitive, S" < S

» For the power is 2,
RZ2=RoRcSoRcSoS

Theorem:
IfRcS,thenRoSc=So0S

= |t is true for n, R" <= Sn
= Therefore R" = S" = S for all n

= Hence S must contain R* since it must also contain the
union of all the powers of R
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Closure

Transitive Closure
How can we calculate the infinite union?

Infinity
R = 8}3"

n=1

= |f it is necessary to calculate all R"?
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Closure

Transitive Closure

Let A be a set with n elements, and let R be a
relation on A

If there is a path from a to b, then the length
of this path will not exceed n

tq—""1 : o
=0

—
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Closure

Transitive Closure
A path of length n in a digraph G is a
sequence of edges (X, X4),(Xq, X5),--+5 (X115 Xp)

A cycle is a path with
starting point (x,) = end point (x,,)

ao//'fg\e

a>e>f>d Path

\ —> 0 Length =3

c {) a>e>b>c Not a path
c>f>d>c Cycle

dé— i Length =3

Ch54&5.5 18

Proof
= Suppose there is a path fromatobin R

= Let m be the length of the shortest path, which is x,, x;,
Xoy ooy X1y Xy Where x, =aand x,, = b

= Assume m > n

= Because n vertices in A and there are m vertices in the
path, at least two vertices in the path are equal

= Suppose that x; = x; with 0 <i <j<m

= There is a path contained a cycle from x; to itself (x))

= This cycle can be removed to shorten the path

* Hence, the shortest length must be less than or equal

ton Y.
X O=> - Q2
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Closure

Transitive Closure

From the Theorem, we know that Rk for k > n
does not contain any edge that does not
already appear in the first n powers of R

Assume R is the relation on set A

R UR" URk
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Closure

Transitive Closure: Example

Find the zero-one matrix of the transitive
closure of the relation R where

[E—"

1 0 1 111 111
M,={0 1 0| M ?={0 1 0] M={0 10
1 10 111 111
M, =M,vM'v M
1 0 1] [1 1 1] [t 1 1] 111
=0 1 0[v|0 1 O|v|0O 1 0|=|0 1 0
11 11

of (1 1 1| (1 1 1
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Closure

Transitive Closure

Theorem

Let Mg be the zero-one matrix of the relation
R on a set with n elements. Then the zero-
one matrix of the transitive closure R* is

— A [2] [3] [7]
M, =My VvMg~vMg v---v M

Remark : MRk :Mg‘]
M, =M}
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Closure: Transitive Closure

Warshall’s Algorithm

Warshall’s Algorithm can reduce the complexity of
R* calculation

For the path
E|x1, Xoy «eny xm_1||E|

the interior vertices are x,, X,, ..., X1
= All the vertices of the path except the first and last

vertices
v,y v,
LA

A v,

Ch54&5.5 24



Closure: Transitive Closure

Warshall’s Algorithm

Warshall’s algorithm is based on the construction

of a sequence of zero-one matrices, Wy, W, ..., W,
where W,=Mg
_wll(k) wlz(k) ] \8 p: w(0)= 0
W, = Wz{(k) : w,(1)= 0
' Wij(k) -
. < ° wi(2)=1
i | V3 V4

w;(k) = 1 if there is a path from v, to v; such that all
the interior vertices of this path are |n the set {v,,
V,, ..., Vi}; Otherwise is 0
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Closure: Transitive Closure

Warshall’s Algorithm: Example

Find the matrices W,, W,, W,, W; and W, for
the R shown in the directed graph

Let v,=a, v,=b, v;=c, v,=d.

o —— W, is the matrix of the relation.
Hence,
[0 0 0 1]
St o 10
‘ © M=l 0 0
0 0 1 0
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Closure: Transitive Closure

Warshall’s Algorithm

The (i,j)" entry of M. is 1 iff there is a path
from v, to v with all the interior vertices in the
set {v1, Vy, ..., V), therefore, W _= M.

Algorithm
= W, = Mg
= Fork=1...n
Update each element in W, by using:
(k] _ ., [k-1] [k—1]

Wi =w v (g AW

[k-1]
j )
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Closure: Transitive Closure

Warshall’s Algorithm: Example

010 O

[5-1] LY INCEY
V(Wi AW )

W, =

1
010
0 0 1
010

o O |o) O
= O I=-] O
O Al -

I

w N
o= - O
o o] ©O O
= IOl -~ O
Ol - -

W, is the matrix of
the transitive closure L . L _

W, =

olo o o
~lo =~ o
N
NN
o o o o
alalala
alalala

d o} L _
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Closure: Theorem

Let R be binary relation on a nonempty set A
»r(R)=RUD
where D is diagonal relation = {(x, x) | x € R}
= s(R)= RUR-
where R is inverse = {(y,x) | (x,y) € R}
= {(R) = R* Y

where R* is connectivity relation = URk
k=1
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Closure: Theorem

Let R be binary relation on a nonempty set A
= If R is reflexive, s(R) and t(R) are reflexive

» If R is symmetric, t(R) and r(R) are symmetric
» |If R is transitive, r(R) is transitive

Ch54&5.5 31

Closure: Theorem

Let R be binary relation on a nonempty set A
= If R is reflexive, r(R) = R
* If R is symmetric, s(R)

=R
» If R is transitive, {(R) = R

Ch54&5.5 30

Closure: Theorem

Suppose R is transitive, is s(R) transitive?

Let R={(1,2),(3,2)}

R is transitive

s(R)={(1.2), (2,1), (3,2), (2,3)}
s(R) is not transitive

Ch54&5.5 32



Closure: Theorem

Let R be binary relation on a nonempty set A

= If R is reflexive, s(R) and t(R) are reflexive
» If R is symmetric, t(R) and r(R) are symmetric
» |If R is transitive, r(R) is transitive

" r(s(R)

" 1(4(R)
" s(t(R)

Ch54&5.5

= s( r(R ’)?’? &
)?x
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Closure: Theorem

Do the closure operations distribute

Ch54&5.5

over the set operations?
over inverse?

over complement?

over set inclusion?

Example:
t(Ry - Ry) =t(Ry) - t(Ry) ?
r(R")=(r(R))"?

35

Closure: Theorem
Proof r( s(R) ) = s( r(R) )

s(r(R))=s(RUD) whereD={(x,x)|x <R}

Ch54&5.5

=(RUD) U (R U D)
=(RUD) U (R'UD")
=(RUR") U (D UD")
=s(R)UD

=r(s(R))

34

Equivalence

What is Equivalence?

What properties the equivalence should have?

Ch54&5.5

Reflexive — “Treflesdve Transitive
Symmetric ~ AsymmeiriC  Antisyrearetiic



Equivalence
How to represent “2” i 12§
in clock system? 10 I/ 2
3
How to represent “14” 93 A
in clock system? 7 ¢ 5
. ti 12 ¢
Clock System is 10 [/ 2
Arithmetic modulo 12 9 3
“2H, “14H, “26”, “38H'.. are 8 7 5 4

equivalence in clock system
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Equivalence Relations
Example 1

Suppose that R is the relation on the set of strings of English
letters such that aRb iff g(a)=g(b), where g(x) is the length
of the string x.

Is R an equivalence relation?

Reflexive
= Since g(a)=g(a), it follows that aRa whenever a is a string

Symmetric
= Let aRb, so g(a)=g(b), bRa. Therefore, g(b)=g(a)

Transitive
* Let aRb and bRc, then g(a)=g(b) and g(b)=g(c), so aRc

Consequently, R is an equivalent relation
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Equivalence Relations

Definition
Arelation R on a set A is an equivalence
relation iff R is reflexive, symmetric and

transitive
b a b
d C Cg C

Equivalence Relation
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Equivalence Relations

Example 2

b=x-m+a
where x is an integer
x=(b-a)/m

Definition of Congruence
a = b (mod m)

a is congruent to b modulo m if m divides a-b

Let m be a positive integer greater than 1.
Show that the relation R ={(a,b) | a = b (mod
m) } is an equivalence relation on the set of
integers

Ch54&5.5 40



Equivalence Relations R={(a,b)|a=b(modm)}
b=x-m+a
Exa m ple 2 where X is an integer
Reflexive x = (b-a) /'m

= a—a=0isdivisible by m, hence, a =a (mod m)
Symmetric

= Suppose that (a, b)eR, so x = (b-a)/m, where x is an integer

= (-x) = (a-b)/ m, -x is also an integer, (b, a)eR
Transitive

= Suppose that (a,b) e Rand (b,c) e R

= xm = (b-a) and ym = (c-b), x and y are integers

* a-c = xm+ym = (x+y)m, x+y is also an integer

= Thus, (a, c)eR
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Equivalence

Two elements a and b that are related by an
equivalence relation are called equivalent

Notation:a~Db

l
l

l

l
O T O O T o

a b:

!
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:

l

Equivalence Relations

Example 3

Show that the "divides" relation on the set of
positive integers is an equivalence relation.

“Divide” relation is not symmetric
= E.g., 2 divide 4 but 4 does not divide 2

It is not an equivalence relation
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Equivalence: Examples

R is the relation on the set of strings of
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x

= “Peter” ~ “Susan”
= “Annﬂ ~ “May”

R={(a,b) | a=Db (modm)} on the set of
integers

= Form=7,5~12
" Form=12,14~2

Ch54&5.5 44



Equivalence Classes

Definition

Let R be an equivalence relation on a set A.
The set of all elements that are related to an
element a of A is called the equivalence class
of a

11 12 1
Example (clock system) 10 I/ 2
= “2”, “14”, “26”’ “38”..- 9 3
are equivalence 5. g

= Therefore, they form ¢

an equivalence class
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Equivalence Classes

Example 1

Equivalence class of
= [a] ={a, b, ¢} a b
= [b] ={a, b, c}
= [c] ={a, b, c}
" [a] = [b] = [c]

[alz = {s | (a,5) € R}

&

= [d] = {d}
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Equivalence Classes

The equivalence class of a with respect to R
Is denoted by [a]g

[alzr = {s | (a,s) € R}

If b € [a]g, b is called a representative of this
equivalence class
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Equivalence Classes

Example 2

R={(a,b)| a=b (modm)}isan equivalence
relation on the set of integers, where m be a
positive integer greater than 1
"letm=5

R={(a,b)|a=b (mod5)}

[01={...,-10, -5, 0, 5,10, ... }

[M1={...,-9, -4,1,6,11,... }

[a]={ ..., a-10, a-5, a, a+5, a+10, ... }
= General Case, for any m,

[@al={..., a-2m, a-m, a, a+m, a+2m, ... }

[alz = {s | (a,5) € R}
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Equivalence Classes

Example 3

R is the relation on the set of strings of
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x

“le]={a, b,c, ...,z }

[alz = {s | (a,8) € R}

= [Susan] = { happy, email, ... }

= For any a,
[a] = the set of all strings of the same length as
a
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Equivalence Classes

R
Theorem: Proof = b]
Show (1) implies (2) [a] N [b] # &

= Assume that aRb
= Suppose ¢ € [a]. Then aRc
= As aRb and R is symmetric, we have bRa

= Furthermore, since R is transitive and bRa and aRgc, it
follows that bRc

= Hence, c € [b]
= This shows that [a] — [b]
» The proof that [b] < [a] is similar.
Show (2) implies (3)
= Assume that [a] = [b]
= |t follows that [a] N [b] # & since [a] is nonempty
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Equivalence Classes

Theorem

Let R be an equivalence relation on a
nonempty set A. The following statements
are equivalent:

1. aRb
2. [a] = [b]
3. [a] N [b] = @
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Equivalence Classes

Rb
Theorem: Proof ol = [
Show that (3) implies (1) [a] N [b] # &

= Suppose that [a] N [b] #Z

= Then there is an element ce[a] and ce[b]

= |n other words, aRc and bRc

= By the symmetric property, cRb

» Then by transitive, since aRc and cRb, we have aRb.

Since (1) implies (2),(2) implies (3), and (3) implies
(1), the three statements are equivalent.
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Equivalence Classes & Partitions

Definition
LetS,, S,, ..., S, be a collection of subsets of
A. The collection forms a partition of A if the
subsets are
1. Nonempty
S, #
2. Disjoint
SSNS;=Jifi#]
3. Exhaust A
191 5= A A
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Equivalence Classes & Partitions

Theorem 2

Equivalence classes of an equivalence
relation R partition the set A into disjoint
nonempty subsets whose union is entire set

This partition is denoted A/R and called
= Quotient set, or

= Partition of A induced by R, or

= Amodulo R

The partition is a set of equivalence classes
whose union is the entire set
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Equivalence Classes & Partitions

Theorem 1

Let R be an equivalent relation on a set A.
Then the equivalence classes of R form a
partition of A

Conversely, given a partition {S;| i € C} of the
set A, there is an equivalence relation R that
has the sets §;, where i € C, as its
equivalence classes

Ch54&5.5 54

Equivalence Classes & Partitions

Example 1

What are the sets in the partition of the
integers arising from congruence modulo 47

There are four congruence classes,
corresponding to [0],, [1],, [2], and [3],.
= [0],={...,-8,-4,0,4,8,...}

= [11, ={...,-7,-3,1,5,9,...}

= [2], ={...,6,-2,2,6,10,...}

= [3], ={...,-5,-1,3,7,11,...}

The quotient set: Z/R = { [0],, [11,, [2]4, [3]4}
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Equivalence Classes & Partitions

Example 2

Let A={1, 2, 3}, give all the possible partitions
onA.

OO QB @

{1.2.31 {11 {23} {2h{1.3} {3hL{1.2} {1} {2}, {3}
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Equivalence Classes & Partitions

Theorem 3

Let R be a relation on A.

Reflexive, Symmetric, Transitive closure of R,
tsr(R) = t(s(r(R))), is an equivalence relation
on A, called the equivalence relation
induced by R

Ch54&5.5

Equivalence Classes & Partitions

Example 3

List the ordered pairs in the equivalence relation R
produced by the partition A, = {1, 2, 3}, A, = {4, 5},
and A; ={6}of S={1, 2, 3, 4, 5, 6}

For A1: (1;2); (1s3)5 (2!3)5 (2!1)5 (3!1)5 (3!2)5
(1,1), (2,2), (3,3)
For A,: (4,5), (5,4), (4,4), (5,5)

For A;: (6,6)
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Equivalence Classes & Partitions

QQI

Theorem 3
r(R)
t(s(r(R)))
1. r(R)
2. s(r(R))
3. t R
(s(r(R))) S(1(R))

&
o

a b

t(s(r(R)))

\
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Equivalence Classes & Partitions

Theorem 3: Proof

Proof: tsr(R) is an equivalence relation
» Reflexive

When constructing r(R), a loop is added at every
element in A, therefore, tsr(R) must be reflexive

= Symmetric

If there is an edge (x, y) then the symmetric
closure of r(R) ensures there is an edge (y, x)

Ch54&5.5 61

Equivalence Classes & Partitions

Theorem 3

= Transitive

When we construct the transitive closure of sr(R),
an edge (a, c) is added if (a, b) and (b, c¢)
tsr(R) must be transitive

As sr(R) is symmetric, if (a, b) and (b, c¢) in sr(R),
(b, a) and (c, b) are also in sr(R). Therefore,
another edge (c, a) is also added

It guarantees that tsr(R) is symmetric
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