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Introduction: Closures

 Is it symmetric?

 How can we produce a symmetric relation
containing R that is as small as possible?

1 2

3 4
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Closure

 Let R be a relation on a set A

 S is called the closure of R with respect to 
property P if

 S with property P

 S is a subset of every relation with property P 
containing R

 Minimum terms are added to R to fulfill the 
requirements of property P 



Ch 5.4 & 5.5 5

Closure

 Reflexive Closure

 a ( (a, a)  R )

 Symmetric Closure

 a b ( ((a, b)R)  ((b, a)R) )

 Transitive Closure

 abc ( ((a,b)R(b,c)R)  ((a,c)R))
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Closure

Reflexive Closure: Example
 R = {(1,1), (1,2), (2,1), (3,2)}

on the set A = {1, 2, 3} 

 R is not reflexive

 How can we produce a 
reflexive relation containing 
R that is as small as possible? 
 Add (2,2) and (3,3)

 R’ = {(1,1), (1,2), (2,1), (3,2), 
(2,2), (3,3)}

 R’ is reflexive closure of R
 Any reflexive relation that 

contains R must contain R’

1 2

3
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Closure

Reflexive Closure

 r(R) denotes the reflexive closure of R

 How to create a reflexive closure for R?

 Graphical view

 Add loop for each element

 Mathematical View

 Let D (or I) be the diagonal relation (equality 
relation) on R, where D = {(x, x) | x  R}

 The reflexive closure of R is R D
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Closure

Symmetric Closure: Example
 R = {(1,2), (1,2), (2,2), (2,3), 

(3,1), (3,2)} on {1, 2, 3}

 R is not symmetric

 How can we produce a 
symmetric relation containing R 
that is as small as possible?
 Add (2,1) and (1,3)

 R’ = {(1,2), (1,2), (2,2), (2,3), 
(3,1), (3,2), (2,1), (1,3)}

 R’ is symmetric closure of R
 Any symmetric relation that 

contains R must contain R’

1 2

3
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Closure

Symmetric Closure

 s(R) denotes the symmetric closure of R

 How to create a symmetric closure for R?

 Graphical view

 Add edges in the opposite direction

 Mathematical View

 Let R-1 be the inverse of R, 
where R-1 = {(y,x) | (x,y)  R}

 The symmetric closure of R is R R-1

 Theorem: R is symmetric iff R = R-1
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Closure

Transitive Closure: Example
 R = {(1,2), (1,3), (2,3), (3,4)} 

on {1,2,3,4}

 R is not transitive

 How can we produce a 
transitive  relation containing 
R that is as small as possible?
 Add (1,4), (2,4)

 R’ = {(1,2), (1,3), (2,3), (3,4), 
(1,4), (2,4)}

 R’ is transitive closure of R
 Any transitive relation that 

contains R must also contain R’

1 2

3

4
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Closure

Transitive Closure

 t(R) denotes the transitive closure of R

 How to create a transitive closure for R?

 Graphical view

 If there is a path from a to b and b to c,
add an edge from a to c

 However, it is not easy

 Example:

 Mathematical View

 Transitive Closure of R is R*

a
b

c

d

e

f
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Closure

Transitive Closure

 The connectivity relation of the relation R, 
denoted R*, is the union of Ri, where i = 
1,2,3,…

 Transitive Closure of R is R*







1

*

n

nRR
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Closure

Transitive Closure

 Theorem
If R  S, then R o S  S o S

 Theorem
If R is transitive then so is Rn

 Theorem
R is transitive iff Rn  R for n > 0
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Closure

Transitive Closure

 Proof: Transitive Closure of R is R*

1. R* is a transitive relation

2. R* contains R

3. R* is the smallest transitive relation which 
contains R
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Closure

Transitive Closure

Proof: 1. R* is a transitive relation

 Suppose (x, y) and (y, z) are in R*
Show (x, z) is in R*

 By definition of R*, (x, y) is in Rm for some m 
and (y, z) is in Rn for some n.

 Then (x, z) is in Rn o Rm = Rm+n which is 
contained in R*

 Hence, R* must be transitive

Proof: 2. R* contains R

 The proof is obvious by the definition of R*







1

*

n

nRR
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Closure

Transitive Closure
Proof: 3. R* is the smallest transitive relation 

which contains R
 Now suppose S is any transitive relation that contains 

R

 Show S contains R*

 Since S is transitive, Sn S

 For the power is 2,

R2 = R o R  S o R  S o S

 It is true for n, Rn  Sn

 Therefore Rn  Sn  S for all n

 Hence S must contain R* since it must also contain the 
union of all the powers of R

Theorem:
R is transitive iff Rn  R for n > 0







1

*

n

nRR

Theorem:
If R  S, then R o S  S o S
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Closure

Transitive Closure

 How can we calculate the infinite union? 

 If it is necessary to calculate all Ri?







1

*

n

nRR

Infinity
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Closure

Transitive Closure

 A path of length n in a digraph G is a 
sequence of edges (x0, x1),(x1, x2),...,(xn-1, xn)

 A cycle is a path with 
starting point (x0) = end point (xn)

a
b

c

d

e

f

a > e > f > d Path

c > f > d > c Cycle

a > e > b > c Not a path

Length = 3

Length = 3
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Closure

Transitive Closure

 Let A be a set with n elements, and let R be a 
relation on A

 If there is a path from a to b, then the length
of this path will not exceed n

a
b

c

d

e

f

Ch 5.4 & 5.5 20

 Proof
 Suppose there is a path from a to b in R
 Let m be the length of the shortest path, which is x0, x1, 

x2, ..., xm-1, xm, where x0 = a and xm = b
 Assume m > n
 Because n vertices in A and there are m vertices in the 

path, at least two vertices in the path are equal
 Suppose that xi = xj with 0 ≤ i < j ≤ m
 There is a path contained a cycle from xi to itself (xj)
 This cycle can be removed to shorten the path
 Hence, the shortest length must be less than or equal 

to n

x0 x1 x2 xm
… …

xi-1 xi xj+1

xi+1

xi+2

xj-1

xj-2…

xja b

xi+1
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Closure

Transitive Closure

 From the Theorem, we know that Rk for k > n
does not contain any edge that does not 
already appear in the first n powers of R

 Assume R is the relation on set A







1

*

k

kRR 
||

1

A

k

kR
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Closure

Transitive Closure

 Theorem
Let MR be the zero-one matrix of the relation 
R on a set with n elements. Then the zero-
one matrix of the transitive closure R* is 

][]3[]2[]1[
*

n
RRRRR

MMMMM  

][ :Remark k
RR

MM k 
]1[

RR MM 
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Closure

Transitive Closure: Example

 Find the zero-one matrix of the transitive 
closure of the relation R where 
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Closure: Transitive Closure

Warshall’s Algorithm

 Warshall’s Algorithm can reduce the complexity of 
R* calculation

 For the path 

a, x1, x2, …, xm-1, b, 

the interior vertices are x1, x2, …, xm-1

 All the vertices of the path except the first and last 
vertices

v1 > v2 > v4 > v3
v1 v2

v4v3

v2 > v3 > v1

v4 > v3

interior vertices
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Closure: Transitive Closure

Warshall’s Algorithm

 Warshall’s algorithm is based on the construction 
of a sequence of zero-one matrices, W0, W1, …, Wn, 
where W0=MR

 wij(k) = 1 if there is a path from vi to vj such that all 
the interior vertices of this path are in the set {v1, 
v2, …, vk}; otherwise is 0

   
 

 




























kw

kw

kwkw

W
ij

k

21

1211
v1 v2

v4v3

w14(0) =

w14(1) =

w14(2) =

0

0

1
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Closure: Transitive Closure

Warshall’s Algorithm

 The (i,j)th entry of MR* is 1 iff there is a path
from vi to vj with all the interior vertices in the 
set {v1, v2, …, vn}, therefore, Wn = MR*

 Algorithm

 W0 = MR

 For k = 1 … n

 Update each element in Wk by using:

)( ]1[]1[]1[][   k
kj

k
ik

k
ij

k
ij wwww
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Closure: Transitive Closure

Warshall’s Algorithm: Example

 Find the matrices W0, W1, W2, W3 and W4 for 
the R shown in the directed graph





















0100

1001

0101

1000

0W

 Let v1=a, v2=b, v3=c, v4=d. 
W0 is the matrix of the relation. 
Hence,

a b

cd
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Closure: Transitive Closure

Warshall’s Algorithm: Example
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0 0 0

0 1

0 0

1

1 1

1 1

10 0 0

0 0 0

0

0 0

0 0

1

1 1 1

1 1

1 0

0 0 0

0

0 0

1 0

1

1 1 1

1 1

1 1

1 0 1

0

0 1

0

1

1 1 1

1 1

1 1 1

k =1 k =2

k =3 k =4

W4 is the matrix of 
the transitive closure

i=1

i=2

i=3

i=4

a b

cd
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 r(R) =

where D is diagonal relation = {(x, x) | x  R}

 s(R) =

where R-1 is inverse = {(y,x) | (x,y)  R}

 t(R) = 

where R* is connectivity relation = 

R U D


||

1

A

k

kR


R U R-1

R*
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 If R is reflexive, r(R) =

 If R is symmetric, s(R) = R

 If R is transitive, t(R) = R

R
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 If R is reflexive, s(R) and t(R) are reflexive

 If R is symmetric, t(R) and r(R) are symmetric

 If R is transitive, r(R) is transitive
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Closure: Theorem

 Suppose R is transitive, is s(R) transitive?

 Let R= {(1,2),(3,2)}

 R is transitive

 s(R) = {(1,2), (2,1), (3,2), (2,3)}

 s(R) is not transitive
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 If R is reflexive, s(R) and t(R) are reflexive

 If R is symmetric, t(R) and r(R) are symmetric

 If R is transitive, r(R) is transitive

 r( s(R) ) = s( r(R) )?

 r( t(R) ) = t( r(R) )?

 s( t(R) ) = t( s(R) )?
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Closure: Theorem

 Proof r( s(R) ) = s( r(R) )

 s( r(R) ) = s(R U D)

= (R U D) U (R U D)-1

= (R U D) U (R-1 U D-1)

= (R U R-1) U (D U D-1)

= s(R) U D

= r( s(R) )

where D = {(x, x) | x  R}
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Closure: Theorem

 Do the closure operations distribute

 over the set operations?

 over inverse?

 over complement?

 over set inclusion?

 Example:

 t(R1 - R2) = t(R1) - t(R2) ?

 r(R-1) = ( r(R) )-1 ?
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Equivalence

 What is Equivalence?

 What properties the equivalence should have?

Reflexive Irreflexive Transitive

Symmetric Asymmetric Antisymmetric
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Equivalence

 How to represent “2” 
in clock system?

 How to represent “14” 
in clock system?

 Clock System is 
Arithmetic modulo 12

 “2”, “14”, “26”, “38”… are 
equivalence in clock system
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Equivalence Relations

 Definition
A relation R on a set A is an equivalence 
relation iff R is reflexive, symmetric and 
transitive

a b

cd

a b

cd

Equivalence Relation
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Equivalence Relations

Example 1
 Suppose that R is the relation on the set of strings of English 

letters such that aRb iff g(a)=g(b), where g(x) is the length 
of the string x. 
Is R an equivalence relation?

 Reflexive
 Since g(a)=g(a), it follows that aRa whenever a is a string

 Symmetric
 Let aRb, so g(a)=g(b), bRa. Therefore, g(b)=g(a)

 Transitive
 Let aRb and bRc, then g(a)=g(b) and g(b)=g(c), so aRc

 Consequently, R is an equivalent relation
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Equivalence Relations

Example 2

 Definition of Congruence

a ≡ b (mod m)

a is congruent to b modulo m if m divides a-b

 Let m be a positive integer greater than 1. 
Show that the relation R = { (a,b) | a ≡ b (mod 
m) } is an equivalence relation on the set of 
integers

b = x · m + a

x = (b-a) / m
where x is an integer
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Equivalence Relations

Example 2
 Reflexive

 a – a = 0 is divisible by m, hence, a ≡ a (mod m)

 Symmetric

 Suppose that (a, b)R, so x = (b-a)/m, where x is an integer

 (-x) = (a-b) / m, -x is also an integer, (b, a)R

 Transitive 

 Suppose that (a,b)  R and (b,c)  R

 xm = (b-a) and ym = (c-b), x and y are integers

 a-c = xm+ym = (x+y)m, x+y is also an integer

 Thus, (a, c)R

b = x · m + a

x = (b-a) / m
where x is an integer

R = { (a,b) | a ≡ b (mod m) }
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Equivalence Relations

Example 3

 Show that the "divides" relation on the set of 
positive integers is an equivalence relation. 

 “Divide” relation is not symmetric

 E.g., 2 divide 4 but 4 does not divide 2

 It is not an equivalence relation
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Equivalence

 Two elements a and b that are related by an 
equivalence relation are called equivalent

 Notation: a ~ b

a b

cd

a ~ b
a ~ c

b ~ c

a ~ a

b ~ b

c ~ c
d ~ db ~ a

c ~ a
c ~ b
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Equivalence: Examples

 R is the relation on the set of strings of 
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x
 “Peter” ~ “Susan”

 “Ann” ~ “May”

 R = { (a,b) | a ≡ b (mod m) } on the set of 
integers

 For m = 7, 5 ~ 12

 For m = 12, 14 ~ 2
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Equivalence Classes

 Definition
Let R be an equivalence relation on a set A. 
The set of all elements that are related to an 
element a of A is called the equivalence class 
of a

 Example (clock system)

 “2”, “14”, “26”, “38”… 
are equivalence

 Therefore, they form 
an equivalence class 
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Equivalence Classes

 The equivalence class of a with respect to R
is denoted by [a]R

[a]R = {s | (a,s)  R}

 If b  [a]R, b is called a representative of this 
equivalence class
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Equivalence Classes

Example 1

 Equivalence class of

 [a] = 

 [b] = 

 [c] =

 [a] = [b] = [c]

 [d] = 

a b

cd

[a]R = {s | (a,s)  R}

{a, b, c}

{a, b, c}

{a, b, c}

{d}
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Equivalence Classes

Example 2

 R = { (a,b) | a ≡ b (mod m) } is an equivalence 
relation on the set of integers, where m be a 
positive integer greater than 1

 Let m = 5

 R = { (a,b) | a ≡ b (mod 5) }

 [0] = {                                       }

 [1] = {                                       }

 [a] = {                                                    }

 General Case, for any m,

 [a] = {                                                            }

[a]R = {s | (a,s)  R}

0, 5, 10, …-5, …, -10,

1, 6, 11, …-4, …, -9,

a, a+5, a+10, …a-5, …, a-10,

a, a+m, a+2m, …a-m, …, a-2m,
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Equivalence Classes

Example 3

 R is the relation on the set of strings of 
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x

 [e] = {                        }

 [Susan] = {                               }

 For any a,
[a] = the set of all strings of the same length as 
a

[a]R = {s | (a,s)  R}

a, b, c, …, z

happy, email, …
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Equivalence Classes

Theorem

 Let R be an equivalence relation on a 
nonempty set A. The following statements 
are equivalent:

1. aRb

2. [a] = [b]

3. [a] ∩ [b]  
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Equivalence Classes

Theorem: Proof
 Show (1) implies (2)

 Assume that aRb

 Suppose c  [a]. Then aRc

 As aRb and R is symmetric, we have bRa

 Furthermore, since R is transitive and bRa and aRc, it 
follows that bRc

 Hence, c  [b]

 This shows that [a]  [b]

 The proof that [b]  [a] is similar.

 Show (2) implies (3)
 Assume that [a] = [b]

 It follows that [a] ∩ [b]   since [a] is nonempty

1. aRb
2. [a] = [b]
3. [a] ∩ [b]  
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Equivalence Classes

Theorem: Proof

 Show that (3) implies (1) 

 Suppose that [a] ∩ [b] 

 Then there is an element c[a] and c[b]

 In other words, aRc and bRc

 By the symmetric property, cRb

 Then by transitive, since aRc and cRb, we have aRb.

 Since (1) implies (2),(2) implies (3), and (3) implies 
(1), the three statements are equivalent.

1. aRb
2. [a] = [b]
3. [a] ∩ [b]  
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Equivalence Classes & Partitions

 Definition
Let S1, S2, ..., Sn be a collection of subsets of 
A. The collection forms a partition of A if the 
subsets are 

1. Nonempty
Si 

2. Disjoint
Si ∩ Sj =  if i  j

3. Exhaust A

U Si = A

S1

S3

S2

S4

S5

A
n

i=1
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Equivalence Classes & Partitions

Theorem 1

 Let R be an equivalent relation on a set A. 
Then the equivalence classes of R form a 
partition of A

 Conversely, given a partition {Si | i  C} of the 
set A, there is an equivalence relation R that 
has the sets Si, where i  C, as its 
equivalence classes
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Equivalence Classes & Partitions

Theorem 2

 Equivalence classes of an equivalence 
relation R partition the set A into disjoint 
nonempty subsets whose union is entire set

 This partition is denoted A/R and called

 Quotient set, or

 Partition of A induced by R, or

 A modulo R

 The partition is a set of equivalence classes
whose union is the entire set
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Equivalence Classes & Partitions

Example 1

 What are the sets in the partition of the 
integers arising from congruence modulo 4?

 There are four congruence classes, 
corresponding to [0]4, [1]4, [2]4 and [3]4. 

 [0]4 ={                          }

 [1]4 ={…,-7,-3,1,5,9,…}

 [2]4 ={…,-6,-2,2,6,10,…}

 [3]4 ={…,-5,-1,3,7,11,…}

 The quotient set: Z/R = { [0]4, [1]4, [2]4, [3]4 }

…,-8,-4,0,4,8,…
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Equivalence Classes & Partitions

Example 2

 Let A={1, 2, 3}, give all the possible partitions 
on A.

1

32

{{1,2,3}}

1

32

{{1}, {2,3}}

1

32

{{2}, {1,3}}

1

32

{{3}, {1,2}}

1

32

{{1}, {2}, {3}}
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Equivalence Classes & Partitions

Example 3

 List the ordered pairs in the equivalence relation R
produced by the partition A1 = {1, 2, 3}, A2 = {4, 5}, 
and A3 = {6} of S = {1, 2, 3, 4, 5, 6}

 For A1:

 For A2:

 For A3:

(1,2) , (1,3) , (2,3) , (2,1) , (3,1) , (3,2), 

(1,1) , (2,2) , (3,3) 

(6,6) 

(4,5) , (5,4) , (4,4) , (5,5) 
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Equivalence Classes & Partitions

Theorem 3

 Let R be a relation on A. 
Reflexive, Symmetric, Transitive closure of R, 
tsr(R) = t(s(r(R))), is an equivalence relation 
on A, called the equivalence relation 
induced by R
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Equivalence Classes & Partitions

Theorem 3

 t(s(r(R)))

1. r(R)

2. s(r(R))

3. t(s(r(R)))

a b

cd

a b

cd

a b

cd

r(R)

s(r(R))

t(s(r(R)))

a b

cd
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Equivalence Classes & Partitions

Theorem 3: Proof

 Proof: tsr(R) is an equivalence relation

 Reflexive

 When constructing r(R), a loop is added at every 
element in A, therefore, tsr(R) must be reflexive

 Symmetric

 If there is an edge (x, y) then the symmetric 
closure of r(R) ensures there is an edge (y, x)

Ch 5.4 & 5.5 62

Equivalence Classes & Partitions

Theorem 3

 Transitive 

 When we construct the transitive closure of sr(R), 
an edge (a, c) is added if (a, b) and (b, c)

 tsr(R) must be transitive

 As sr(R) is symmetric, if (a, b) and (b, c) in sr(R), 
(b, a) and (c, b) are also in sr(R). Therefore, 
another edge (c, a) is also added

 It guarantees that tsr(R) is symmetric


