Chapter 5: Relation

5.4 Closures of Relations 5.5 Equivalence Relations

Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Introduction: Closures

- Is it symmetric?
- How can we produce a <u>symmetric relation</u> <u>containing R</u> that is <u>as small as possible</u>?

- 5.4 Closures of Relations
 - Reflexive Closure
 - Symmetric Closure
 - Transitive Closure
- 5.5 Equivalence Relations
 - Equivalence Relations
 - Equivalence Class
 - Partition

Closure

Ch 5.4 & 5.5

- Let R be a relation on a set A
- S is called the closure of R with respect to property P if
 - S with property P
 - S is a subset of every relation with property P containing R
 - Minimum terms are added to R to fulfill the requirements of property P

2

Closure

- Reflexive Closure
 - ∀a ((a, a) ∈ R)

- Symmetric Closure
 - $\forall a \ \forall b \ (\ ((a, b) \in R) \rightarrow ((b, a) \in R) \)$
- Transitive Closure
 - $\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow ((a,c) \in R))$

Reflexive Closure

- r(R) denotes the reflexive closure of R
- How to create a reflexive closure for R?
 - Graphical view
 - Add loop for each element
 - Mathematical View
 - Let D (or I) be the <u>diagonal relation</u> (equality relation) on R, where D = {(x, x) | x ∈ R}
 - The reflexive closure of R is $\mathbf{R} \cup \mathbf{D}$

Reflexive Closure: Example

R = {(1,1), (1,2), (2,1), (3,2)} on the set A = {1, 2, 3}

5

Ch 5.4 & 5.5

- R is not reflexive
- How can we produce a reflexive relation containing R that is as <u>small as possible</u>?
 - Add (2,2) and (3,3)
- R' = {(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)}
- R' is reflexive closure of R
 - Any reflexive relation that contains R must contain R²

Closure Symmetric Closure: Example

- R = {(1,2), (1,2), (2,2), (2,3), (3,1), (3,2)} on {1, 2, 3}
- R is not symmetric
- How can we produce a symmetric relation containing R that is as <u>small as possible</u>?
 - Add (2,1) and (1,3)
- R' = {(1,2), (1,2), (2,2), (2,3), (3,1), (3,2), (2,1), (1,3)}
- R' is symmetric closure of R
 - Any symmetric relation that contains R must contain R'

Ch 5.4 & 5.5

Ch 5.4 & 5.5

6

Closure Symmetric Closure

- s(R) denotes the symmetric closure of R
- How to create a symmetric closure for R?
 - Graphical view
 - Add edges in the opposite direction
 - Mathematical View
 - Let \mathbb{R}^{-1} be the inverse of \mathbb{R} , where $\mathbb{R}^{-1} = \{(y,x) \mid (x,y) \in \mathbb{R}\}$
 - The symmetric closure of R is $\mathbf{R} \cup \mathbf{R}^{-1}$
- Theorem: R is symmetric iff R = R⁻¹

Closure Transitive Closure

- t(R) denotes the transitive closure of R
- How to create a transitive closure for R?
 - Graphical view
 - If there is a path from a to b and b to c, add an edge from a to c
 - However, it is not easy
 - Example:

Ch 5.4 & 5.5

9

- Mathematical View
 - Transitive Closure of R is R*

Closure Transitive Closure: Example

2

- R = {(1,2), (1,3), (2,3), (3,4)} on {1,2,3,4}
- R is not transitive
- How can we produce a transitive relation containing R that is as <u>small as possible</u>?
 - Add (1,4), (2,4)
- R' = {(1,2), (1,3), (2,3), (3,4), (1,4), (2,4)}

R' is transitive closure of R

Any transitive relation that contains R must also contain R'

Closure Transitive Closure

 The connectivity relation of the relation *R*, denoted *R**, is the union of Rⁱ, where i = 1,2,3,...

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

Transitive Closure of R is R*

Ch 5.4 & 5.5

Ch 5.4 & 5.5

1

3 🔍

10

Ch 5.4 & 5.5

Closure Transitive Closure		Closure Transitive Closure	$R^* = \bigcup_{n=1}^{\infty} R^n$
 Theorem If R ⊂ S, then R o S ⊂ S o S Theorem If R is transitive then so is Rⁿ Theorem R is transitive iff Rⁿ ⊆ R for n > 0 		 Proof: 1. R* is a transitive relation Suppose (x, y) and (y, z) are in R* Show (x, z) is in R* By definition of R*, (x, y) is in R^m for somand (y, z) is in Rⁿ for some n. Then (x, z) is in Rⁿ o R^m = R^{m+n} which contained in R* Hence, R* must be transitive 	ome m is
		 Proof: 2. R* contains R The proof is obvious by the definition of 	of <i>R</i> *
Ch 5.4 & 5.5	13	Ch 5.4 & 5.5	15
 Closure Transitive Closure of R is R* 1. R* is a transitive relation 2. R* contains R 3. R* is the smallest transitive relation which contains R 		ClosureTransitive ClosureProof: 3. R* is the smallest transitive relation which contains R• Now suppose S is any transitive relation that R• Now suppose S is any transitive relation that R• Show S contains R*• Show S contains R*• Since S is transitive, S ⁿ \subset S• For the power is 2, R ² = R o R \subset S o R \subset S o S• It is true for n, R ⁿ \subset S ⁿ	$R^* = \bigcup_{n=1}^{\infty} R^n$ tion tion t contains for n > 0 $R \circ S \subset S \circ S$
		 Therefore Rⁿ ⊂ Sⁿ ⊂ S for all n Hence S must contain R* since it must also of union of all the powers of R 	contain the

Closure Transitive Closure

How can we calculate the infinite union?

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

If it is necessary to calculate all Rⁱ?

Closure Transitive Closure

- Let A be a set with n elements, and let R be a relation on A
- If there is a path from a to b, then the length of this path will not exceed n

Closure

Transitive Closure

- A path of length n in a digraph G is a sequence of edges (x₀, x₁),(x₁, x₂),...,(x_{n-1}, x_n)
- A cycle is a path with starting point (x₀) = end point (x_n)

• • • •	
a > e > f > d	Path Length = 3
a > e > b > c	Not a path
c > f > d > c	Cycle Length = 3

Proof

Ch 5.4 & 5.5

- Suppose there is a path from a to b in R
- Let m be the length of the shortest path, which is x₀, x₁, x₂, ..., x_{m-1}, x_m, where x₀ = a and x_m = b
- Assume m > n
- Because n vertices in A and there are m vertices in the path, at least two vertices in the path are equal
- Suppose that $x_i = x_j$ with $0 \le i \le j \le m$
- There is a path contained a cycle from x_i to itself (x_i)
- This cycle can be removed to shorten the path
- Hence, the shortest length must be less than or equal to n

Ch 5.4 & 5.5

18

Ch 5.4 & 5.5

17

Closure Transitive Closure

- From the Theorem, we know that R^k for k > n does not contain any edge that does not already appear in the first n powers of R
- Assume R is the relation on set A

$$R^* = \bigcup_{k=1}^{\infty} R^k = \bigcup_{k=1}^{|A|} R^k$$

Ch 5.4 & 5.5

Closure Transitive Closure

Theorem

Let M_R be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R* is

$$M_{R^*} = M_R^{[1]} \vee M_R^{[2]} \vee M_R^{[3]} \vee \cdots \vee M_R^{[n]}$$

Remark:
$$M_{R^k} = M_R^{[k]}$$

 $M_R = M_R^{[1]}$

Transitive Closure: Example

 Find the zero-one matrix of the transitive closure of the relation R where

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \qquad M_{R}^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad M_{R}^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
$$M_{R^{*}} = M_{R} \lor M_{R}^{[2]} \lor M_{R}^{[3]}$$
$$M_{R^{*}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \lor \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \lor \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Closure: Transitive Closure Warshall's Algorithm

- Warshall's Algorithm can reduce the complexity of R* calculation
- For the path

a x₁, x₂, ..., x_{m-1} b

the interior vertices are $x_1, x_2, ..., x_{m-1}$

All the vertices of the path except the first and last vertices

Ch 5.4 & 5.5

Closure: Transitive Closure Warshall's Algorithm

 Warshall's algorithm is based on the construction of a sequence of zero-one matrices, W₀, W₁, ..., W_n, where W₀=M_R

$$W_{k} = \begin{bmatrix} w_{11}(k) & w_{12}(k) & \dots & \dots \\ w_{21}(k) & \ddots & & \vdots \\ \vdots & & w_{ij}(k) & \vdots \\ \vdots & & \dots & \ddots \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & w_{14}(0) = 0 \\ w_{14}(1) = 0 \\ v_{3} & v_{4} & w_{14}(2) = 1 \end{bmatrix}$$

w_{ij}(k) = 1 if there is a path from *v_i* to *v_j* such that all the interior vertices of this path are in the set {*v₁*, *v₂*, ..., *v_k*}; otherwise is 0

Closure: Transitive Closure Warshall's Algorithm: Example

 Find the matrices W₀, W₁, W₂, W₃ and W₄ for the R shown in the directed graph

 Let v₁=a, v₂=b, v₃=c, v₄=d.
 W₀ is the matrix of the relation. Hence,

 $W_0 = \begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$

27

Ch 5.4 & 5.5

25

26

Closure: Transitive Closure Warshall's Algorithm

- The (i,j)th entry of M_{R*} is 1 iff there is a path from v_i to v_j with all the interior vertices in the set {v₁, v₂, ..., v_n}, therefore, W_n = M_{R*}
- Algorithm

Ch 5.4 & 5.5

- W₀ = M_R
- For k = 1 ... n
 - Update each element in W_k by using:

$$w_{ij}^{[k]} = w_{ij}^{[k-1]} \vee (w_{ik}^{[k-1]} \wedge w_{kj}^{[k-1]})$$

Closure: Transitive Closure Warshall's Algorithm: Example

Closure: Theorem

Let R be binary relation on a nonempty set A
r(R) = R U D

where **D** is **diagonal relation** = $\{(x, x) | x \in R\}$

■ s(R) = R U **R**⁻¹

where **R**-1 is <u>inverse</u> = { $(y,x) | (x,y) \in R$ }

t(R) = R*

where **R*** is **<u>connectivity relation</u>** = $\bigcup R^k$

Closure: Theorem

- Let R be binary relation on a nonempty set A
 - If R is reflexive, s(R) and t(R) are reflexive
 - If R is symmetric, t(R) and r(R) are symmetric
 - If R is transitive, r(R) is transitive

Ch 5.4 & 5.5

Closure: Theorem

- Let R be binary relation on a nonempty set A
 - If R is reflexive, r(R) = R
 - If R is symmetric, s(R) = R
 - If R is transitive, t(R) = R

Closure: Theorem

- Suppose R is transitive, is s(R) transitive?
- Let R= {(1,2),(3,2)}
- R is transitive
- s(R) = {(1,2), (2,1), (3,2), (2,3)}
- s(R) is not transitive

29

Ch 5.4 & 5.5

Closure: Theorem

- Let R be binary relation on a nonempty set A
 - If R is reflexive, s(R) and t(R) are reflexive
 - If R is symmetric, t(R) and r(R) are symmetric
 - If R is transitive, r(R) is transitive
 - r(s(R)) = s(r(R))?
 r(t(R)) = t(r(R))?
 s(t(R)) = t(s(R))?

Closure: Theorem

- Do the closure operations distribute
 - over the set operations?
 - over inverse?
 - over complement?
 - over set inclusion?
 - Example:
 - $t(R_1 R_2) = t(R_1) t(R_2)$?
 - r(R⁻¹) = (r(R))⁻¹ ?

Ch 5.4 & 5.5

Closure: Theorem

Proof r(s(R)) = s(r(R))

•
$$s(r(R)) = s(R \cup D)$$
 where $D = \{(x, x) | x \in R\}$
= $(R \cup D) \cup (R \cup D)^{-1}$
= $(R \cup D) \cup (R^{-1} \cup D^{-1})$
= $(R \cup R^{-1}) \cup (D \cup D^{-1})$
= $s(R) \cup D$
= $r(s(R))$

Equivalence

33

34

Ch 5.4 & 5.5

Ch 5.4 & 5.5

What is Equivalence?

What properties the equivalence should have?

Reflexive Inclexive Symmetric Asymmetric

Transitive

Anusymmetric

Equivalence

- How to represent "2" in clock system?
- How to represent "14" in clock system?
- Clock System is Arithmetic modulo 12
- "2", "14", "26", "38"... are equivalence in clock system

37

9

Equivalence Relations Example 1

- Suppose that R is the relation on the set of strings of English letters such that **aRb** iff g(a)=g(b), where g(x) is the length of the string x. Is R an equivalence relation?
- Reflexive
 - Since g(a)=g(a), it follows that aRa whenever a is a string
- Symmetric
 - Let aRb, so g(a)=g(b), bRa. Therefore, g(b)=g(a)
- Transitive

Ch 5.4 & 5.5

- Let aRb and bRc, then g(a)=g(b) and g(b)=g(c), so aRc
- Consequently, R is an equivalent relation

Ch 5.4 & 5.5

Equivalence Relations

Definition

A relation R on a set A is an equivalence relation iff R is reflexive, symmetric and transitive

Equivalence Relations Example 2

 $b = x \cdot m + a$ where x is an integer x = (b-a) / m

Definition of Congruence

$a \equiv b \pmod{m}$

- a is congruent to b modulo m if m divides a-b
- Let m be a positive integer greater than 1. Show that the relation $R = \{ (a,b) \mid a \equiv b \pmod{n} \}$ m) } is an equivalence relation on the set of integers

38

Equivalence Relations Example 2

 $R = \{ (a,b) \mid a \equiv b \pmod{m} \}$ b = x · m + a where x is an integer x = (b-a) / m

- Reflexive
 - a a = 0 is divisible by m, hence, $a \equiv a \pmod{m}$
- Symmetric
 - Suppose that (a, b)∈R, so x = (b-a)/m, where x is an integer
 - (-x) = (a-b) / m, -x is also an integer, (b, a)∈R
- Transitive

Ch 5.4 & 5.5

- Suppose that $(a,b) \in R$ and $(b,c) \in R$
- xm = (b-a) and ym = (c-b), x and y are integers
- a-c = xm+ym = (x+y)m, x+y is also an integer
- Thus, (a, c)∈R

Equivalence

- Two elements a and b that are related by an equivalence relation are called equivalent
- Notation: a ~ b

a~a c~a a~b c~b a~c c~c b~a d~d b~b b~c

Ch 5.4 & 5.5

41

Equivalence Relations Example 3

- Show that the "divides" relation on the set of positive integers is an equivalence relation.
- "Divide" relation is not symmetric
 - E.g., 2 divide 4 but 4 does not divide 2
- It is not an equivalence relation

Equivalence: Examples

- R is the relation on the set of strings of English letters, where aRb iff g(a)=g(b) and g(x) is the length of the string x
 - "Peter" ~ "Susan"
 - "Ann" ~ "May"
- R = { (a,b) | a = b (mod m) } on the set of integers
 - For m = 7, 5 ~ 12
 - For m = 12, 14 ~ 2

Ch 5.4 & 5.5

Equivalence Classes

Definition

Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a

- Example (clock system)
 - "2", "14", "26", "38"...
 are equivalence
 - Therefore, they form an equivalence class

45

Equivalence Classes Example 1

- Equivalence class of
 - [a] = {a, b, c}
 - [b] = {a, b, c}
 - [c] = {a, b, c}
 - [a] = [b] = [c]

• [d] = {d}

Equivalence Classes

 The equivalence class of a with respect to R is denoted by [a]_R

 $\textbf{[a]}_{\mathsf{R}} \texttt{=} \{ \texttt{s} \mid (\texttt{a},\texttt{s}) \in \mathsf{R} \}$

If b ∈ [a]_R, b is called a representative of this equivalence class

Equivalence Classes Example 2

Ch 5.4 & 5.5

 $\textbf{[a]}_{\mathsf{R}} \texttt{=} \{ \texttt{s} \mid (\texttt{a},\texttt{s}) \in \mathsf{R} \}$

- R = { (a,b) | a = b (mod m) } is an equivalence relation on the set of integers, where m be a positive integer greater than 1
 - Let m = 5
 - R = { (a,b) | a ≡ b (mod 5) }
 - **[**0] = { ..., **-10**, **-5**, **0**, **5**, **10**, ... }
 - **•** [1] = { ..., **-9**, **-4**, **1**, **6**, **11**, ... }
 - [a] = { ..., a-10, a-5, a, a+5, a+10, ... }
 - General Case, for any m,

[a] = { ..., a-2m, a-m, a, a+m, a+2m, ... }

Ch 5.4 & 5.5

46

 Equivalence Classes [a]_R = {s (a,s) ∈ R} R is the relation on the set of strings of English letters, where aRb iff g(a)=g(b) and g(x) is the length of the string x [e] = { a, b, c,, z } [Susan] = { happy, email, } For any a, [a] = the set of all strings of the same length as a 	Equivalence Classes Theorem: Proof • Show (1) implies (2) • Assume that aRb • Suppose $c \in [a]$. Then aRc • As aRb and R is symmetric, we have bRa • Furthermore, since R is transitive and bRa and aRc, follows that bRc • Hence, $c \in [b]$ • This shows that $[a] \subseteq [b]$ • The proof that $[b] \subseteq [a]$ is similar. • Show (2) implies (3) • Assume that $[a] = [b]$ • It follows that $[a] \cap [b] \neq \emptyset$ since $[a]$ is nonempty] it
Ch 5.4 & 5.5 49	Ch 5.4 & 5.5 51	
<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>	Equivalence Classes Theorem: Proof Show that (3) implies (1) Suppose that $[a] \cap [b] \neq \emptyset$ Then there is an element $c \in [a]$ and $c \in [b]$ In other words, aRc and bRc By the symmetric property, cRb Then by transitive, since aRc and cRb, we have aRb. Since (1) implies (2),(2) implies (3), and (3) implies (1), the three statements are equivalent.	;

Equivalence Classes & Partitions

Definition

Let $S_1, S_2, ..., S_n$ be a collection of subsets of A. The collection forms a partition of A if the subsets are

1. Nonempty $S_i \neq \emptyset$ 2. Disjoint **S**₄ $S_i \cap S_i = \varnothing \text{ if } i \neq j$ 3. Exhaust A $\bigcup_{i=1}^{i} S_i = A$

Ch 5.4 & 5.5

Equivalence Classes & Partitions Theorem 1

- Let R be an equivalent relation on a set A. Then the equivalence classes of R form a partition of A
- Conversely, given a partition $\{S_i | i \in C\}$ of the set A, there is an equivalence relation R that has the sets S_i , where $i \in C$, as its equivalence classes

Equivalence Classes & Partitions Theorem 2

- Equivalence classes of an equivalence relation R partition the set A into disjoint nonempty subsets whose union is entire set
- This partition is denoted A/R and called
 - Quotient set, or
 - Partition of A induced by R, or
 - A modulo R
- The partition is a set of equivalence classes whose union is the entire set

Ch 5.4 & 5.5

53

Equivalence Classes & Partitions Example 1

- What are the sets in the partition of the integers arising from congruence modulo 4?
- There are four congruence classes, corresponding to $[0]_4$, $[1]_4$, $[2]_4$ and $[3]_4$.
 - **[0]**₄ ={...,-8,-4,0,4,8,...}
 - **[1]**₄ ={...,-7,-3,1,5,9,...}
 - **[2]**₄ ={...,-6,-2,2,6,10,...}
 - **[3]**₄ ={...,-5,-1,3,7,11,...}
- The quotient set: $Z/R = \{ [0]_4, [1]_4, [2]_4, [3]_4 \}$

Equivalence Classes & Partitions Example 2

{{1}, {2,3}}

{{1,2,3}}

 Let A={1, 2, 3}, give all the possible partitions on A.

{{2}, {1,3}}

{{3}, {1,2}}

{{1}, {2}, {3}}

e partitions • Let R be a relation on A.

Equivalence Classes & Partitions

Reflexive, Symmetric, Transitive closure of R, tsr(R) = t(s(r(R))), is an equivalence relation on A, called the equivalence relation induced by R

Equivalence Classes & Partitions Theorem 3: Proof

- Proof: tsr(R) is an equivalence relation
 - Reflexive
 - When constructing r(R), a loop is added at every element in A, therefore, tsr(R) must be reflexive

Symmetric

 If there is an edge (x, y) then the symmetric closure of r(R) ensures there is an edge (y, x)

Ch 5.4 & 5.5

61

Equivalence Classes & Partitions Theorem 3

- Transitive
 - When we construct the transitive closure of sr(R), an edge (a, c) is added if (a, b) and (b, c)
 - tsr(R) must be transitive
 - As sr(R) is symmetric, if (a, b) and (b, c) in sr(R),
 (b, a) and (c, b) are also in sr(R). Therefore, another edge (c, a) is also added
 - It guarantees that tsr(R) is symmetric