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Introduction: Closures

 Is it symmetric?

 How can we produce a symmetric relation
containing R that is as small as possible?

1 2

3 4
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Closure

 Let R be a relation on a set A

 S is called the closure of R with respect to 
property P if

 S with property P

 S is a subset of every relation with property P 
containing R

 Minimum terms are added to R to fulfill the 
requirements of property P 
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Closure

 Reflexive Closure

 a ( (a, a)  R )

 Symmetric Closure

 a b ( ((a, b)R)  ((b, a)R) )

 Transitive Closure

 abc ( ((a,b)R(b,c)R)  ((a,c)R))
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Closure

Reflexive Closure: Example
 R = {(1,1), (1,2), (2,1), (3,2)}

on the set A = {1, 2, 3} 

 R is not reflexive

 How can we produce a 
reflexive relation containing 
R that is as small as possible? 
 Add (2,2) and (3,3)

 R’ = {(1,1), (1,2), (2,1), (3,2), 
(2,2), (3,3)}

 R’ is reflexive closure of R
 Any reflexive relation that 

contains R must contain R’

1 2

3
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Closure

Reflexive Closure

 r(R) denotes the reflexive closure of R

 How to create a reflexive closure for R?

 Graphical view

 Add loop for each element

 Mathematical View

 Let D (or I) be the diagonal relation (equality 
relation) on R, where D = {(x, x) | x  R}

 The reflexive closure of R is R D
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Closure

Symmetric Closure: Example
 R = {(1,2), (1,2), (2,2), (2,3), 

(3,1), (3,2)} on {1, 2, 3}

 R is not symmetric

 How can we produce a 
symmetric relation containing R 
that is as small as possible?
 Add (2,1) and (1,3)

 R’ = {(1,2), (1,2), (2,2), (2,3), 
(3,1), (3,2), (2,1), (1,3)}

 R’ is symmetric closure of R
 Any symmetric relation that 

contains R must contain R’

1 2

3
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Closure

Symmetric Closure

 s(R) denotes the symmetric closure of R

 How to create a symmetric closure for R?

 Graphical view

 Add edges in the opposite direction

 Mathematical View

 Let R-1 be the inverse of R, 
where R-1 = {(y,x) | (x,y)  R}

 The symmetric closure of R is R R-1

 Theorem: R is symmetric iff R = R-1
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Closure

Transitive Closure: Example
 R = {(1,2), (1,3), (2,3), (3,4)} 

on {1,2,3,4}

 R is not transitive

 How can we produce a 
transitive  relation containing 
R that is as small as possible?
 Add (1,4), (2,4)

 R’ = {(1,2), (1,3), (2,3), (3,4), 
(1,4), (2,4)}

 R’ is transitive closure of R
 Any transitive relation that 

contains R must also contain R’

1 2

3

4
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Closure

Transitive Closure

 t(R) denotes the transitive closure of R

 How to create a transitive closure for R?

 Graphical view

 If there is a path from a to b and b to c,
add an edge from a to c

 However, it is not easy

 Example:

 Mathematical View

 Transitive Closure of R is R*

a
b

c

d

e

f
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Closure

Transitive Closure

 The connectivity relation of the relation R, 
denoted R*, is the union of Ri, where i = 
1,2,3,…

 Transitive Closure of R is R*







1

*

n

nRR
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Closure

Transitive Closure

 Theorem
If R  S, then R o S  S o S

 Theorem
If R is transitive then so is Rn

 Theorem
R is transitive iff Rn  R for n > 0
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Closure

Transitive Closure

 Proof: Transitive Closure of R is R*

1. R* is a transitive relation

2. R* contains R

3. R* is the smallest transitive relation which 
contains R
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Closure

Transitive Closure

Proof: 1. R* is a transitive relation

 Suppose (x, y) and (y, z) are in R*
Show (x, z) is in R*

 By definition of R*, (x, y) is in Rm for some m 
and (y, z) is in Rn for some n.

 Then (x, z) is in Rn o Rm = Rm+n which is 
contained in R*

 Hence, R* must be transitive

Proof: 2. R* contains R

 The proof is obvious by the definition of R*







1

*

n

nRR
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Closure

Transitive Closure
Proof: 3. R* is the smallest transitive relation 

which contains R
 Now suppose S is any transitive relation that contains 

R

 Show S contains R*

 Since S is transitive, Sn S

 For the power is 2,

R2 = R o R  S o R  S o S

 It is true for n, Rn  Sn

 Therefore Rn  Sn  S for all n

 Hence S must contain R* since it must also contain the 
union of all the powers of R

Theorem:
R is transitive iff Rn  R for n > 0







1

*

n

nRR

Theorem:
If R  S, then R o S  S o S
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Closure

Transitive Closure

 How can we calculate the infinite union? 

 If it is necessary to calculate all Ri?







1

*

n

nRR

Infinity
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Closure

Transitive Closure

 A path of length n in a digraph G is a 
sequence of edges (x0, x1),(x1, x2),...,(xn-1, xn)

 A cycle is a path with 
starting point (x0) = end point (xn)

a
b

c

d

e

f

a > e > f > d Path

c > f > d > c Cycle

a > e > b > c Not a path

Length = 3

Length = 3
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Closure

Transitive Closure

 Let A be a set with n elements, and let R be a 
relation on A

 If there is a path from a to b, then the length
of this path will not exceed n

a
b

c

d

e

f
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 Proof
 Suppose there is a path from a to b in R
 Let m be the length of the shortest path, which is x0, x1, 

x2, ..., xm-1, xm, where x0 = a and xm = b
 Assume m > n
 Because n vertices in A and there are m vertices in the 

path, at least two vertices in the path are equal
 Suppose that xi = xj with 0 ≤ i < j ≤ m
 There is a path contained a cycle from xi to itself (xj)
 This cycle can be removed to shorten the path
 Hence, the shortest length must be less than or equal 

to n

x0 x1 x2 xm
… …

xi-1 xi xj+1

xi+1

xi+2

xj-1

xj-2…

xja b

xi+1
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Closure

Transitive Closure

 From the Theorem, we know that Rk for k > n
does not contain any edge that does not 
already appear in the first n powers of R

 Assume R is the relation on set A







1

*

k

kRR 
||

1

A

k

kR



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Closure

Transitive Closure

 Theorem
Let MR be the zero-one matrix of the relation 
R on a set with n elements. Then the zero-
one matrix of the transitive closure R* is 

][]3[]2[]1[
*

n
RRRRR

MMMMM  

][ :Remark k
RR

MM k 
]1[

RR MM 
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Closure

Transitive Closure: Example

 Find the zero-one matrix of the transitive 
closure of the relation R where 



















011

010

101

RM

]3[]2[
* RRRR

MMMM 



















111

010

111
]3[

RM

 

111

010

111

111

010

111

111

010

111

011

010

101

*








































































R

M



















111

010

111
]2[

RM
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Closure: Transitive Closure

Warshall’s Algorithm

 Warshall’s Algorithm can reduce the complexity of 
R* calculation

 For the path 

a, x1, x2, …, xm-1, b, 

the interior vertices are x1, x2, …, xm-1

 All the vertices of the path except the first and last 
vertices

v1 > v2 > v4 > v3
v1 v2

v4v3

v2 > v3 > v1

v4 > v3

interior vertices
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Closure: Transitive Closure

Warshall’s Algorithm

 Warshall’s algorithm is based on the construction 
of a sequence of zero-one matrices, W0, W1, …, Wn, 
where W0=MR

 wij(k) = 1 if there is a path from vi to vj such that all 
the interior vertices of this path are in the set {v1, 
v2, …, vk}; otherwise is 0

   
 

 




























kw

kw

kwkw

W
ij

k

21

1211
v1 v2

v4v3

w14(0) =

w14(1) =

w14(2) =

0

0

1
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Closure: Transitive Closure

Warshall’s Algorithm

 The (i,j)th entry of MR* is 1 iff there is a path
from vi to vj with all the interior vertices in the 
set {v1, v2, …, vn}, therefore, Wn = MR*

 Algorithm

 W0 = MR

 For k = 1 … n

 Update each element in Wk by using:

)( ]1[]1[]1[][   k
kj

k
ik

k
ij

k
ij wwww
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Closure: Transitive Closure

Warshall’s Algorithm: Example

 Find the matrices W0, W1, W2, W3 and W4 for 
the R shown in the directed graph





















0100

1001

0101

1000

0W

 Let v1=a, v2=b, v3=c, v4=d. 
W0 is the matrix of the relation. 
Hence,

a b

cd
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Closure: Transitive Closure

Warshall’s Algorithm: Example





















0100

1001

0101

1000

0W
)( ]1[]1[]1[][   k

kj
k
ik

k
ij

k
ij wwww



















1W



















2W



















3W



















4W

0 0 0

0 1

0 0

1

1 1

1 1

10 0 0

0 0 0

0

0 0

0 0

1

1 1 1

1 1

1 0

0 0 0

0

0 0

1 0

1

1 1 1

1 1

1 1

1 0 1

0

0 1

0

1

1 1 1

1 1

1 1 1

k =1 k =2

k =3 k =4

W4 is the matrix of 
the transitive closure

i=1

i=2

i=3

i=4

a b

cd
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 r(R) =

where D is diagonal relation = {(x, x) | x  R}

 s(R) =

where R-1 is inverse = {(y,x) | (x,y)  R}

 t(R) = 

where R* is connectivity relation = 

R U D


||

1

A

k

kR


R U R-1

R*
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 If R is reflexive, r(R) =

 If R is symmetric, s(R) = R

 If R is transitive, t(R) = R

R
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 If R is reflexive, s(R) and t(R) are reflexive

 If R is symmetric, t(R) and r(R) are symmetric

 If R is transitive, r(R) is transitive
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Closure: Theorem

 Suppose R is transitive, is s(R) transitive?

 Let R= {(1,2),(3,2)}

 R is transitive

 s(R) = {(1,2), (2,1), (3,2), (2,3)}

 s(R) is not transitive
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Closure: Theorem

 Let R be binary relation on a nonempty set A

 If R is reflexive, s(R) and t(R) are reflexive

 If R is symmetric, t(R) and r(R) are symmetric

 If R is transitive, r(R) is transitive

 r( s(R) ) = s( r(R) )?

 r( t(R) ) = t( r(R) )?

 s( t(R) ) = t( s(R) )?

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Closure: Theorem

 Proof r( s(R) ) = s( r(R) )

 s( r(R) ) = s(R U D)

= (R U D) U (R U D)-1

= (R U D) U (R-1 U D-1)

= (R U R-1) U (D U D-1)

= s(R) U D

= r( s(R) )

where D = {(x, x) | x  R}
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Closure: Theorem

 Do the closure operations distribute

 over the set operations?

 over inverse?

 over complement?

 over set inclusion?

 Example:

 t(R1 - R2) = t(R1) - t(R2) ?

 r(R-1) = ( r(R) )-1 ?
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Equivalence

 What is Equivalence?

 What properties the equivalence should have?

Reflexive Irreflexive Transitive

Symmetric Asymmetric Antisymmetric
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Equivalence

 How to represent “2” 
in clock system?

 How to represent “14” 
in clock system?

 Clock System is 
Arithmetic modulo 12

 “2”, “14”, “26”, “38”… are 
equivalence in clock system
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Equivalence Relations

 Definition
A relation R on a set A is an equivalence 
relation iff R is reflexive, symmetric and 
transitive

a b

cd

a b

cd

Equivalence Relation
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Equivalence Relations

Example 1
 Suppose that R is the relation on the set of strings of English 

letters such that aRb iff g(a)=g(b), where g(x) is the length 
of the string x. 
Is R an equivalence relation?

 Reflexive
 Since g(a)=g(a), it follows that aRa whenever a is a string

 Symmetric
 Let aRb, so g(a)=g(b), bRa. Therefore, g(b)=g(a)

 Transitive
 Let aRb and bRc, then g(a)=g(b) and g(b)=g(c), so aRc

 Consequently, R is an equivalent relation
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Equivalence Relations

Example 2

 Definition of Congruence

a ≡ b (mod m)

a is congruent to b modulo m if m divides a-b

 Let m be a positive integer greater than 1. 
Show that the relation R = { (a,b) | a ≡ b (mod 
m) } is an equivalence relation on the set of 
integers

b = x · m + a

x = (b-a) / m
where x is an integer
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Equivalence Relations

Example 2
 Reflexive

 a – a = 0 is divisible by m, hence, a ≡ a (mod m)

 Symmetric

 Suppose that (a, b)R, so x = (b-a)/m, where x is an integer

 (-x) = (a-b) / m, -x is also an integer, (b, a)R

 Transitive 

 Suppose that (a,b)  R and (b,c)  R

 xm = (b-a) and ym = (c-b), x and y are integers

 a-c = xm+ym = (x+y)m, x+y is also an integer

 Thus, (a, c)R

b = x · m + a

x = (b-a) / m
where x is an integer

R = { (a,b) | a ≡ b (mod m) }
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Equivalence Relations

Example 3

 Show that the "divides" relation on the set of 
positive integers is an equivalence relation. 

 “Divide” relation is not symmetric

 E.g., 2 divide 4 but 4 does not divide 2

 It is not an equivalence relation
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Equivalence

 Two elements a and b that are related by an 
equivalence relation are called equivalent

 Notation: a ~ b

a b

cd

a ~ b
a ~ c

b ~ c

a ~ a

b ~ b

c ~ c
d ~ db ~ a

c ~ a
c ~ b
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Equivalence: Examples

 R is the relation on the set of strings of 
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x
 “Peter” ~ “Susan”

 “Ann” ~ “May”

 R = { (a,b) | a ≡ b (mod m) } on the set of 
integers

 For m = 7, 5 ~ 12

 For m = 12, 14 ~ 2
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Equivalence Classes

 Definition
Let R be an equivalence relation on a set A. 
The set of all elements that are related to an 
element a of A is called the equivalence class 
of a

 Example (clock system)

 “2”, “14”, “26”, “38”… 
are equivalence

 Therefore, they form 
an equivalence class 
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Equivalence Classes

 The equivalence class of a with respect to R
is denoted by [a]R

[a]R = {s | (a,s)  R}

 If b  [a]R, b is called a representative of this 
equivalence class
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Equivalence Classes

Example 1

 Equivalence class of

 [a] = 

 [b] = 

 [c] =

 [a] = [b] = [c]

 [d] = 

a b

cd

[a]R = {s | (a,s)  R}

{a, b, c}

{a, b, c}

{a, b, c}

{d}
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Equivalence Classes

Example 2

 R = { (a,b) | a ≡ b (mod m) } is an equivalence 
relation on the set of integers, where m be a 
positive integer greater than 1

 Let m = 5

 R = { (a,b) | a ≡ b (mod 5) }

 [0] = {                                       }

 [1] = {                                       }

 [a] = {                                                    }

 General Case, for any m,

 [a] = {                                                            }

[a]R = {s | (a,s)  R}

0, 5, 10, …-5, …, -10,

1, 6, 11, …-4, …, -9,

a, a+5, a+10, …a-5, …, a-10,

a, a+m, a+2m, …a-m, …, a-2m,
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Equivalence Classes

Example 3

 R is the relation on the set of strings of 
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x

 [e] = {                        }

 [Susan] = {                               }

 For any a,
[a] = the set of all strings of the same length as 
a

[a]R = {s | (a,s)  R}

a, b, c, …, z

happy, email, …
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Equivalence Classes

Theorem

 Let R be an equivalence relation on a 
nonempty set A. The following statements 
are equivalent:

1. aRb

2. [a] = [b]

3. [a] ∩ [b]  
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Equivalence Classes

Theorem: Proof
 Show (1) implies (2)

 Assume that aRb

 Suppose c  [a]. Then aRc

 As aRb and R is symmetric, we have bRa

 Furthermore, since R is transitive and bRa and aRc, it 
follows that bRc

 Hence, c  [b]

 This shows that [a]  [b]

 The proof that [b]  [a] is similar.

 Show (2) implies (3)
 Assume that [a] = [b]

 It follows that [a] ∩ [b]   since [a] is nonempty

1. aRb
2. [a] = [b]
3. [a] ∩ [b]  
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Equivalence Classes

Theorem: Proof

 Show that (3) implies (1) 

 Suppose that [a] ∩ [b] 

 Then there is an element c[a] and c[b]

 In other words, aRc and bRc

 By the symmetric property, cRb

 Then by transitive, since aRc and cRb, we have aRb.

 Since (1) implies (2),(2) implies (3), and (3) implies 
(1), the three statements are equivalent.

1. aRb
2. [a] = [b]
3. [a] ∩ [b]  
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 Definition
Let S1, S2, ..., Sn be a collection of subsets of 
A. The collection forms a partition of A if the 
subsets are 

1. Nonempty
Si 

2. Disjoint
Si ∩ Sj =  if i  j

3. Exhaust A

U Si = A

S1

S3

S2

S4

S5

A
n

i=1
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Theorem 1

 Let R be an equivalent relation on a set A. 
Then the equivalence classes of R form a 
partition of A

 Conversely, given a partition {Si | i  C} of the 
set A, there is an equivalence relation R that 
has the sets Si, where i  C, as its 
equivalence classes

Ch 5.4 & 5.5 55

Equivalence Classes & Partitions

Theorem 2

 Equivalence classes of an equivalence 
relation R partition the set A into disjoint 
nonempty subsets whose union is entire set

 This partition is denoted A/R and called

 Quotient set, or

 Partition of A induced by R, or

 A modulo R

 The partition is a set of equivalence classes
whose union is the entire set
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Example 1

 What are the sets in the partition of the 
integers arising from congruence modulo 4?

 There are four congruence classes, 
corresponding to [0]4, [1]4, [2]4 and [3]4. 

 [0]4 ={                          }

 [1]4 ={…,-7,-3,1,5,9,…}

 [2]4 ={…,-6,-2,2,6,10,…}

 [3]4 ={…,-5,-1,3,7,11,…}

 The quotient set: Z/R = { [0]4, [1]4, [2]4, [3]4 }

…,-8,-4,0,4,8,…
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Example 2

 Let A={1, 2, 3}, give all the possible partitions 
on A.

1

32

{{1,2,3}}

1

32

{{1}, {2,3}}

1

32

{{2}, {1,3}}

1

32

{{3}, {1,2}}

1

32

{{1}, {2}, {3}}
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Example 3

 List the ordered pairs in the equivalence relation R
produced by the partition A1 = {1, 2, 3}, A2 = {4, 5}, 
and A3 = {6} of S = {1, 2, 3, 4, 5, 6}

 For A1:

 For A2:

 For A3:

(1,2) , (1,3) , (2,3) , (2,1) , (3,1) , (3,2), 

(1,1) , (2,2) , (3,3) 

(6,6) 

(4,5) , (5,4) , (4,4) , (5,5) 
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Theorem 3

 Let R be a relation on A. 
Reflexive, Symmetric, Transitive closure of R, 
tsr(R) = t(s(r(R))), is an equivalence relation 
on A, called the equivalence relation 
induced by R
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Theorem 3

 t(s(r(R)))

1. r(R)

2. s(r(R))

3. t(s(r(R)))

a b

cd

a b

cd

a b

cd

r(R)

s(r(R))

t(s(r(R)))

a b

cd
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Theorem 3: Proof

 Proof: tsr(R) is an equivalence relation

 Reflexive

 When constructing r(R), a loop is added at every 
element in A, therefore, tsr(R) must be reflexive

 Symmetric

 If there is an edge (x, y) then the symmetric 
closure of r(R) ensures there is an edge (y, x)
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Theorem 3

 Transitive 

 When we construct the transitive closure of sr(R), 
an edge (a, c) is added if (a, b) and (b, c)

 tsr(R) must be transitive

 As sr(R) is symmetric, if (a, b) and (b, c) in sr(R), 
(b, a) and (c, b) are also in sr(R). Therefore, 
another edge (c, a) is also added

 It guarantees that tsr(R) is symmetric


