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Introduction: Closures

Is it symmetric?

How can we produce a symmetric relation
containing R that is as small as possible?

1/\2
(o) » O

|

(o) » O
3%~ 4
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Closure

Let R be a relation on a set A

S is called the closure of R with respect to

property P if

= S with property P

= S is a subset of every relation with property P
containing R

Minimum terms are added to R to fulfill the
requirements of property P
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Closure Ce

Reflexive Closure C.& @

*Va((a,a) e R)

Symmetric Closure C

= YaVvb (((a, b)eR) > ((b,a)eR)) e o
<7

Transitive Closure =

= VavbVve ( ((a,b)eRn(b,c)eR) - ((a,c)eR))
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Closure

Reflexive Closure: Example

R={(1,1),(1,2), (2,1), (3,2);
on the setA={1, 2, 3}

R is not reflexive
1 2 How can we produce a
OOOO reflexive relation containing
R that is as small as possible?
= Add (2,2) and (3,3)
R ={(1,1), (1,2), (2,1), (3,2),
3 (2,2), (3,3)}

R’ is reflexive closure of R

= Any reflexive relation that
contains R must contain R’

Ch5.4&5.5 6



Closure

Reflexive Closure
r(R) denotes the reflexive closure of R

How to create a reflexive closure for R?

= Graphical view
Add loop for each element
» Mathematical View

Let D (or I) be the diagonal relation (equality
relation) on R, where D = {(x, x) | x € R}

The reflexive closure of RisRuD
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Closure

Symmetric Closure: Example

R ={(1,2), (1,2), (2,2), (2,3),
(3,1), (3,2)} on {1, 2, 3}
R is not symmetric

How can we produce a
symmetric relation containing R

1 2
>
that is as small as possible?
= Add (2,1) and (1,3)
R ={(1,2), (1,2), (2,2), (2,3),
g (3,1), (3,2), (2,1), (1,3)}

R’ is symmetric closure of R

*= Any symmetric relation that
contains R must contain R’
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Closure

Symmetric Closure
s(R) denotes the symmetric closure of R

How to create a symmetric closure for R?
= Graphical view
Add edges in the opposite direction

= Mathematical View

Let R1 be the inverse of R,
where R = {(y,x) | (x,y) € R}

The symmetric closure of R is R U R-1

Theorem: R is symmetric iff R = R’
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Closure

Transitive Closure: Example

R={(1,2), (1,3), (2,3), (3,4)}
on {1,2,3,4}

1 5 R is not transitive

How can we produce a
transitive relation containing
R that is as small as possible?

= Add (1,4), (2,4)
R ={(1,2), (1,3), (2,3), (3,4),
(1,4), (2,4)}

R’ is transitive closure of R

= Any transitive relation that
contains R must also contain R’

» 0¢+—0
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Closure

Transitive Closure
t(R) denotes the transitive closure of R

How to create a transitive closure for R?

= Graphical view

If there is a path from a to b and b to c,
add an edge fromatoc b

However, it is not easy a/ '\oe
Example: \ {)
f

= Mathematical View
Transitive Closure of R is R*
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Closure

Transitive Closure

The connectivity relation of the relation R,
denoted R* is the union of R, where i =

1,2,3,...
R = OR”
n=I

Transitive Closure of R is R*

Ch54&5.5 12



Closure

Transitive Closure

Theorem
fRcS,thenRoScSo0S

Theorem
If R is transitive then so is R"

Theorem
R is transitive iff R c Rforn>0
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Closure

Transitive Closure

Proof: Transitive Closure of R is R*

1. R* is a transitive relation
2. R* contains R

3. R* is the smallest transitive relation which
contains R

Ch5.4&5.5 14



Closure

Transitive Closure

Proof: 1. R* is a transitive re

= Suppose (X, y) and (y, z) are
Show (%, z) is in R*

= By definition of R*, (x, y) is in
and (y, z) is in R" for some n.

lation
in R*

R™ for some m

= Then (x, z) is in R" o R™ = R™" which is

contained in R*
= Hence, R* must be transitive

Proof: 2. R* contains R

* The proof is obvious by the definition of R*

Ch5.4&5.5
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Closure

Transitive Closure

oC

R = JR"

n=I

Proof: 3. R* is the smallest transitive relation

which contains R

= Now suppose S is any transitive relation that contains

R

Theorem:

= Show S contains R* R is transitive if R"c R forn >0

= Since S is transitive, S" < S

» For the power is 2,
RZ2=RoRcSoRcSo0S

Theorem:
IfRcS,thenRoS<=So0S

= |t is true forn, R" < S"
= Therefore R" = S" < S for all n

= Hence S must contain R* since it
union of all the powers of R

Ch54&5.5

must also contain the
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Closure

Transitive Closure
How can we calculate the infinite union?

Infinity
R = @R”

n=1

= |If it is necessary to calculate all R'?
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Closure

Transitive Closure
A path of length n in a digraph G is a
sequence of edges (X, X1),(X1; X5),---,(Xr15 Xp)

A cycle is a path with
starting point (x;) = end point (x,)

a a>e>f>d Path
°€7L>\oe Length = 3
{) a>e>b>c Not a path
f

c>f>d>c Cycle
Length = 3

Ch54&5.5 18



Closure

Transitive Closure

Let A be a set with n elements, and let R be a
relation on A

If there is a path from a to b, then the length
of this path will not exceed n

H
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Proof
= Suppose there is a path fromatobin R

= Let m be the length of the shortest path which is X, X4,
Xos «eey Xmo1s Xy Where x, =a and x,, = b

= Assume m > n

= Because n vertices in A and there are m vertices in the
path, at least two vertices in the path are equal

Suppose that x; = x, with 0 =i <j < m

There is a path Contalned a cycle from x; to itself (x;)
This cycle can be removed to shorten the path
Hence, the shortest length must be less than or equal

ton
Xir2 o-> ->o

f
X1 O /

0—>0—>0—> - ->o—>o—>o->

Xo X1 X2 X1 X X xm

a xj

Ch5.4&5.5 20
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Closure

Transitive Closure

From the Theorem, we know that R¥ for k > n
does not contain any edge that does not
already appear in the first n powers of R

Assume R is the relation on set A

g -Jr = |)x
k=1 k=1

Ch5.4&5.5 21

Closure

Transitive Closure

Theorem
Let My be the zero-one matrix of the relation

R on a set with n elements. Then the zero-
one matrix of the transitive closure R* is

— g [2] [3] [7]
M. =My ~vMg~vMy v---v M

Remark: M , =M
M,=My

Ch5.4&5.5 22



Closure

Transitive Closure: Example

Find the zero-one matrix of the transitive
closure of the relation R where

(1 0 1] 1 1 1 1 1 1
M,=/0 1 0| M’ )=|01 0] M ={01 0

1 1 0] 11 1) 11 1)
M, =MyvMp'v M

1 0 1] [1 1 1] [r 1 1] [1 1 1]
M.={0 1 0[v|0 1 O[v|0 1 0[=[0 1 0

11 0] |1 1 1] |1 1 1| |1 1 1]
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Closure: Transitive Closure

Warshall’s Algorithm

Warshall’s Algorithm can reduce the complexity of
R* calculation

For the path
EEE O

the interior vertices are x4, X,, ..., X1
= All the vertices of the path except the first and last

vertices
V4 Vs ,
o Vi >(VaP(Val> V3
Va AV3 1\ . .
interior vertices
V4>V,

Ch5.4&5.5 24



Closure: Transitive Closure

Warshall’s Algorithm

Warshall’s algorithm is based on the construction

of a sequence of zero-one matrices, W,, W,, ..., W,,
where W,=Mg
_Wn(k) le(k) - \8—>V2 wi(0)=10
W, = wlk) f wi(1) = 0
: Wij(k) : I o
y wi(2)=1
i .| V3 Vyq

w;(k) = 1 if there is a path from v, to v; such that all
the interior vertices of this path are in the set {v,,
V,, ..., Vi}; Otherwise is 0
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Closure: Transitive Closure

Warshall’s Algorithm

The (i,j)!" entry of M. is 1 iff there is a path
from v; to v; with all the interior vertices in the
set {v4, Vy, ..., v}, therefore, W_= M.

Algorithm
o VVO = MR
=Fork=1...n
Update each element in W, by using:
(k] _ |, k1] [A—1] [A—1]
Wit =wy V(W AW, )

Ch5.4&5.5 26



Closure: Transitive Closure

Warshall’s Algorithm: Example
Find the matrices W,, W,, W,, W5 and W, for
the R shown in the directed graph

Let v,=a, v,=b, v;=cC, v,=d.
<—o W, is the matrix of the relation.
Hence,

d C W, =

S = = O
oS O O O
S = o =

_—o = O
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Closure: Transitive Closure

Warshall’s Algorithm: Example

Mol o

|
(K] _ y Jk-1] =11 oy le1]
g (Wi IAw P

l

I/VO:

= =
S = o=
=
I
=
<

1] o
1] o
0] o0

N k=1|
VVI_

- O =] O
O A Al A
T
&}
p— I
o |- - O
O | O O

W, is the matrix of
the transitive closure S

0
1
0
1

lo oo o}

ol o o o
~lo =~ o
N P
Alalala
O o o o
alalala
NN O N

d C I N _
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Closure: Theorem

Let R be binary relation on a nonempty set A

o r(R) = RUD
where D is diagonal relation = {(x, x) | x € R}
* s(R)= RUR-

where R is inverse = {(y,x) | (X,y) € R}
» {(R) = R* y

where R* is connectivity relation = UR"
k=1

Ch5.4&5.5 29

Closure: Theorem

Let R be binary relation on a nonempty set A
= If R is reflexive, r(R) = R

* If R is symmetric, s(R) = R

* [f R is transitive, {(R) = R

Ch5.4&5.5 30



Closure: Theorem

Let R be binary relation on a nonempty set A
* [f R is reflexive, s(R) and t(R) are reflexive

= |If R is symmetric, {(R) and r(R) are symmetric
* [f R is transitive, r(R) is transitive

Ch5.4&5.5 31

Closure: Theorem

Suppose R is transitive, is s(R) transitive?

Let R={(1,2),(3,2)}

R is transitive

s(R) ={(1,2), (2,1), (3,2), (2,3)}
s(R) is not transitive

Ch5.4&5.5 32



Closure: Theorem

Let R be binary relation on a nonempty set A
* [f R is reflexive, s(R) and t(R) are reflexive

= |If R is symmetric, {(R) and r(R) are symmetric
* [f R is transitive, r(R) is transitive

1(s(R)) = 5((R))?
Ve

= (({(R) ) = t( /(R) )?
= s(t(R)) = t(s(R) )? 3€

Ch5.4&5.5 33

Closure: Theorem
Proof r( s(R) ) = s( r(R) )

s(r(R))=s(RUD) whereD={x,x)|xeR}
=(RUD)U (RUD)
=(RUD)U (R'UDY)
=(RUR"YYU(DUDY
=s(R)UD
=r(s(R))

Ch5.4&5.5 34



Closure: Theorem

Do the closure operations distribute
= over the set operations?
= over inverse?
= over complement?
= over set inclusion?

= Example:
(R -Ry) =1t(Ry)-t(Ry) ?
(RY) = (r(R) )" ?

Ch54&5.5 35

Equivalence

What is Equivalence?

What properties the equivalence should have?

Reflexive M Transitive
Symmetric  AsymmefriC  Amiisyrearetlic

Ch54&5.5



Equivalence

How to represent “2” i B
in clock system? 10 I] 2
3
How to represent “14” 98 1
in clock system? 7 ¢ 5
. 11 12 1
Clock System is 0 I’ >
Arithmetic modulo 12 9 3
“2”, “14”, “26”, “38”... are 8 7 5 4

equivalence in clock system

Ch5.4&5.5 37

Equivalence Relations

Definition

Arelation R on a set Ais an equivalence
relation iff R is reflexive, symmetric and
transitive

c
Equivalence Relation

Ch5.4&5.5 38



Equivalence Relations
Example 1

Suppose that R is the relation on the set of strings of English
letters such that aRb iff g(a)=g(b), where g(x) is the length
of the string x.

Is R an equivalence relation?

Reflexive
= Since g(a)=g(a), it follows that aRa whenever a is a string

Symmetric
= Let aRb, so g(a)=g(b), bRa. Therefore, g(b)=g(a)

Transitive
= Let aRb and bRc, then g(a)=g(b) and g(b)=g(c), so aRc

Consequently, R is an equivalent relation

Ch5.4&5.5 39

Equivalence Relations b=x-m+a

Example 2 where x is an integer

x = (b-a)/ m

Definition of Congruence
asSb (modm)

a is congruent to b modulo m if m divides a-b

Let m be a positive integer greater than 1.
Show that the relation R ={ (a,b) | a = b (mod
m) } is an equivalence relation on the set of
Integers

Ch5.4&5.5 40



Equivalence Relations R={(a,b)|a=b (modm)}
b=x-m+a
Exa m ple 2 where X is an integer
Reflexive x=(b-a)/m

= a—a = 0is divisible by m, hence, a =a (mod m)
Symmetric

= Suppose that (a, b)eR, so x = (b-a)/m, where x is an integer

= (-x) = (a-b)/ m, -x is also an integer, (b, a)eR
Transitive

= Suppose that (a,b) e Rand (b,c) e R

= xm = (b-a) and ym = (c-b), x and y are integers

= a-c = xm+ym = (x+y)m, x+y is also an integer

= Thus, (a, c)eR

Ch54&5.5 41

Equivalence Relations

Example 3

Show that the "divides" relation on the set of
positive integers is an equivalence relation.

“Divide” relation is not symmetric
= E£.g., 2 divide 4 but 4 does not divide 2

It is not an equivalence relation

Ch5.4&5.5 42



Equivalence

Two elements a and b that are related by an
equivalence relation are called equivalent

Notation: a~b

a~a c~a
2 |on a~b c¢c~b
a~c oc~cC
b~a d~d

b~Db

Qg c b~c

Ch54&5.5 43

Equivalence: Examples

R is the relation on the set of strings of
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x

= “Peter” ~ “Susan”
= “Ann” ~ “May”

R={(a,b) | a=b (modm)} on the set of
Integers

= Form=7,5~12
" Form=12,14 ~ 2

Ch5.4&5.5 44



Equivalence Classes

Definition

Let R be an equivalence relation on a set A.
The set of all elements that are related to an
element a of A is called the equivalence class

of a

ii 12 4
Example (clock system) 10 I] 2
m “2”, “14”’ “26”’ “38”... 9 3
are equivalence 5. g™

* Therefore, they form ¢

an equivalence class

Ch54&5.5 45

Equivalence Classes

The equivalence class of a with respect to R
Is denoted by [a]r

[alr =1{s | (a;s) € R}

If b € [a]g, b is called a representative of this
equivalence class

Ch5.4&5.5 46



Equivalence Classes

Example 1
Equivalence class of
= [a] ={a, b, c}
= [b] ={a, b, c}
= [c] ={a, b, c}
" [a] = [b] = [c]
= [d] ={d}
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Equivalence Classes

Example 2

R={(a,b) | a=b (modm)}is an equivalence
relation on the set of integers, where m be a
positive integer greater than 1
"letm=95

R={(a,b)|a=b (mod5)}

01={...,-10, -5, 0, 5,10, ... }

[11={...,-9, -4,1,6,11,... }

[a]={ ..., a-10, a-5, a, a+5, a+10, ... }
= General Case, for any m,

[a]={..., a-2m, a-m, a, a+m, a+2m, ... }

[alg =1s | (a,;8) € R}
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Equivalence Classes

Example 3

R is the relation on the set of strings of
English letters, where aRb iff g(a)=g(b) and
g(x) is the length of the string x

“le]={a, b,c,....,z }
= [Susan] = { happy, email, ... }

[alg = 1{s | (a;8) € R}

= For any a,
[a] = the set of all strings of the same length as
a

Ch54&5.5 49

Equivalence Classes

Theorem

Let R be an equivalence relation on a
nonempty set A. The following statements
are equivalent:

1. aRb
2. [a] = [b]
3. [a]N[b]# I

Ch5.4&5.5 50



Equivalence Classes

Rb
Theorem: Proof @l = (o]
Show (1) implies (2) [a] N [b] # &

= Assume that aRb
= Suppose c < [a]. Then aRc
= As aRb and R is symmetric, we have bRa

= Furthermore, since R is transitive and bRa and aRc, it
follows that bRc

= Hence, c € [b]
= This shows that [a] < [b]
= The proof that [b] < [a] is similar.
Show (2) implies (3)
= Assume that [a] = [D]
= |t follows that [a] N [b] # @ since [a] is nonempty
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Equivalence Classes

Rb
Theorem: Proof 2l = [b]
Show that (3) implies (1) [al N [b] = &

= Suppose that [a] N [b] #Z

= Then there is an element ce[a] and ce[b]

* |n other words, aRc and bRc

= By the symmetric property, cRb

= Then by transitive, since aRc and cRb, we have aRb.

Since (1) implies (2),(2) implies (3), and (3) implies
(1), the three statements are equivalent.
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Equivalence Classes & Partitions

Definition

Let S,, S,, ..., S, be a collection of subsets of
A. The collection forms a partition of A if the
subsets are

1. Nonempty

S. =
2. Disjoint
S;NS,=Difi=]

3. ExhaustA
191 S.=A A

Ch54&5.5 53

Equivalence Classes & Partitions

Theorem 1

Let R be an equivalent relation on a set A.
Then the equivalence classes of R form a
partition of A

Conversely, given a partition {S;| i € C} of the
set A, there is an equivalence relation R that
has the sets §;, where i € C, as its
equivalence classes

Ch5.4&5.5 54



Equivalence Classes & Partitions

Theorem 2

Equivalence classes of an equivalence
relation R partition the set A into disjoint
nonempty subsets whose union is entire set

This partition is denoted A/R and called
= Quotient set, or

= Partition of A induced by R, or

= Amodulo R

The partition is a set of equivalence classes
whose union is the entire set

Ch54&5.5 55

Equivalence Classes & Partitions

Example 1

What are the sets in the partition of the
integers arising from congruence modulo 47

There are four congruence classes,
corresponding to [0],, [1]4, [2], and [3],.
= [0], ={...,-8,-4,0,4,8,...}

= [11,={...,-7,-3,1,5,9,...}

" [2], ={...,-6,-2,2,6,10,...}

= [3], ={...,-5,-1,3,7,11,...}

The quotient set: Z/IR = { [0],, [114, [2]4, [3]4}
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Equivalence Classes & Partitions

Example 2

Let A={1, 2, 3}, give all the possible partitions
onA.

OO QB @

.23 {1h42.3) {25 {1.3; {8hL{1.2} {1} {2} {3}}
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Equivalence Classes & Partitions

Example 3

List the ordered pairs in the equivalence relation R
produced by the partition A, = {1, 2, 3}, A, = {4, 5},
and A; ={6}of S={1, 2, 3, 4, 5, 6}

For A;: (1,2), (1,3), (2,3), (2,1), (3,1), (3,2),
(1,1), (2,2), (3,3)
For AZ: (4!5)5 (554)5 (454)5 (555)

For A;: (6,6)
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Equivalence Classes & Partitions

Theorem 3

Let R be a relation on A.

Reflexive, Symmetric, Transitive closure of R,
tsr(R) = t(s(r(R))), is an equivalence relation
on A, called the equivalence relation
induced by R

Ch5.4&5.5 59

Equivalence Classes & Partitions
Theorem 3 e,
Hs(r(R)) "
1. r(R) Cﬁ c
2. s(r(R)) Ca
3. t R
(s(r(R))) S((R))
o b Cg c
I t(s(r(R))) k
-
d C

Ch5.4&5.5



Equivalence Classes & Partitions

Theorem 3: Proof

Proof: tsr(R) is an equivalence relation

= Reflexive

When constructing r(R), a loop is added at every
element in A, therefore, tsr(R) must be reflexive

= Symmetric

If there is an edge (x, y) then the symmetric
closure of r(R) ensures there is an edge (y, x)
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Equivalence Classes & Partitions

Theorem 3

= Transitive

When we construct the transitive closure of sr(R),
an edge (a, c) is added if (a, b) and (b, c¢)
tsr(R) must be transitive

As sr(R) is symmetric, if (a, b) and (b, c) in sr(R),
(b, a) and (c, b) are also in sr(R). Therefore,
another edge (c, a) is also added

It guarantees that tsr(R) is symmetric
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