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Recall, Function is…

 Let A and B be nonempty sets
Function f from A to B is an assignment of 
exactly one element of B to each element of A

 By defining using a relation, a function from A to 
B contains unique ordered pair (a, b) for every
element a  A

A
B
C

Mickey

Minnie 

Donald

Goofy

E
D

F

AxB

(     ,A)
(     ,B)
(     ,C)
(     ,D)
(     ,E)
(     ,F)

(     ,A)
(     ,B)
(     ,C)
(     ,D)
(     ,E)
(     ,F)

(     ,A)
(     ,B)
(     ,C)
(     ,D)
(     ,E)
(     ,F)

(     ,A)
(     ,B)
(     ,C)
(     ,D)
(     ,E)
(     ,F)

Ch 5.1, 5.2, 5.3 4

What is Relation?

Relation: x likes y
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Relation

 Let A and B be sets
A binary relation from A to B is a subset of A x 
B

 Recall, for example:

 A = {a1, a2} and B = {b1, b2, b3}

 A x B = { (a1, b1), (a1, b2), (a1, b3),
(a2, b2), (a1, b2), (a1, b3)}
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Relation

 R is defined as 
 A binary relation from A to B

 Ordered pairs, which 
 First element comes from A

 Second element comes from B

 aRb: (a, b)  R

 aRb: (a, b)  R

 Moreover, when (a, b) belongs to R, 
a is said to be related to b by R
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Relation: Example

 S = {Peter, Paul, Mary}

 C = {C++, DisMath}

 Given

 Peter takes C++

 Paul takes DisMath

 Mary takes none of them

 R = {(Peter, C++), (Paul, DisMath)}

 (S x C) – R = R

Peter R C++

Paul R DisMath

Peter R DisMath

Paul R C++

Mary R C++ Mary R DisMath
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Relation VS Function

 Function
from a set A to a set B

 All elements of A are 
assigned to B

 Exactly one element of 
B to each element of A

 Relation 
from a set A to a set B

 Some elements of A 
are assigned to B

 Zero, One or more 
elements of B to an 
element of A

 Function is a special case of Relation
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Relation Representation

Graph

 Relations can be represented by Directed Graph

 You will learn the directed graph in detail in 
<Discrete Math Part 2>

 Graph G = (V, E) consists of 

 a set of vertices V

 a set of edges E, 

 a connection between a pair of 
vertices

d

c

a

b

E = { (a,b), (b,c), (b,d), (c,d) }

Vertex

Edge

V = { a, b, c, d}
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Relation Representation

Graph

 Undirected Graph

 Edges are not directed

 E.g. (a, d) = (d, a)

 Directed Graph
(Digraph)

 Edges are directed

 E.g. (a, d) ≠ (d, a)

d
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b

d

c

a

b
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Relation Representation

Graph

 G to present a relation from A to B is

 vertices V  A U B

 edges E  A × B

 For example

 If there is an ordered pair (x, y) in R, 
then there is an edge from x to y in D

x y
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Relation Representation

Graph: Example

 Peter R C++, Peter R DisMath
Paul R C++, Paul R DisMath
Mary R C++, Mary R DisMath

Directed Graph

Peter

Mary

Paul

C++

DisMath
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Relation Representation

Matrix

 Let R be a relation from A = {a1, a2, . . . , am} to B = 
{b1, b2, . . . , bn}

 An mn connection matrix M for R is defined by

mij = 
1 if (ai, bj)  R

0 if (ai, bj)  R b1 b2 b3 b4

a1 0 0 0 0

a2 1 0 0 0

a3 0 1 1 0

a4 1 0 0 0

a5 0 0 1 1
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Relation Representation

Matrix: Example

 Peter R C++, Peter R DisMath
Paul R C++, Paul R DisMath
Mary R C++, Mary R DisMath

Directed Graph

Peter

Mary

Paul

C++

DisMath

Matrix

1 0

0 1

0 0
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Relation on One Set

 Relation on the set A is a relation from A to A

 Special case in relations

 Example:

 A = {1, 2, 3, 4}

 R = {(1,1), (1,4), (2,1), (2,3), (2,4), (3,1), (4,1), 
(4,2)}
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Relation on One Set 

Example 1

 Let A be the set {1, 2, 3, 4}, which ordered pairs are 
in the relation R = {(a, b) | a divides b}? 

 R = {                                                                        } 

1 2

3 4

1 1 1 1

0 1 0 1

0 0 1 0

0 0 0 1

(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)
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Relation on One Set 

Example 2
 How many different relations are there on a set 

with n elements? 

 Suppose A has n elements

 Recall, a relation on a set A is a subset of A x A

 A x A has elements

 If a set has m element, its has subsets

 Therefore, the answer is 2
n2

n2

2m
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Relation on One Set 

Relation Properties

 Reflexive
a ( (a, a)  R )

 Irreflexive
a ( (a  A)  ((a, a)  R) )

 Transitive
abc ( ((a,b)R(b,c)R)  ((a,c)R))
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Relation on One Set 

Relation Properties

 Symmetric
a b ( ((a, b)R)  ((b, a)R) )

 Asymmetric
a b ( ((a, b)R)  ((b, a)R) )

 Antisymmetric
a b ( ((a, b)R  (b, a)R)  (a = b) )

 Asymmetry = Antisymmetry + Irreflexivity

( (a,a) cannot be an element in R )

( (a,a) may be an element in R )
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Relation on One Set 

Relation Properties: Graph

Reflexive
a ( (a, a)  R )

Every node has a self-loop

Irreflexive
a ( (a  A)  ((a, a)  R) )

No node links to itself

Transitive
abc ( ((a,b)R(b,c)R)  ((a,c)R))

Every two adjacent forms a triangle 
(Not easy to observe in Graph)
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Asymmetric
a b ( ((a, b)R)  ((b, a)R) )

No link is bidirectional (Antisymmetric)
No node links to itself (Irreflexive)

Relation on One Set 

Relation Properties: Graph

Symmetric 
a b ( ((a, b)R)  ((b, a)R) )

Every link is bidirectional

Antisymmetric
a b ( ((a, b)R  (b, a)R)  (a = b) )

No link is bidirectional
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Relation on One Set 

Relation Properties: Matrix

Reflexive
a ( (a, a)  R )

All 1’s on diagonal

Irreflexive
a ( (a  A)  ((a, a)  R) )

All 0’s on diagonal

Transitive
abc ( ((a,b)R(b,c)R)  ((a,c)R))

Not easy to observe in Matrix 
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Relation on One Set 

Relation Properties: Matrix

Symmetric 
a b ( ((a, b)R)  ((b, a)R) )

All identical across diagonal

Asymmetric
a b ( ((a, b)R)  ((b, a)R) )

All 1’s are across from 0’s (Antisymmetric)
All 0’s on diagonal (Irreflexive)

Antisymmetric
a b ( ((a, b)R  (b, a)R)  (a = b) )

All 1’s are across from 0’s

1

1
0

0

x

x

Ch 5.1, 5.2, 5.3 24

Relation on One Set: Properties of Relation 

Example 1
 Consider the following relations on {1, 2, 3, 4}, 

Which properties these relations have? 
 R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}

 R2 = {(1,1), (1,2), (2,1)}

 R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}

 R6 = {(3,4)}

Reflexive Irreflexive Transitive Symmetric Asymmetric Antisymmetric

Reflexive Irreflexive Transitive Symmetric Asymmetric Antisymmetric

Reflexive Irreflexive Transitive Symmetric Asymmetric Antisymmetric

Reflexive Irreflexive Transitive Symmetric Asymmetric Antisymmetric
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Relation on One Set: Properties of Relation 

Example 2

Reflexive 

Irreflexive 

Transitive

Symmetric

Asymmetric

Antisymmetric

Reflexive 

Irreflexive 

Transitive

Symmetric

Asymmetric

Antisymmetric

Reflexive 

Irreflexive 

Transitive

Symmetric

Asymmetric

Antisymmetric

Reflexive 

Irreflexive 

Transitive

Symmetric

Asymmetric

Antisymmetric
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Relation on One Set: Properties of Relation 

Example 3

 Let A = Z+, R = { (a,b)  A  A | a divides b }
Is R symmetric, asymmetric, or antisymmetric?

 Symmetric (a b ( ((a, b)R)  ((b, a)R) ))

 If aRb, it does not follow that bRa

 Asymmetric (a b ( ((a, b)R)  ((b, a)R) ))

 If a=b, then aRb and bRa

 Antisymmetric (a b ( ((a, b)R  (b, a)R)  (a = b) ))

 If aRb and bRa, then a=b



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Combining Relations

 As R is a subsets of A x B, 
the set operations can be applied

 Complement (    )

 Union (U)

 Intersection (∩)

 Difference (-)

 Symmetric Complement (
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Combining Relations

Example

 Given, A = {1,2,3}, B = {1,2,3,4}

 R1 = {(1,1),(2,2),(3,3)}, 
R2 = {(1,1),(1,2),(1,3),(1,4)}

 R1 U R2 =

 R1 ∩ R2 =

 R1 - R2 =

 R2 - R1 =

 R1  R2 =

{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)}

{(1,1)}

{(2,2),(3,3)}

{(1,2),(1,3),(1,4)}

{(1,2),(1,3),(1,4),(2,2),(3,3)}
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Combining Relations

 Let R be relation from a set A to a set B

 Inverse Relation (R-1) = {(b,a) | (a,b)  R}

 Complementary Relation (R) = {(a,b) | (a,b)  R}

 Example

 X = {a, b, c}  Y={1, 2}

 R = {(a, 1), (b, 2), (c, 1)}

 R-1 =

 E = X  Y =

 R =

{(1, a), (2, b), (1, c)}

{(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)}

{(a, 2), (b, 1), (c, 2)} = E - R
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Combining Relations

Theorems

 Let R1 and R2 be relations from A to B. Then

 (R-1)-1 = R

 (R1 U R2)
-1 = R1

-1 U R2
-1

 (R1 ∩ R2)
-1 = R1

-1 ∩ R2
-1

 (A  B)-1 = B  A

 -1 = 

 ( R )-1 = (R-1)

 (R1 - R2)
-1 = R1

-1 - R2
-1

 If R1  R2 then R1
-1  R2

-1
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Combining Relations: Theorems 

Example for the Proof

 Proof (R1 U R2)
-1 = R1

-1 U R2
-1

 Assume 
(a,b)  R1 & (a,b)  R2

 L.H.S.

 (R1 U R2) = {(a,b) | (a,b)  R1  (a,b)  R2 }

 (R1 U R2)
-1 =

 R.H.S.

 R1
-1 = {(b,a) | (a,b)  R1}

 R2
-1 = {(b,a) | (a,b)  R2}

 R1
-1 U R2

-1 =

Recall...
 A U B = { x | x  A  x  B }
 R-1 = {(b,a) | (a,b)  R}

{(b,a) | (a,b)  R2  (a,b)  R2 }

{(b,a) | (a,b)  R2  (a,b)  R2 }
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Combining Relations

Example 1

 Given

 R1 is symmetric

 R2 is antisymmetric

 Does it R1 U R2 is transitive?

 Not transitive by giving a counterexample

 R1 = {(1,2),(2,1)} which is symmetric

 R2 = {(1,2),(1,3)} which is antisymmetric

 R1 U R2 = {(1,2),(2,1),(1,3)}, not transitive
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Combining Relations

Example 2

 Given R1 and R2 are transitive on A

 Does R1 U R2 is transitive?

 Not transitive by giving a counterexample

 A = {1, 2}

 R1 = {(1,2)}, which is transitive

 R2 = {(2,1)}, which is transitive

 R1 U R2 = {(1,2), (2,1)}, not transitive
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Combining Relations: Matrix

 Suppose that R1 and R2 are relations on a set
A represented by the matrices M and M , 
respectively 

 Join operator (OR)

M         = M  M

 Meet operator (AND)

M         = M  M 

R1 U R2 R1 R2

R1 ∩ R2 R1 R2

R1 R2
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Combining Relations: Matrix

 Example



















010

001

101

1RM
 2121 RRRR MMM

 2121 RRRR MMM



















001

110

101

2RM

















011

111

101

















000

000

101

Ch 5.1, 5.2, 5.3 36

Combining Relations

Composite
 Recall, the composition in functions…

 Let 
 g be a function from the set A to the set B

 f be a function from the set B to the set C

 The composition of the functions f and g, denoted 
by f ο g, is defined by (f ο g)(a) = f( g(a) )

a

A

g(a)

B

f(g(a))

C
fg

g(a) f(g(a))

(f ο g)(a)

(f ο g)
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Combining Relations

Composite 

 Let

 R be a relation from a set A to a set B

 S be a relation from a set B to a set C

 The composite of R and S is the relation consisting 
of ordered pairs (a, c), where 

 a  A, c  C, and 

 There exists an element b  B, such that (a, b)  R
and (b, c)  S

 The composite of R and S is denoted by S o R
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Combining Relations

Composite
 Suppose 

 R be a relation from a set A to a set B

 S be a relation from a set B to a set C

 (x, y)  S o R  implies z ( (x, z)R  (z, y)S)

 Remark: May be more than one element z, 
where (x, z)R and (z, y)S

x

A

z

B

y

C
SR

(S ο R)

(x, y)  S o R

(x,z)R (z,y)S

Ch 5.1, 5.2, 5.3 39

Combining Relations

Composite: Example
 What is the composite of the relations R and S, 

where 
 R is the relation from {1,2,3} to {1,2,3,4} with 

R = {(1,1),(1,4),(2,3),(3,1),(3,4)}

 S is the relation from {1,2,3,4} to {0,1,2} with 
S = {(1,0),(1,2),(2,0),(3,1),(3,2),(4,1)}? 

 S o R = {                                                                   }
1

2

3

4

1

2

3

0

1

2

1

2

3

0

1

2

(1,0),(1,2),(1,1), (2,2),(3,0),(3,2),(3,1)(2,1),
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Combining Relations

Composite: Properties

 Let R1 and R2 be relations on the set A. 

 Show (R1 o R2)
-1 = R2

-1 o R1
-1

 Proof: 
Let (x, y)  (R1 o R2)

-1

(x, y)  (R1 o R2)
-1

 (y, x)  R1 o R2

 z ( (y, z)R2  (z, x)R1)

 z ( (z, y)R2
-1  (x, z)R1

-1 )

 (x, y)  R2
-1 o R1

-1

(x, y)  S o R implies

z ( (x, z)R  (z, y)S)
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Combining Relations

Composite: Properties

 Let F,G and H be relations on the set A, then

 F o (G U H) = (F o G) U (F o H)

 F o (G ∩ H)  (F o G) ∩ (F o H)

 (G U H) o F = (G o F) U (H o F)

 (G ∩ H) o F  (G o F) ∩ (H o F)
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Combining Relations: Relation on One Set 

Composite

 Let R be a relation on the set A. The powers 
Rn , n = 1, 2, 3, ..., are defined recursively by

 R1 = R

 R2 =

 R3 =

...

 Rn+1 =

R o R

R2 o R = (R o R) o R

Rn o R
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Combining Relations: Relation on One Set 

Composite: Example

 Let R = {(1,1), (2,1), (3,2), (4,3)}

 Find the powers Rn, n = 2,3,4,…

 R2 =

 R3 =

 R4 =

 Rn = R3 for n = 5, 6, 7, ….

R o R = {(1,1),(2,1),(3,1),(4,2)}

R2 o R = {(1,1),(2,1),(3,1),(4,1)}

R3 o R = {(1,1),(2,1),(3,1),(4,1)}

1

2

3

4

1

2

3

4

1

2

3

4

R R

1

2

3

4

1

2

3

4

1

2

3

4

R2R

1

2

3

4

1

2

3

4

1

2

3

4

R R3
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Combining Relations: Relation on One Set 

Composite: Matrix
 Suppose 

 R1 be relation from set A to set B represented by

 R2 be relation from set B to set C represented by

 The matrix for the composite of R1 and R2 is:

 Size of            and            is |A| x |B| and |B| x |C|

 Size of                  isR2 o R1
M

R2
M

R1
M

R2 o R1
M

R2
MR1

M

|A| x |C|
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Combining Relations: Relation on One Set 

Composite: Matrix

 Define:

where ])()[() (
2112 1

kjRikR

n

k
ijRR MMMM 



R2 o R1
M R1

MR2
M=

x11 x12 … …
x21

… xij …

...

...
...
...

 Such that

(                  )ij = 1 

if and only if 

(      )ik = (      )kj = 1 for some k

R1
MR2

M

R1
M R2

M

An element in the matrix

n : the number of row of R1
the number of column of R2
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

















1000

0010

0010

RM





















00010

00001

10000

00100

SM

Combining Relations: Relation on One Set 

Composite: Matrix: Example

















SoRM

])()[() (
2112 1

kjRikR

n

k
ijRR MMMM 



4

3

5

4

3 x 4

4 x 5

0 0 0 0 1

0 0 0 0 1

0 1 0 0 0

5

3

i = 1, j = 1

k = 1234

i = 1, j = 2

1234

i = 1, j = 3i = 1, j = 4i = 1, j = 5

n : the number of column of R1
the number of row of R2

n=4
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Combining Relations: Relation on One Set 

Composite: Matrix

 The powers Rn can defined using matrix as:

 Example

 nRR
MM n 



















001

110

010

RM

2R
M 

































001

110

010

 

001

110

010

  
2

RM















0 1 1

1 1 1

0 1 0

 Find the matrix representing 
the relation R2
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Combining Relations: Relation on One Set 

Composite: Property 1
 Theorem

If R  S, then S o R  S o S

 Assume (x,y)  SoR, there exists a element z, 
which (x,z)R and (z,y)S

 As R  S and (x,z)R, (x,z)S

 Therefore, as (x,z)S and (z,y)S, (x,y)SoS

 S o R  S o S

 It implies:
If R  S and T  U, then R o T  S o U
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Combining Relations: Relation on One Set 

Composite: Property 2

 An ordered pairs (x, y) is in Rn iff there is a path of 
length n from x to y in R

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4



















0100

0010

1000

0010



















0010

1000

0100

1000
The  picture can't  be  displayed. The  picture can't  be  displayed.

R R2 R3 R4
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Combining Relations: Relation on One Set 

Composite: Property 2

 An ordered pairs (x, y) is in Rn iff there is a path of 
length n from x to y in R

 Example

 In R, 1 > 2 > 4, length = 2  (1,4)  R2

 In R, 3 > 2 > 4 > 3, length = 3  (3,3)  R3

 (1,2)  R4 In R, 1 > 2 > 4 > 3 > 2, length = 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

R R2 R3 R4
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Combining Relations: Relation on One Set 

Composite: Property 2

 Theorem
Let R be a relation on A. There is a path of 
length n from a to b in R iff (a, b)  Rn
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Combining Relations: Relation on One Set 

Composite: Property 2

 Proof by Induction

 Show n=1 is true

 An arc from a to b is a path of length 1, which is in R1 = R

 Hence the assertion is true for n = 1

 Assume it is true for k. Show it is true for k+1

 As it is true for n = 1, 
suppose (a, x) is a path of length 1, then (a, x) R

 As it is true for n = k, 
suppose (x, b) is a path of length k, then (x, b) Rk

 Considering, (a, x)  R and (x, b)  Rk, 
(a, b)  Rk+1 = Rk o R as there exists an element x, such 
that (a, x)  R and (x, b)  Rk

 The length of (a,b) is k+1

a path of length n from a to 
b iff (a, b)  Rn
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Combining Relations: Relation on One Set 

Composite: Property 3

 R is transitive iff Rn  R for n > 0.

 Proof

1. (Rn  R)  R is transitive
 Suppose (a,b)  R and (b,c)  R

 (a,c) is an element of R2 as R2 = R o R

 As R2  R , (a,c)  R

 Hence R is transitive
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Combining Relations: Relation on One Set 

Composite: Property 3

2. R is transitive  (Rn  R)

 Use a proof by induction:
Basis: Obviously true for n = 1.

 Induction: Assume true for n, show it is 
true for n + 1
 For any (x, y) is in Rn+1, there is a z such that 

(x, z)  R and (z, y)  Rn

 But since Rn  R, (z, y)  R

 As R is transitive, (x, z) and (z, y) are in R, 
so (x, y) is in R

 Therefore, Rn+1  R
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Combining Relations: Relation on One Set 

Composite: Property 4
 Proof: If R is transitive, Rn is also transitive

 When n = 1, R is transitive

 Assume Rk is transitive

 Show Rk+1 is transitive

Given (a,b)  Rk+1 and (b,c)  Rk+1, show (a,c) 
Rk+1

 Rk+1 = Rk o R
 As (a,b)  Rk+1, (d,b)  Rk and (a,d)  R
 As (b,c)  Rk+1, (f,c)  Rk and (b,f)  R
 As (a,c)  Rk+1, (?,c)  Rk and (a,?)  R
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Combining Relations: Relation on One Set 

Composite: Property 4
 Given (a,b)  Rk+1 and (b,c)  Rk+1, show (a,c)  Rk+1

 Rk+1 = Rk o R
 As (a,b)  Rk+1, (d,b)  Rk and (a,d)  R
 As (b,c)  Rk+1, (f,c)  Rk and (b,f)  R
 As (a,c)  Rk+1, (?,c)  Rk and (a,?)  R

 As “R is transitive iff Rn  R for n > 0”

 (d,b)  Rk  R

 As R is transitive, (d,b)  R and (b,f)  R imply (d,f)  R

 As R is transitive, (d,f)  R and (a,d)  R imply (a,f)  R

 Therefore, by considering, (f,c)  Rk and (a,f)  R, (a,c) 
Rk+1
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Combining Relations: Relation on One Set 

Composite: Property 4
 Proof: If R is transitive, Rn is also transitive

 When n = 1, R is transitive

 Assume Rk is transitive

 Show Rk+1 is transitive

Given (a,b)  Rk+1 and (b,c)  Rk+1, show (a,c) 
Rk+1

 Rk+1 = Rk o R
 As (a,b)  Rk+1, (a,d)  Rk and (d,b)  R
 As (b,c)  Rk+1, (b,f)  Rk and (f,c)  R
 As (a,c)  Rk+1, (a,?)  Rk and (?,c)  R
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Combining Relations: Relation on One Set 

Composite: Property 4
 Given (a,b)  Rk+1 and (b,c)  Rk+1, show (a,c)  Rk+1

 Rk+1 = Rk o R

 As (a,b)  Rk+1, (a,d)  Rk and (d,b)  R

 As (b,c)  Rk+1, (b,f)  Rk and (f,c)  R

 As (a,c)  Rk+1, (a,?)  Rk and (?,c)  R

 As “R is transitive iff Rn  R for n > 0”

 (b,f)  Rk  R

 As R is transitive, (d,b)  R and (b,f)  R imply (d,f)  R

 As R is transitive, (d,f)  R and (f,c)  R imply (d,c)  R

 Therefore, by considering, (a,d)  Rk and (d,c)  R, (a,c) 
 Rk+1
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n-ary Relation

 Let A1, A2, ..., An be sets
An n-ary relation on these sets is a subset
of A1 x A2 x … x An

 Domains of the relation: 
the sets A1, A2, ..., An

 Degree of the relation: n
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n-ary Relation: Example

 Let R be the relation on Z x Z x Z+ consisting of 
triples 
(a, b, m), where a, b, and m are integers with 
m ≥ 1 and a = b (mod m), (i.e. m divides a-b)

 Degree of the relation? 

 First domain is: 

 Second domain is: 

 Third domain: 

 Do they belong to R?
 (8,2,3)
 (-1,9,5)

 (7,2,3) 

 (-2,-8,5)

Y

Y

N

N

3

the set of all integers

the set of all integers

the set of positive integers
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Relational Database VS n-ary Relation 

 A database consists of records made up of fields

 Each record is a n-tuple (n fields)
 For example:

ID num Name Major GPA

 888323 Adams Data Structure 85

 231455 Peter C++ 61

 Domain: ID num, Name, Major, GPA

 Relation: (888323, Adams, Data Structure, 85), 
(231455, Sam, C++, 61)

 Relations are displayed as tables

ID_number Student_name Major Grade

888323 Adams Data Structure 85

231455 Peter C++ 61

678543 Sam Data Structure 98
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Relational Database VS n-ary Relation

 n-ary relation can be:

 Determining all n-tuples satisfy certain 
conditions

 Joining the records in different tables

ID_number Student_name

231455 Adams

888323 Peter

102147 Sam

453876 Goodfriend

678543 Rao

786576 Stevens

ID_number Major Grade

888323 Data Structure 85

231455 C++ 61

678543 Data Structure 98

453876 Discrete Math 83


