Discrete Mathematic

Chapter 5: Relation

5.1 Relations and Their Properties 5.2 n-ary Relations and Their Applications

5.3 **Representing Relations**

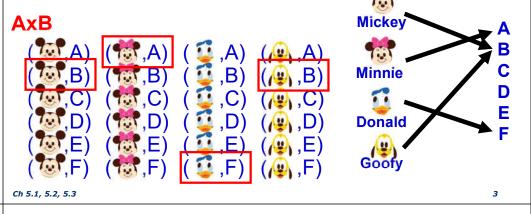
Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Agenda

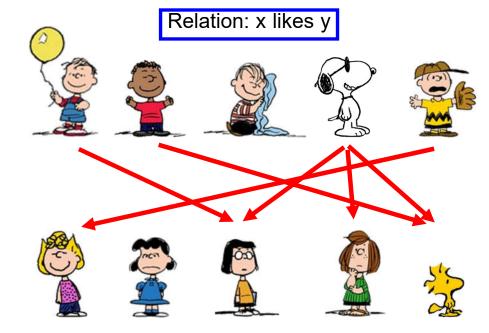
- What is Relation?
- Representation of Relation
 - Graph
 - Matrix
- Operators of Relation
- Properties of Relation

Recall, Function is...

- Let A and B be nonempty sets
 Function *f* from A to B is an assignment of exactly one element of B to each element of A
- By defining using a relation, a function from A to B contains unique ordered pair (a, b) for every element a ∈ A



What is Relation?



Relation

- Let A and B be sets
 A binary relation from A to B is a subset of A x
 B
- Recall, for example:
 - A = $\{a_1, a_2\}$ and B = $\{b_1, b_2, b_3\}$ • A x B = $\{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_2), (a_1, b_2), (a_1, b_3)\}$

Relation: Example

- S = {Peter, Paul, Mary}
- C = {C++, DisMath}
- Given

Ch 5.1, 5.2, 5.3

- Peter takes C++
- Paul takes DisMath
- Peter R C++ Peter **K** DisMath
- Paul & C++ Paul R DisMath

from a set A to a set B

Some elements of A

are assigned to B

Zero. One or more

element of A

elements of B to an

- Mary takes none of them Mary R C++ Mary R DisMath
- R = {(Peter, C++), (Paul, DisMath)}

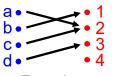
Ch 5.1, 5.2, 5.3

Relation

- R is defined as
 - A binary relation from A to B
 - Ordered pairs, which
 - First element comes from A
 - Second element comes from B
- **aRb**: (a, b) ∈ R
- **a**Rb: (a, b) ∉ R
- Moreover, when (a, b) belongs to R, a is said to be related to b by R

Relation VS Function

- Function from a set A to a set B
 - All elements of A are assigned to B
 - Exactly one element of B to each element of A
- Function is a special case of Relation

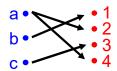


Function Relation

Not a Function

Relation

Relation



Not a Function Relation

6

5

Relation Representation Graph

- Relations can be represented by **Directed Graph**
 - You will learn the directed graph in detail in <Discrete Math Part 2>
- Graph G = (V, E) consists of
 - a set of vertices V
 - a set of edges E,
 - a connection between a pair of vertices

 $E = \{ (a,b), (b,c), (b,d), (c,d) \}$

b

Vertex

V = { a, b, c, d}

d

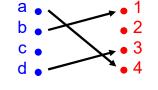
Edge

9

Ch 5.1, 5.2, 5.3

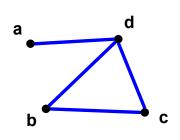
Relation Representation **Graph**

- **G** to present a relation from A to B is
 - vertices $V \subseteq A \cup B$
 - edges $E \subseteq A \times B$
- For example
 - If there is an ordered pair (x, y) in R, then there is an edge from x to y in D

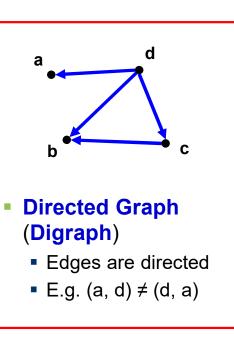


Ch 5.1, 5.2, 5.3

Relation Representation **Graph**

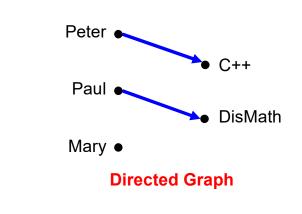


- Undirected Graph
 - Edges are not directed
 - E.g. (a, d) = (d, a)



Relation Representation Graph: Example

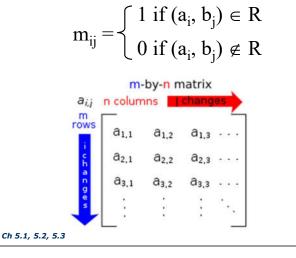
 Peter R C++, Peter R DisMath Paul R C++, Paul R DisMath Mary R C++, Mary R DisMath



10

Relation Representation Matrix

- Let **R** be a relation from A = {a₁, a₂, ..., a_m} to B = {b₁, b₂, ..., b_n}
- An m×n connection matrix M for R is defined by



13

14

Ch 5.1, 5.2, 5.3

Relation on One Set

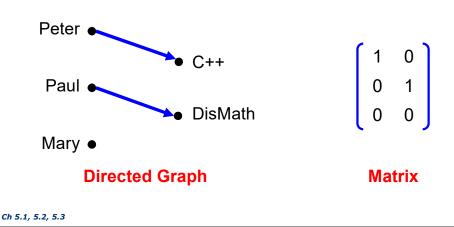
- Relation on the set A is a relation from A to A
 - Special case in relations

• Example:

- A = {1, 2, 3, 4}
- R = {(1,1), (1,4), (2,1), (2,3), (2,4), (3,1), (4,1), (4,2)}

Relation Representation Matrix: Example

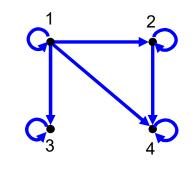
 Peter R C++, Peter R DisMath Paul R C++, Paul R DisMath Mary R C++, Mary R DisMath

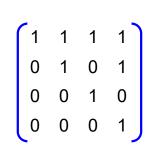


Relation on One Set **Example 1**

Ch 5.1, 5.2, 5.3

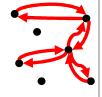
Let A be the set {1, 2, 3, 4}, which ordered pairs are in the relation R = {(a, b) | a divides b}?



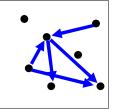


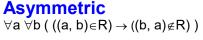
Relation on One Set Example 2	Relation on One Set Relation Properties
How many different relations are there on a set with n elements?	 Symmetric ∀a ∀b (((a, b)∈R) → ((b, a)∈R))
 Suppose A has n elements Recall, a relation on a set A is a subset of A x A 	 Asymmetric ((a,a) cannot be an element in R) ∀a ∀b (((a, b)∈R) → ((b, a)∉R))
 A x A has n² elements If a set has m element, its has 2^m subsets Therefore, the answer is 2^{n²} 	• Antisymmetric ((a,a) may be an element in R) $\forall a \forall b (((a, b) \in R \land (b, a) \in R) \rightarrow (a = b))$
	Asymmetry = Antisymmetry + Irreflexivity
Ch 5.1, 5.2, 5.3 17	Ch 5.1, 5.2, 5.3 19
Relation on One Set	
Relation Properties	Relation on One Set Relation Properties: Graph
	Relation Properties: Graph Reflexive ∀a ((a, a) ∈ R)
Relation Properties Reflexive 	Relation Properties: Graph $\widehat{\mathbf{Va}}$ Reflexive $\forall a ((a, a) \in R)$) Every node has a self-loop
 Relation Properties Reflexive ∀a ((a, a) ∈ R) Irreflexive 	Relation Properties: Graph Reflexive ∀a ((a, a) ∈ R)

Relation on One Set Relation Properties: Graph

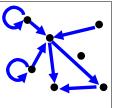


Symmetric $\forall a \ \forall b \ (\ ((a, b) \in R) \rightarrow ((b, a) \in R) \)$ Every link is bidirectional





No link is bidirectional (Antisymmetric) No node links to itself (Irreflexive)

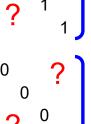


Antisymmetric $\forall a \ \forall b \ (\ ((a, b) \in R \land (b, a) \in R) \rightarrow (a = b) \)$ No link is bidirectional

Ch 5.1, 5.2, 5.3

Relation on One Set Relation Properties: Matrix

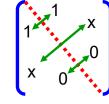
 $\left(\begin{array}{c} 1 & \mathbf{?} \\ 1 & \\ \mathbf{?} & 1 \\ \mathbf{?} & 1 \\ & 1 \end{array} \right)$ Reflexive $\forall a \ ((a, a) \in R)$ All 1's on diagonal



 $\begin{array}{l} \mbox{Irreflexive} \\ \forall a \ (\ (a \in A) \rightarrow ((a, a) \not\in R) \) \\ \mbox{All 0's on diagonal} \end{array}$

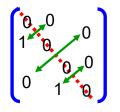
Transitive $\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow ((a,c) \in R))$ Not easy to observe in Matrix

Relation on One Set Relation Properties: Matrix



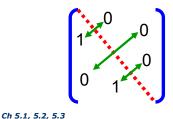
Symmetric

 $\forall a \ \forall b \ (\ ((a, b) \in R) \rightarrow ((b, a) \in R) \)$ All identical across diagonal



Asymmetric $\forall a \forall b (((a, b) \in \mathbb{R}) \rightarrow ((b, a) \notin \mathbb{R}))$

All 1's are across from 0's (Antisymmetric) All 0's on diagonal (Irreflexive)



 $\begin{array}{l} \textbf{Antisymmetric} \\ \forall a \ \forall b \ (\ ((a, b) \in R \land (b, a) \in R) \rightarrow (a = b) \) \end{array}$

All 1's are across from 0's

Relation on One Set: Properties of Relation **Example 1**

 Consider the following relations on {1, 2, 3, 4}, Which properties these relations have?

• $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$

Reflexive Interflexive Intersitive Symmetric Asymmetric Antisymmetric

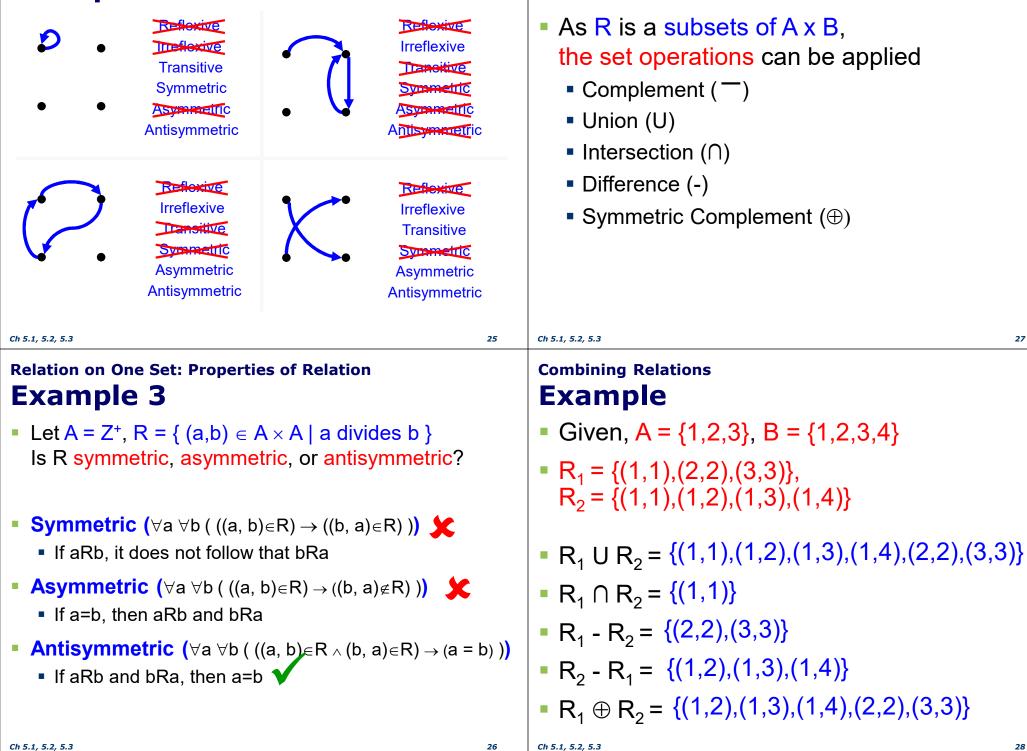
R₂ = {(1,1), (1,2), (2,1)}
 Reflexive Interferive Symmetric Asymmetric Antisymmetric

• $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$ Reflexive Inflexive Symmetric Asymmetric Antisymmetric

R₆ = {(3,4)}
 Reflexive Irreflexive Transitive Symmetric Asymmetric Asymmetric Asymmetric

22

Relation on One Set: Properties of Relation Example 2



Combining Relations

Combining Relations	Combining Relations: Theore Example for the	
Let R be relation from a set A to a set B	• Proof $(R_1 U R_2)^{-1} = R_1^{-1} U$	R ₂ -1
 Inverse Relation (R⁻¹) = {(b,a) (a,b) ∈ R} Complementary Relation (R) = {(a,b) (a,b) ∉ R} 	 Assume (a,b) ∈ R₁ & (a,b) ∈ R₂ 	Recall ■ A U B = { x x ∈ A ∨ x ∈ B } ■ R ⁻¹ = {(b,a) (a,b) ∈ R}
 Example X = {a, b, c} Y={1, 2} R = {(a, 1), (b, 2), (c, 1)} R⁻¹ = {(1, a), (2, b), (1, c)} E = X × Y = {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)} R = {(a, 2), (b, 1), (c, 2)} = E - R 	• L.H.S. • $(R_1 \cup R_2) = \{(a,b) \mid (a,b) \in (R_1 \cup R_2)^{-1} = \{(b,a) \mid (a,b) \in (R_1,b)\}$ • R.H.S. • $R_1^{-1} = \{(b,a) \mid (a,b) \in R_1\}$ • $R_2^{-1} = \{(b,a) \mid (a,b) \in R_2\}$ • $R_1^{-1} \cup R_2^{-1} = \{(b,a) \mid (a,b)\}$	R ₁ ∨ (a,b) ∈ R ₂ } ∈ R ₂ ∨ (a,b) ∈ R2 }
Ch 5.1, 5.2, 5.3 29	Ch 5.1, 5.2, 5.3	31
Combining Relations Theorems	Combining Relations Example 1	
• Let R_1 and R_2 be relations from A to B. Then • $(R^{-1})^{-1} = R$ • $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$ • $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$ • $(A \times B)^{-1} = B \times A$ • $\emptyset^{-1} = \emptyset$ • $(\overline{R})^{-1} = (\overline{R^{-1}})$ • $(R_1 - R_2)^{-1} = R_1^{-1} - R_2^{-1}$ • If $R_1 \subseteq R_2$ then $R_1^{-1} \subseteq R_2^{-1}$	 Given R₁ is symmetric R₂ is antisymmetric Does it R₁ U R₂ is tra Not transitive by givin R₁ = {(1,2),(2,1)} while R₂ = {(1,2),(1,3)} while 	ng a counterexample ich is symmetric ich is antisymmetric
	• $R_1 U R_2 = \{(1,2), (2,1)\}$),(1,3)}, not transitive

Combining Relations Example 2

- Given R₁ and R₂ are transitive on A
- Does R₁ U R₂ is transitive?
- Not transitive by giving a counterexample
 - $A = \{1, 2\}$
 - R₁ = {(1,2)}, which is transitive
 - $R_2 = \{(2,1)\}$, which is transitive
 - $R_1 U R_2 = \{(1,2), (2,1)\},$ not transitive

Combining Relations: Matrix

Example

$$M_{R_{1}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_{R_{1} \cup R_{2}} = M_{R_{1}} \lor M_{R_{2}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
$$M_{R_{2}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad M_{R_{1} \cap R_{2}} = M_{R_{1}} \land M_{R_{2}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Ch 5.1, 5.2, 5.3

33

Combining Relations: Matrix

- Suppose that R_1 and R_2 are relations on a set A represented by the matrices M_{R_1} and M_{R_2} , respectively
- Join operator (OR)

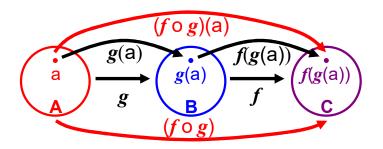
 $M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2}$

Meet operator (AND)

$$\mathsf{M}_{\mathsf{R}_1 \cap \mathsf{R}_2} = \mathsf{M}_{\mathsf{R}_1} \land \mathsf{M}_{\mathsf{R}_2}$$

Combining Relations Composite

- Recall, the composition in functions...
- Let
 - g be a function from the set A to the set B
 - f be a function from the set B to the set C
- The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(a) = f(g(a))$



Ch 5.1, 5.2, 5.3

34

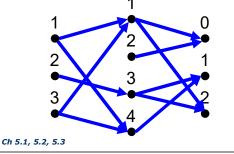
0

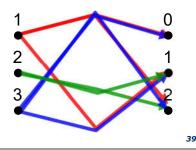
Combining Relations

- Let
 - R be a relation from a set A to a set B
 - S be a relation from a set B to a set C
- The composite of R and S is the <u>relation</u> consisting of ordered pairs (a, c), where
 - $a \in A, c \in C$, and
 - There exists an element b ∈ B, such that (a, b) ∈ R and (b, c) ∈ S
- The composite of R and S is denoted by S o R

Combining Relations Composite: Example

- What is the composite of the relations R and S, where
 - R is the relation from {1,2,3} to {1,2,3,4} with R = {(1,1),(1,4),(2,3),(3,1),(3,4)}
 - S is the relation from {1,2,3,4} to {0,1,2} with S = {(1,0),(1,2),(2,0),(3,1),(3,2),(4,1)}?
- S o R = {(1,0),(1,2),(1,1),(2,1),(2,2),(3,0),(3,2),(3,1)}





Combining Relations Composite: Properties

- Let R₁ and R₂ be relations on the set A.
- Show (R₁ o R₂)⁻¹ = R₂⁻¹ o R₁⁻¹
- Proof: Let $(x, y) \in (R_1 \circ R_2)^{-1}$ $(x, y) \in (R_1 \circ R_2)^{-1}$ $\Leftrightarrow (y, x) \in R_1 \circ R_2$ $\Leftrightarrow \exists z ((y, z) \in R_2 \land (z, x) \in R_1)$ $\Leftrightarrow \exists z ((z, y) \in R_2^{-1} \land (x, z) \in R_1^{-1})$ $\Leftrightarrow (x, y) \in R_2^{-1} \circ R_1^{-1}$

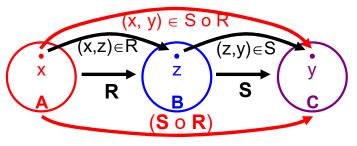
Combining Relations Composite

Suppose

Ch 5.1, 5.2, 5.3

- R be a relation from a set A to a set B
- S be a relation from a set B to a set C

 $(x, y) \in S \circ R$ implies $\exists z ((x, z) \in R \land (z, y) \in S)$

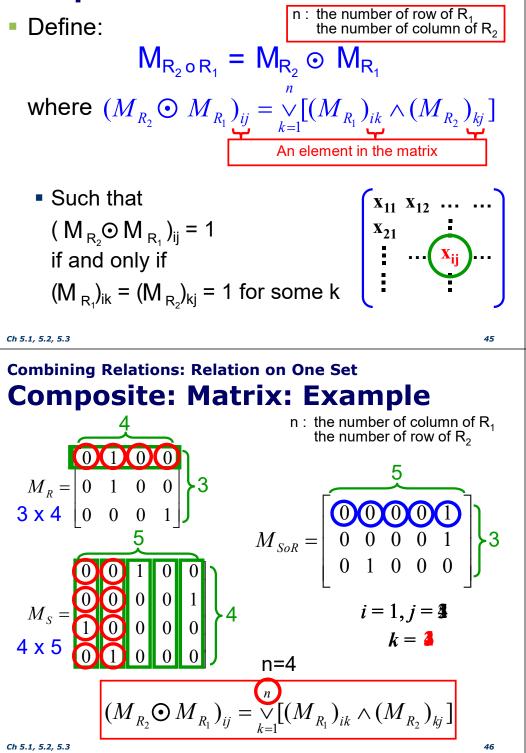


 Remark: May be more than one element z, where (x, z)∈R and (z, y)∈S

38

Combining Relations Composite: Properties • Let F,G and H be relations on the set A, then • F \circ (G U H) = (F \circ G) U (F \circ H) • F \circ (G \cap H) \subseteq (F \circ G) \cap (F \circ H) • (G U H) \circ F = (G \circ F) U (H \circ F) • (G \cap H) \circ F \subseteq (G \circ F) \cap (H \circ F)	Combining Relations: Relation on One Set Composite: Example • Let $R = \{(1,1), (2,1), (3,2), (4,3)\}$ • Find the powers R^n , $n = 2,3,4,$ • $R^2 = R \circ R = \{(1,1),(2,1),(3,1),(4,2)\}$ • $R^3 = R^2 \circ R = \{(1,1),(2,1),(3,1),(4,1)\}$ • $R^4 = R^3 \circ R = \{(1,1),(2,1),(3,1),(4,1)\}$ • $R^n = R^3$ for $n = 5, 6, 7,$
Ch 5.1, 5.2, 5.3 41	Ch 5.1, 5.2, 5.3 43
Combining Relations: Relation on One Set Composite	Combining Relations: Relation on One Set Composite: Matrix
 Let R be a relation on the set A. The powers Rⁿ, n = 1, 2, 3,, are defined recursively by R¹ = R R² = R o R R³ = R² o R = (R o R) o R 	 Suppose R₁ be relation from set A to set B represented by M_{R1} R₂ be relation from set B to set C represented by M_{R2} The matrix for the composite of R₁ and R₂ is: M_{R2} o R₁
• R ⁿ⁺¹ = R ⁿ o R	• Size of M_{R_1} and M_{R_2} is A x B and B x C • Size of $M_{R_2 \circ R_1}$ is A x C

Combining Relations: Relation on One Set Composite: Matrix



Combining Relations: Relation on One Set Composite: Matrix

• The powers Rⁿ can defined using matrix as:

 $M_{R^n} = (M_R)^n$

- Example
 - Find the matrix representing $M_R = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix}$

$$M_{R^{2}} = (M_{R})^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \bigoplus \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Ch 5.1, 5.2, 5.3

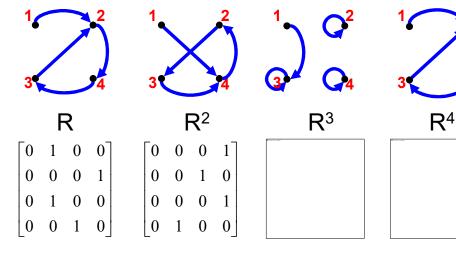
Combining Relations: Relation on One Set Composite: Property 1

- Theorem
 If R ⊂ S, then S o R ⊂ S o S
- Assume (x,y) ∈ SoR, there exists a element z, which (x,z)∈R and (z,y)∈S
- As $R \subset S$ and $(x,z) \in R$, $(x,z) \in S$
- Therefore, as (x,z)∈S and (z,y)∈S, (x,y)∈SoS
- $S \circ R \subset S \circ S$
- It implies:
 If R ⊂ S and T ⊂ U, then R o T ⊂ S o U

Ch 5.1, 5.2, 5.3

Combining Relations: Relation on One Set Composite: Property 2

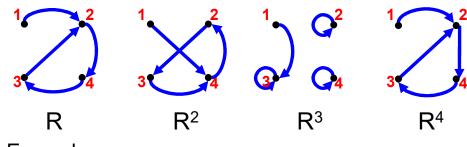
 An ordered pairs (x, y) is in Rⁿ iff there is a path of length n from x to y in R



Ch 5.1, 5.2, 5.3

Combining Relations: Relation on One Set Composite: Property 2

 An ordered pairs (x, y) is in Rⁿ iff there is a path of length n from x to y in R



- Example
 - In R, 1 > 2 > 4, length = $2 \Leftrightarrow (1,4) \in \mathbb{R}^2$
 - In R, 3 > 2 > 4 > 3, length = $3 \Leftrightarrow (3,3) \in \mathbb{R}^3$
 - (1,2) ∈ R⁴ ⇔ In R, 1 > 2 > 4 > 3 > 2, length = 4

Combining Relations: Relation on One Set Composite: Property 2

Theorem

Let R be a relation on A. There is a path of length n from a to b in R iff (a, b) $\in \mathbb{R}^n$

Ch 5.1, 5.2, 5.3

49

Combining Relations: Relation on One Set Composite: Property 2

- Proof by Induction
- a path of length n from a to b iff (a, b) $\in \mathbb{R}^n$
- Show n=1 is true
 - An arc from a to b is a path of length 1, which is in $\mathbb{R}^1 = \mathbb{R}$
 - Hence the assertion is true for n = 1
- Assume it is true for k. Show it is true for k+1
 - As it is true for n = 1, suppose (a, x) is a path of length 1, then (a, x) ∈ R
 - As it is true for n = k, suppose (x, b) is a path of length k, then (x, b) ∈ R^k
 - Considering, (a, x) ∈ R and (x, b) ∈ R^k,
 (a, b) ∈ R^{k+1} = R^k o R as there exists an element x, such that (a, x) ∈ R and (x, b) ∈ R^k
 - The length of (a,b) is k+1

50

Combining Relations: Relation on One Set Composite: Property 3 • R is transitive iff $R^n \subseteq R$ for $n > 0$.	 Combining Relations: Relation on One Set Composite: Property 4 Proof: If R is transitive, Rⁿ is also transitive
 Proof 1. (Rⁿ ⊆ R) → R is transitive Suppose (a,b) ∈ R and (b,c) ∈ R (a,c) is an element of R² as R² = R o R As R² ⊆ R , (a,c) ∈ R Hence R is transitive 	 When n = 1, R is transitive Assume R^k is transitive Show R^{k+1} is transitive Given (a,b) ∈ R^{k+1} and (b,c) ∈ R^{k+1}, show (a,c) ∈ R^{k+1} R^{k+1} = R^k o R As (a,b) ∈ R^{k+1}, (d,b) ∈ R^k and (a,d) ∈ R As (b,c) ∈ R^{k+1}, (f,c) ∈ R^k and (b,f) ∈ R As (a,c) ∈ R^{k+1}, (?,c) ∈ R^k and (a,?) ∈ R
Ch 5.1, 5.2, 5.3 53	Ch 5.1, 5.2, 5.3 55
Combining Relations: Relation on One Set Composite: Property 3	Combining Relations: Relation on One Set Composite: Property 4
 2. R is transitive → (Rⁿ ⊆ R) Use a proof by induction: Basis: Obviously true for n = 1. Induction: Assume true for n, show it is true for n + 1 For any (x, y) is in Rⁿ⁺¹, there is a z such that (x, z) ∈ R and (z, y) ∈ Rⁿ But since Rⁿ ⊆ R, (z, y) ∈ R As R is transitive, (x, z) and (z, y) are in R, so (x, y) is in R Therefore, Rⁿ⁺¹ ⊆ R 	 Given (a,b) ∈ R^{k+1} and (b,c) ∈ R^{k+1}, show (a,c) ∈ R^{k+1} R^{k+1} = R^k o R As (a,b) ∈ R^{k+1}, (d,b) ∈ R^k and (a,d) ∈ R As (b,c) ∈ R^{k+1}, (f,c) ∈ R^k and (b,f) ∈ R As (a,c) ∈ R^{k+1}, (?,c) ∈ R^k and (a,?) ∈ R As "R is transitive iff Rⁿ ⊆ R for n > 0" (d,b) ∈ R^k ⊆ R As R is transitive, (d,b) ∈ R and (b,f) ∈ R imply (d,f) ∈ R As R is transitive, (d,f) ∈ R and (a,d) ∈ R imply (a,f) ∈ R Therefore, by considering, (f,c) ∈ R^k and (a,f) ∈ R, (a,c) ∈ R^{k+1}
Ch 5 1 5 2 5 3 54	Ch E 1 E 2 E 2 E 5

Combining Relations: Relation on One Set n-ary Relation **Composite: Property 4** Proof: If R is transitive, Rⁿ is also transitive • Let A_1, A_2, \dots, A_n be sets An **n-ary relation** on these sets is a subset When n = 1, R is transitive of $A_1 \times A_2 \times \ldots \times A_n$ Assume R^k is transitive Domains of the relation: Show R^{k+1} is transitive the sets A_1, A_2, \dots, A_n Given $(a,b) \in \mathbb{R}^{k+1}$ and $(b,c) \in \mathbb{R}^{k+1}$, show $(a,c) \in \mathbb{R}^{k+1}$ **R**^{k+1} Degree of the relation: n • $R^{k+1} = R^k \circ R$ • As $(a,b) \in \mathbb{R}^{k+1}$, $(a,d) \in \mathbb{R}^k$ and $(d,b) \in \mathbb{R}$ • As $(b,c) \in \mathbb{R}^{k+1}$, $(b,f) \in \mathbb{R}^k$ and $(f,c) \in \mathbb{R}$ • As $(a,c) \in \mathbb{R}^{k+1}$, $(a,?) \in \mathbb{R}^k$ and $(?,c) \in \mathbb{R}$ Ch 5.1, 5.2, 5.3 57 Ch 5.1, 5.2, 5.3 59 **Combining Relations: Relation on One Set** n-ary Relation: Example **Composite: Property 4** Let R be the relation on Z x Z x Z⁺ consisting of Given $(a,b) \in \mathbb{R}^{k+1}$ and $(b,c) \in \mathbb{R}^{k+1}$, show $(a,c) \in \mathbb{R}^{k+1}$ triples R^{k+1} = R^k o R (a, b, m), where a, b, and m are integers with • As $(a,b) \in \mathbb{R}^{k+1}$, $(a,d) \in \mathbb{R}^k$ and $(d,b) \in \mathbb{R}$ $m \ge 1$ and $a = b \pmod{m}$, (i.e. m divides a-b) • As $(b,c) \in \mathbb{R}^{k+1}$, $(b,f) \in \mathbb{R}^k$ and $(f,c) \in \mathbb{R}$ • As $(a,c) \in \mathbb{R}^{k+1}$, $(a,?) \in \mathbb{R}^k$ and $(?,c) \in \mathbb{R}$ Degree of the relation? 3 As "R is transitive iff Rⁿ ⊆ R for n > 0" First domain is: the set of all integers • (b,f) $\in \mathbb{R}^k \subset \mathbb{R}$ Second domain is: the set of all integers • As R is transitive, $(d,b) \in R$ and $(b,f) \in R$ imply $(d,f) \in R$ Third domain: the set of positive integers • As R is transitive, $(d,f) \in R$ and $(f,c) \in R$ imply $(d,c) \in R$ Do they belong to R? • Therefore, by considering, $(a,d) \in \mathbb{R}^k$ and $(d,c) \in \mathbb{R}$, (a,c)• (8,2,3) **Y** ■ (7,2,3) **N** $\in \mathbb{R}^{k+1}$ ■ (-1,9,5) **Y** ■ (-2,-8,5) N

Relational Database VS n-ary Relation

- A database consists of records made up of fields
- Each record is a n-tuple (n fields)
 - For example:
 - ID num
 Name
 Major
 GPA

 888323
 Adams
 Data Structure
 85

 231455
 Peter
 C++
 61
 - Domain: ID num, Name, Major, GPA
 - Relation: (888323, Adams, Data Structure, 85), (231455, Sam, C++, 61)
- Relations are displayed as tables

ID_number	Student_name	Major	Grade
888323	Adams	Data Structure	85
231455	Peter	C++	61
678543	Sam	Data Structure	98

Ch 5.1, 5.2, 5.3

61

Relational Database VS n-ary Relation

- n-ary relation can be:
 - Determining all n-tuples satisfy certain conditions
 - Joining the records in different tables

ID_number	Major	Grade	ID_nun
888323	Data Structure	85	231455
231455	C++	61	888323
678543	Data Structure	98	102147
453876	Discrete Math	83	453876
	1		678543

ID_number	Student_name
231455	Adams
888323	Peter
102147	Sam
453876	Goodfriend
678543	Rao
786576	Stevens