Chapter 5: Relation
5.1

Relations and
Their Properties
5.2
n-ary Relations and Their Applications
5.3

Representing Relations

Dr Patrick Chan

School of Computer Science and Engineering
South China University of Technology

Agenda

- What is Relation?
- Representation of Relation
- Graph
- Matrix
- Operators of Relation
- Properties of Relation

Recall, Function is...

- Let A and B be nonempty sets

Function f from \mathbf{A} to \mathbf{B} is an assignment of exactly one element of B to each element of \mathbf{A}

- By defining using a relation, a function from A to B contains unique ordered pair (a, b) for every element $a \in A$

What is Relation?

Relation

- Let A and B be sets

A binary relation from A to B is a subset of $A x$ B

- Recall, for example:
- $A=\left\{a_{1}, a_{2}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$
- $A \times B=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right)\right.$,

$$
\left.\left(a_{2}, b_{2}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right)\right\}
$$

Relation

\mathbf{R} is defined as

- A binary relation from A to B
- Ordered pairs, which
- First element comes from A
- Second element comes from B
- aRb: $(a, b) \in R$
- a Rb: $(a, b) \notin R$
- Moreover, when (a, b) belongs to R, a is said to be related to b by R

Relation: Example

- $S=\{$ Peter, Paul, Mary $\}$
- C = \{C++, DisMath $\}$
- Given
- Peter takes C++ Peter R C++ Peter 자 DisMath
- Paul takes DisMath Paul $\neq \mathrm{C}++\quad$ Paul R DisMath
- Mary takes none of them Mary \boldsymbol{R}^{C++} Mary \mathbb{R} DisMath
- $\mathrm{R}=\{($ Peter, C++), (Paul, DisMath) $\}$
- (S x C) $-\mathrm{R}=$ R

Relation VS Function

- Function
from a set A to a set B
- All elements of A are assigned to B
- Exactly one element of B to each element of A
- Relation
from a set A to a set B
- Some elements of A are assigned to B
- Zero, One or more elements of B to an element of A
- Function is a special case of Relation

Function
Relation

Not a Function
Relation

Not a Function Relation

Relation Representation

Graph

- Relations can be represented by Directed Graph
- You will learn the directed graph in detail in <Discrete Math Part 2>
- Graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ consists of
- a set of vertices \mathbf{V}
- a set of edges E,
- a connection between a pair of vertices

$$
\begin{aligned}
& V=\{a, b, c, d\} \\
& E=\{(a, b),(b, c),(b, d),(c, d)\}
\end{aligned}
$$

Relation Representation

Graph

- Undirected Graph
- Edges are not directed
- E.g. $(\mathrm{a}, \mathrm{d})=(\mathrm{d}, \mathrm{a})$

Directed Graph (Digraph)

- Edges are directed
- E.g. (a, d) $\neq(\mathrm{d}, \mathrm{a})$

Relation Representation

Graph

- G to present a relation from A to B is
- vertices $V \subseteq A \cup B$
- edges $E \subseteq A \times B$
- For example

- If there is an ordered pair (x, y) in R, then there is an edge from x to y in D

Relation Representation

Graph: Example

- Peter R C++, Peter $\not \subset$ DisMath Paul R C++, Paul R DisMath Mary $\not \subset \mathrm{C}++$, Mary \mathbb{R} DisMath

Paul

Mary
Directed Graph

Relation Representation

Matrix

- Let R be a relation from $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ to $B=$ $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$
- An $m \times n$ connection matrix M for R is defined by

$$
\begin{aligned}
& m_{i j}=\left\{\begin{array}{l}
1 \text { if }\left(a_{i}, b_{j}\right) \in R \\
0 \text { if }\left(a_{i}, b_{j}\right) \notin R
\end{array}\right.
\end{aligned}
$$

Relation Representation

Matrix: Example

- Peter R C++, Peter R DisMath

Paul R C++, Paul R DisMath
Mary R C++, Mary R DisMath

Mary

Relation on One Set

- Relation on the set A is a relation from A to A - Special case in relations
- Example:
- $A=\{1,2,3,4\}$
- $R=\{(1,1),(1,4),(2,1),(2,3),(2,4),(3,1),(4,1)$,
$(4,2)\}$

Relation on One Set
Example 1

- Let A be the set $\{1,2,3,4\}$, which ordered pairs are in the relation $R=\{(a, b) \mid$ a divides $b\}$?
- $\boldsymbol{R}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Relation on One Set
Example 2

- How many different relations are there on a set with n elements?
- Suppose A has n elements
- Recall, a relation on a set A is a subset of $A \times A$
- AxA has n^{2} elements
- If a set has m element, its has 2^{m} subsets
- Therefore, the answer is $2^{n^{2}}$

Relation on One Set
Relation Properties
Reflexive
$\forall \mathrm{a}(\mathrm{a}, \mathrm{a}) \in \mathrm{R})$

- Irreflexive
$\forall a((a \in A) \rightarrow((a, a) \notin R))$
- Transitive
$\forall a \forall b \forall c\left(\left((a, b) \in R_{\wedge}(b, c) \in R\right) \rightarrow((a, c) \in R)\right)$

Relation on One Set

Relation Properties

- Symmetric
$\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R}) \rightarrow((\mathrm{b}, \mathrm{a}) \in \mathrm{R}))$
- Asymmetric ((a,a) cannot be an element in R) $\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R}) \rightarrow((\mathrm{b}, \mathrm{a}) \notin \mathrm{R}))$
- Antisymmetric ((a, a) may be an element in $R)$ $\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R} \wedge(\mathrm{b}, \mathrm{a}) \in \mathrm{R}) \rightarrow(\mathrm{a}=\mathrm{b}))$
- Asymmetry = Antisymmetry + Irreflexivity

Relation on One Set
Relation Properties: Graph

Reflexive
$\forall a((a, a) \in R)$
Every node has a self-loop

Irreflexive
$\forall a((a \in A) \rightarrow((a, a) \notin R))$
No node links to itself

Relation on One Set

Relation Properties: Graph

Symmetric
$\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R}) \rightarrow((\mathrm{b}, \mathrm{a}) \in \mathrm{R}))$
Every link is bidirectional

Asymmetric

$\forall a \forall b(((a, b) \in R) \rightarrow((b, a) \notin R))$
No link is bidirectional (Antisymmetric) No node links to itself (Irreflexive)

Antisymmetric
$\forall a \forall b((a, b) \in R \wedge(b, a) \in R) \rightarrow(a=b))$
No link is bidirectional

Relation on One Set

Relation Properties: Matrix

$$
\left(\begin{array}{lll}
1 & & ? \\
& 1 & \\
? & 1 & \\
? & & 1
\end{array}\right) \quad \begin{aligned}
& \text { Reflexive } \\
& \forall a((a, a) \in R) \\
& \text { All 1's on diagonal }
\end{aligned}
$$

$$
\left(\begin{array}{lll}
0 & & ? \\
& 0 & \\
? & 0 & \\
? & & 0
\end{array}\right)
$$

Irreflexive
$\forall a((a \in A) \rightarrow((a, a) \notin R))$
All O's on diagonal

Transitive
 $\forall a \forall b \forall c\left(\left((a, b) \in R_{\wedge}(b, c) \in R\right) \rightarrow((a, c) \in R)\right)$

Not easy to observe in Matrix

Relation on One Set

Relation Properties: Matrix

Symmetric
$\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R}) \rightarrow((\mathrm{b}, \mathrm{a}) \in \mathrm{R}))$
All identical across diagonal

Asymmetric
$\forall a \forall b(((a, b) \in R) \rightarrow((b, a) \notin R))$
All 1's are across from 0's (Antisymmetric) All 0's on diagonal (Irreflexive)

Antisymmetric
$\forall a \forall b(((a, b) \in R \wedge(b, a) \in R) \rightarrow(a=b))$
All 1's are across from 0's

Relation on One Set: Properties of Relation Example 1

- Consider the following relations on $\{1,2,3,4\}$, Which properties these relations have?
- $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$

Refor Ine ine

- $R_{2}=\{(1,1),(1,2),(2,1)\}$

Refor Ine ine ine

- $R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$

- $\mathrm{R}_{6}=\{(3,4)\}$

RTC Irreflexive Transitive Symmetric Antisymmetric

Relation on One Set: Properties of Relation Example 2

Relation on One Set: Properties of Relation Example 3

- Let $A=Z^{+}, R=\{(a, b) \in A \times A \mid a$ divides $b\}$

Is R symmetric, asymmetric, or antisymmetric?

- Symmetric ($\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R}) \rightarrow((\mathrm{b}, \mathrm{a}) \in \mathrm{R}))) \mathcal{S}$
- If $a R b$, it does not follow that $b R a$
- Asymmetric ($\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R}) \rightarrow((\mathrm{b}, \mathrm{a}) \notin \mathrm{R}))) \boldsymbol{\mathcal { K }}$
- If $a=b$, then $a R b$ and $b R a$
- Antisymmetric ($\forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R} \wedge(\mathrm{b}, \mathrm{a}) \in \mathrm{R}) \rightarrow(\mathrm{a}=\mathrm{b})))$
- If $a R b$ and $b R a$, then $a=b$

Combining Relations

- As R is a subsets of $A \times B$, the set operations can be applied
- Complement (-)
- Union (U)
- Intersection (\cap)
- Difference (-)
- Symmetric Complement (\oplus)

Combining Relations
Example

- Given, $A=\{1,2,3\}, B=\{1,2,3,4\}$
- $R_{1}=\{(1,1),(2,2),(3,3)\}$,
$R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}$
- $R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$
- $R_{1} \cap R_{2}=\{(1,1)\}$
- $\mathrm{R}_{1}-\mathrm{R}_{2}=\{(2,2),(3,3)\}$
- $R_{2}-R_{1}=\{(1,2),(1,3),(1,4)\}$
$R_{1} \oplus R_{2}=\{(1,2),(1,3),(1,4),(2,2),(3,3)\}$

Combining Relations

- Let R be relation from a set A to a set B
- Inverse Relation $\left(\mathbf{R}^{-1}\right)=\{(b, a) \mid(a, b) \in R\}$
- Complementary Relation ($\overline{\mathbf{R}})=\{(a, b) \mid(a, b) \notin R\}$
- Example

$$
\begin{aligned}
& \text { - } X=\{a, b, c\} \quad Y=\{1,2\} \\
& \text { - } R=\{(a, 1),(b, 2),(c, 1)\} \\
& \text { - } R^{-1}=\{(1, a),(2, b),(1, c)\} \\
& \text { - } E=X \times Y=\{(a, 1),(b, 1),(c, 1),(a, 2),(b, 2),(c, 2)\} \\
& \text { - } \bar{R}=\{(a, 2),(b, 1),(c, 2)\}=E-R
\end{aligned}
$$

Combining Relations

Theorems

- Let R_{1} and R_{2} be relations from A to B. Then
- $\left(R^{-1}\right)^{-1}=R$
- $\left(R_{1} \cup R_{2}\right)^{-1}=R_{1}{ }^{-1} \cup R_{2}{ }^{-1}$
- $\left(R_{1} \cap R_{2}\right)^{-1}=R_{1}{ }^{-1} \cap R_{2}{ }^{-1}$
- $(A \times B)^{-1}=B \times A$
- $\varnothing^{-1}=\varnothing$
- $(\bar{R})^{-1}=\overline{\left(R^{-1}\right)}$
- $\left(R_{1}-R_{2}\right)^{-1}=R_{1}{ }^{-1}-R_{2}^{-1}$
- If $R_{1} \subseteq R_{2}$ then $R_{1}{ }^{-1} \subseteq R_{2}{ }^{-1}$

Combining Relations: Theorems

Example for the Proof

- $\operatorname{Proof}\left(\mathrm{R}_{1} \cup \mathrm{R}_{2}\right)^{-1}=\mathrm{R}_{1}{ }^{-1} \cup \mathrm{R}_{2}{ }^{-1}$
- Assume

$$
(a, b) \in R_{1} \&(a, b) \in R_{2}
$$

Recall...

- $A \cup B=\{x \mid x \in A \vee x \in B\}$
- $R^{-1}=\{(b, a) \mid(a, b) \in R\}$
- L.H.S.
- $\left(R_{1} \cup R_{2}\right)=\left\{(a, b) \mid(a, b) \in R_{1} \vee(a, b) \in R_{2}\right\}$
- $\left(R_{1} \cup R_{2}\right)^{-1}=\left\{(b, a) \mid(a, b) \in R_{2} \vee(a, b) \in R 2\right\}$
- R.H.S.
- $R_{1}{ }^{-1}=\left\{(b, a) \mid(a, b) \in R_{1}\right\}$
- $R_{2}{ }^{-1}=\left\{(b, a) \mid(a, b) \in R_{2}\right\}$
- $R_{1}{ }^{-1} \cup R_{2}{ }^{-1}=\left\{(b, a) \mid(a, b) \in R_{2} \vee(a, b) \in R 2\right\}$

Combining Relations
Example 1

- Given
- R_{1} is symmetric
- R_{2} is antisymmetric
- Does it $R_{1} \cup R_{2}$ is transitive?
- Not transitive by giving a counterexample
- $\mathrm{R}_{1}=\{(1,2),(2,1)\}$ which is symmetric
- $R_{2}=\{(1,2),(1,3)\}$ which is antisymmetric
- $\mathrm{R}_{1} \cup \mathrm{R}_{2}=\{(1,2),(2,1),(1,3)\}$, not transitive

Combining Relations

Example 2

- Given R_{1} and R_{2} are transitive on A
- Does $R_{1} \cup R_{2}$ is transitive?
- Not transitive by giving a counterexample
- $A=\{1,2\}$
- $\mathrm{R}_{1}=\{(1,2)\}$, which is transitive
- $R_{2}=\{(2,1)\}$, which is transitive
- $R_{1} \cup R_{2}=\{(1,2),(2,1)\}$, not transitive

Combining Relations: Matrix

- Suppose that R_{1} and R_{2} are relations on a set A represented by the matrices $M_{R_{1}}$ and $M_{R_{2}}$, respectively
- Join operator (OR)

$$
M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}}
$$

- Meet operator (AND)

$$
M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}
$$

Combining Relations: Matrix

- Example

$$
\begin{array}{ll}
M_{R_{1}}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] & M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \\
M_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] & M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array}
$$

Combining Relations

Composite

- Recall, the composition in functions...
- Let
- g be a function from the set A to the set B
- f be a function from the set B to the set C
- The composition of the functions \boldsymbol{f} and \boldsymbol{g}, denoted by $f \circ g$, is defined by $(f \circ g)(\mathrm{a})=f(g(\mathrm{a}))$

Combining Relations

Composite

- Let
- R be a relation from a set A to a set B
- S be a relation from a set B to a set C
- The composite of R and S is the relation consisting of ordered pairs (a, c), where
- $a \in A, c \in C$, and
- There exists an element $b \in B$, such that $(a, b) \in R$ and $(b, c) \in S$
- The composite of R and S is denoted by S o R

Combining Relations

Composite

- Suppose
- R be a relation from a set A to a set B
- S be a relation from a set B to a set C
$(x, y) \in S \circ R$ implies $\exists z((x, z) \in R \wedge(z, y) \in S)$

- Remark: May be more than one element z, where $(x, z) \in R$ and $(z, y) \in S$

Combining Relations

Composite: Example

- What is the composite of the relations R and S , where
- R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$
- S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with $S=\{(1,0),(1,2),(2,0),(3,1),(3,2),(4,1)\} ?$

$$
\text { - So R = }\{(1,0),(1,2),(1,1),(2,1),(2,2),(3,0),(3,2),(3,1)\}
$$

Ch 5.1, 5.2, 5.3
Combining Relations

Composite: Properties

- Let R_{1} and R_{2} be relations on the set A.
- Show $\left(R_{1} \circ R_{2}\right)^{-1}=R_{2}{ }^{-1} \circ R_{1}{ }^{-1}$
- Proof:

Let $(x, y) \in\left(R_{1} \circ R_{2}\right)^{-1}$
$(x, y) \in\left(R_{1} \circ R_{2}\right)^{-1}$
$\Leftrightarrow(y, x) \in R_{1} \circ R_{2}$
($\mathbf{x}, \mathrm{y}) \in \mathbf{S} \circ \mathbf{R}$ implies
$\exists z((x, z) \in R \wedge(z, y) \in S)$
$\Leftrightarrow \exists z\left((y, z) \in R_{2} \wedge(z, x) \in R_{1}\right)$
$\Leftrightarrow \exists z\left((z, y) \in R_{2}^{-1} \wedge(x, z) \in R_{1}{ }^{-1}\right)$
$\Leftrightarrow(x, y) \in R_{2}^{-1} \circ R_{1}^{-1}$

Combining Relations

Composite: Properties

- Let F, G and H be relations on the set A , then
- $F \circ(G \cup H)=(F \circ G) U(F \circ H)$
- $\mathrm{F} \circ(\mathrm{G} \cap \mathrm{H}) \subseteq(\mathrm{F} \circ \mathrm{G}) \cap(\mathrm{F} \circ \mathrm{H})$
- (GUH) $\circ F=(G \circ F) U(H \circ F)$
- $(G \cap H) \circ F \subseteq(G \circ F) \cap(H \circ F)$

Combining Relations: Relation on One Set
Composite

- Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$, are defined recursively by
- $R^{1}=R$
- $R^{2}=R$ o R
- $R^{3}=R^{2} \circ R=(R \circ R) \circ R$
- $R^{n+1}=R^{n} \circ R$

Combining Relations: Relation on One Set Composite: Example

- Let $\mathrm{R}=\{(1,1),(2,1),(3,2),(4,3)\}$

- Find the powers $\mathrm{R}^{\mathrm{n}}, \mathrm{n}=2,3,4, \ldots$

$$
\begin{aligned}
& R^{2}=R \circ R=\{(1,1),(2,1),(3,1),(4,2)\} \\
& R^{3}=R^{2} \circ R=\{(1,1),(2,1),(3,1),(4,1)\} \\
& R^{4}=R^{3} \circ R=\{(1,1),(2,1),(3,1),(4,1)\} \\
& R^{n}=R^{3} \text { for } n=5,6,7, \ldots .
\end{aligned}
$$

Combining Relations: Relation on One Set

Composite: Matrix

- Suppose
- R_{1} be relation from set A to set B represented by $M_{R_{1}}$
- R_{2} be relation from set B to set C represented by $M_{R_{2}}$
- The matrix for the composite of R_{1} and R_{2} is:

$$
\mathrm{M}_{\mathrm{R}_{2} \circ \mathrm{R}_{1}}
$$

- Size of $M_{R_{1}}$ and $M_{R_{2}}$ is $|A| x|B|$ and $|B| \times|C|$
- Size of $M_{R_{2} \circ R_{1}}$ is $|A| x|C|$

Combining Relations: Relation on One Set

Composite: Matrix

Define:
n : the number of row of R_{1} the number of column of R_{2}

$$
M_{R_{2} \circ R_{1}}=M_{R_{2}} \odot M_{R_{1}}
$$

- Such that
$\left(M_{R_{2}} \odot M_{R_{1}}\right)_{i j}=1$
if and only if
$\left(M_{R_{1}}\right)_{i k}=\left(M_{R_{2}}\right)_{k j}=1$ for some k

Combining Relations: Relation on One Set

Composite: Matrix: Example

n : the number of column of R_{1} the number of row of R_{2}

$$
i=1, j=
$$

$$
k=1
$$

Combining Relations: Relation on One Set

Composite: Matrix

- The powers R^{n} can defined using matrix as:

$$
M_{R^{n}}=\left(M_{R}\right)^{n}
$$

Example

$$
M_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

$$
M_{R^{2}}=\left(M_{R}\right)^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \odot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Combining Relations: Relation on One Set

Composite: Property 1

- Theorem

If $R \subset S$, then $S \circ R \subset S \circ S$

- Assume $(x, y) \in$ SoR, there exists a element z, which $(x, z) \in R$ and $(z, y) \in S$
- As $R \subset S$ and $(x, z) \in R,(x, z) \in S$
- Therefore, as $(x, z) \in S$ and $(z, y) \in S,(x, y) \in S o S$
- SoRcSoS
- It implies:

If $R \subset S$ and $T \subset U$, then $R \circ T \subset S$ o U

Combining Relations: Relation on One Set

Composite: Property 2

- An ordered pairs (x, y) is in R^{n} iff there is a path of length n from x to y in R

R

R^{2}

R^{3}

R^{4}

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

\square
\square

Combining Relations: Relation on One Set

Composite: Property 2

- An ordered pairs (x, y) is in R^{n} iff there is a path of length n from x to y in R

R

R^{2}

R^{3}

R^{4}
- Example
- In R, $1>2>4$, length $=2 \Leftrightarrow(1,4) \in R^{2}$
- In $R, 3>2>4>3$, length $=3 \Leftrightarrow(3,3) \in R^{3}$
- $(1,2) \in R^{4} \Leftrightarrow \ln R, 1>2>4>3>2$, length $=4$

Combining Relations: Relation on One Set

Composite: Property 2

- Theorem

Let R be a relation on A. There is a path of length n from a to b in R iff $(a, b) \in R^{n}$

Combining Relations: Relation on One Set Composite: Property 2

- Proof by Induction
- Show $n=1$ is true
a path of length n from a to b iff $(a, b) \in R^{n}$
- An arc from a to b is a path of length 1 , which is in $R^{1}=R$
- Hence the assertion is true for $\mathrm{n}=1$
- Assume it is true for k. Show it is true for $k+1$
- As it is true for $n=1$, suppose (a, x) is a path of length 1 , then $(a, x) \in R$
- As it is true for $n=k$, suppose (x, b) is a path of length k, then $(x, b) \in R^{k}$
- Considering, $(a, x) \in R$ and $(x, b) \in R^{k}$,
$(a, b) \in R^{k+1}=R^{k} \circ R$ as there exists an element x, such that $(a, x) \in R$ and $(x, b) \in R^{k}$
- The length of (a, b) is $k+1$

Combining Relations: Relation on One Set

Composite: Property 3

- R is transitive iff $R^{n} \subseteq R$ for $n>0$.
- Proof

1. ($\left.\mathbf{R}^{\mathbf{n}} \subseteq \mathbf{R}\right) \rightarrow \mathbf{R}$ is transitive

- Suppose $(a, b) \in R$ and $(b, c) \in R$
- (a,c) is an element of R^{2} as $R^{2}=R \circ R$
- As $R^{2} \subseteq R,(a, c) \in R$
- Hence R is transitive

Combining Relations: Relation on One Set

Composite: Property 3

2. R is transitive $\rightarrow\left(R^{n} \subseteq R\right)$

- Use a proof by induction:
- Basis: Obviously true for $n=1$.
- Induction: Assume true for n, show it is true for $\mathrm{n}+1$
- For any (x, y) is in R^{n+1}, there is a z such that $(x, z) \in R$ and $(z, y) \in R^{n}$
- But since $R^{n} \subseteq R,(z, y) \in R$
- As R is transitive, (x, z) and (z, y) are in R, so (x, y) is in R
- Therefore, $\mathrm{R}^{\mathrm{n}+1} \subseteq \mathrm{R}$

Combining Relations: Relation on One Set

Composite: Property 4

- Proof: If R is transitive, R^{n} is also transitive

When $n=1, R$ is transitive

- Assume R^{k} is transitive
- Show R^{k+1} is transitive

Given $(a, b) \in R^{k+1}$ and $(b, c) \in R^{k+1}$, show $(a, c) \in$ R^{k+1}

- $\mathrm{R}^{\mathrm{k}+1}=\mathrm{R}^{\mathrm{k}} \circ \mathrm{R}$
- As $(a, b) \in R^{k+1},(d, b) \in R^{k}$ and $(a, d) \in R$
- As $(b, c) \in R^{k+1},(f, c) \in R^{k}$ and $(b, f) \in R$
- As $(a, c) \in R^{k+1},(?, c) \in R^{k}$ and $(a, ?) \in R$

Combining Relations: Relation on One Set

Composite: Property 4

- Given $(a, b) \in R^{k+1}$ and $(b, c) \in R^{k+1}$, show $(a, c) \in R^{k+1}$
- $R^{k+1}=R^{k} \circ R$
- As $(a, b) \in R^{k+1},(d, b) \in R^{k}$ and $(a, d) \in R$
- As $(b, c) \in R^{k+1},(f, c) \in R^{k}$ and $(b, f) \in R$
- As $(a, c) \in R^{k+1},(?, c) \in R^{k}$ and $(a, ?) \in R$
- As " R is transitive iff $R^{n} \subseteq R$ for $n>0$ "
- $(\mathrm{d}, \mathrm{b}) \in \mathrm{R}^{\mathrm{k}} \subseteq \mathrm{R}$
- As R is transitive, $(d, b) \in R$ and $(b, f) \in R$ imply $(d, f) \in R$
- As R is transitive, $(d, f) \in R$ and $(a, d) \in R$ imply $(a, f) \in R$
- Therefore, by considering, $(f, c) \in R^{k}$ and $(a, f) \in R,(a, c) \in$ $\mathrm{R}^{\mathrm{k}+1}$

Combining Relations: Relation on One Set

Composite: Property 4

- Proof: If R is transitive, R^{n} is also transitive

When $n=1, R$ is transitive

- Assume R^{k} is transitive
- Show R^{k+1} is transitive

Given $(a, b) \in R^{k+1}$ and $(b, c) \in R^{k+1}$, show $(a, c) \in$ R^{k+1}

- $\mathrm{R}^{\mathrm{k}+1}=\mathrm{R}^{\mathrm{k}} \circ \mathrm{R}$
- As $(a, b) \in R^{k+1},(a, d) \in R^{k}$ and $(d, b) \in R$
- As $(b, c) \in R^{k+1},(b, f) \in R^{k}$ and $(f, c) \in R$
- As $(a, c) \in R^{k+1},(a, ?) \in R^{k}$ and $(?, c) \in R$

Combining Relations: Relation on One Set

Composite: Property 4

- Given $(a, b) \in R^{k+1}$ and $(b, c) \in R^{k+1}$, show $(a, c) \in R^{k+1}$
- $R^{k+1}=R^{k} \circ R$
- As $(a, b) \in R^{k+1},(a, d) \in R^{k}$ and $(d, b) \in R$
- As $(b, c) \in R^{k+1},(b, f) \in R^{k}$ and $(f, c) \in R$
- As $(a, c) \in R^{k+1},(a, ?) \in R^{k}$ and $(?, c) \in R$
- As " R is transitive iff $R^{n} \subseteq R$ for $n>0$ "
- (b,f) $\in R^{k} \subseteq R$
- As R is transitive, $(d, b) \in R$ and $(b, f) \in R$ imply $(d, f) \in R$
- As R is transitive, $(d, f) \in R$ and $(f, c) \in R$ imply $(d, c) \in R$
- Therefore, by considering, $(a, d) \in R^{k}$ and $(d, c) \in R,(a, c)$ $\in \mathrm{R}^{\mathrm{k}+1}$

n-ary Relation

- Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ be sets

An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$

- Domains of the relation:
the sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$
- Degree of the relation: n

n-ary Relation: Example

- Let R be the relation on $\mathrm{Z} \times \mathrm{Zx} \mathrm{Z}^{+}$consisting of triples
(a, b, m), where a, b, and m are integers with
$\mathrm{m} \geq 1$ and $\mathrm{a}=\mathrm{b}(\bmod \mathrm{m})$, (i.e. m divides $\mathrm{a}-\mathrm{b}$)
- Degree of the relation? 3
- First domain is: the set of all integers
- Second domain is: the set of all integers
- Third domain: the set of positive integers
- Do they belong to R?
- $(8,2,3) \quad \mathrm{Y}$
- $(7,2,3) \quad \mathbf{N}$
- $(-1,9,5) \mathrm{Y}$
- $(-2,-8,5) \mathbf{N}$

Relational Database VS n-ary Relation

- A database consists of records made up of fields
- Each record is a n-tuple (n fields)
- For example:

	ID num	Name	Major
$=888323$	Adams	Data Structure	GPA
$=231455$	Peter	C++	61

- Domain: ID num, Name, Major, GPA
- Relation: (888323, Adams, Data Structure, 85), (231455, Sam, C++, 61)
- Relations are displayed as tables

ID_number	Student_name	Major	Grade
888323	Adams	Data Structure	85
231455	Peter	C++	61
678543	Sam	Data Structure	98

Relational Database VS n-ary Relation

n-ary relation can be:

- Determining all n-tuples satisfy certain conditions
- Joining the records in different tables

ID_number	Major	Grade
888323	Data Structure	85
231455	C++	61
678543	Data Structure	98
453876	Discrete Math	83

ID_number	Student_name
231455	Adams
888323	Peter
102147	Sam
453876	Goodfriend
678543	Rao
786576	Stevens

