Discrete Mathematic

Chapter 5: Relation 5.1 Relations and Their Properties 5.2 n-ary Relations and Their Applications 5.3 Representing Relations

Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Agenda

- What is Relation?
- Representation of Relation
 - Graph
 - Matrix
- Operators of Relation
- Properties of Relation

Recall, Function is...

- Let A and B be nonempty sets
 Function f from A to B is an assignment of exactly one element of B to each element of A
- By defining using a relation, a function from A to B contains unique ordered pair (a, b) for every element a ∈ A

What is Relation?

Relation

Let A and B be sets
 A binary relation from A to B is a subset of A x
 B

Recall, for example:

•
$$A = \{a_1, a_2\} \text{ and } B = \{b_1, b_2, b_3\}$$

• $A \times B = \{(a_1, b_2), (a_2, b_3), (a_3, b_3), (a_4, b_3), (a_4, b_3), (a_5, b_3), (a_5,$

$$(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_2), (a_1, b_2), (a_1, b_3)$$

Ch 5.1, 5.2, 5.3

Relation

- R is defined as
 - A binary relation from A to B
 - Ordered pairs, which
 - First element comes from A
 - Second element comes from B
- **aRb**: (a, b) ∈ R
- aRb: (a, b) ∉ R
- Moreover, when (a, b) belongs to R, a is said to be related to b by R

Relation: Example

- S = {Peter, Paul, Mary}
- C = {C++, DisMath}
- Given
 - Peter takes C++ Peter R C++ Peter DisMath
 - Paul takes DisMath
 Paul R DisMath
 - Mary takes none of them Mary K C++ Mary K DisMath
- R = {(Peter, C++), (Paul, DisMath)}
- (S x C) R = 🔀

Relation VS Function

Function

from a set A to a set B

- All elements of A are assigned to B
- Exactly one element of B to each element of A

Relation

from a set A to a set B

- Some elements of A are assigned to B
- Zero, One or more elements of B to an element of A
- Function is a special case of Relation

Not a Function Relation

Not a Function Relation

Relation Representation Graph

- Relations can be represented by Directed Graph
 - You will learn the directed graph in detail in <Discrete Math Part 2>

Ch 5.1, 5.2, 5.3

Relation Representation Graph

- Undirected Graph
 - Edges are not directed
 - E.g. (a, d) = (d, a)

Relation Representation Graph

- G to present a relation from A to B is
 - vertices V ⊆ A U B
 - edges $E \subseteq A \times B$
- For example

 If there is an ordered pair (x, y) in R, then there is an edge from x to y in D

Ch 5.1, 5.2, 5.3

Relation Representation Graph: Example

 Peter R C++, Peter R DisMath Paul R C++, Paul R DisMath Mary R C++, Mary R DisMath

Relation Representation Matrix

- Let **R** be a relation from A = {a₁, a₂, ..., a_m} to B = {b₁, b₂, ..., b_n}
- An m×n connection matrix M for R is defined by

Relation Representation Matrix: Example

Peter R C++, Peter R DisMath
 Paul R C++, Paul R DisMath
 Mary R C++, Mary R DisMath

Relation on One Set

- Relation on the set A is a relation from A to A
 - Special case in relations

Example:

- A = {1, 2, 3, 4}
- R = {(1,1), (1,4), (2,1), (2,3), (2,4), (3,1), (4,1), (4,2)}

Ch 5.1, 5.2, 5.3

Relation on One Set Example 1

- Let A be the set {1, 2, 3, 4}, which ordered pairs are in the relation R = {(a, b) | a divides b}?
- $\mathbf{R} = \{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4) \}$

Relation on One Set **Example 2**

- How many different relations are there on a set with n elements?
- Suppose A has n elements
- Recall, a relation on a set A is a subset of A x A
- A x A has n² elements
- If a set has m element, its has 2^m subsets
- Therefore, the answer is 2^{n²}

Ch 5.1, 5.2, 5.3

17

Relation on One Set Relation Properties

- Reflexive
 ∀a ((a, a) ∈ R)
- Irreflexive

 $\forall a ((a \in A) \rightarrow ((a, a) \notin R))$

Transitive

 $\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow ((a,c) \in R))$

Relation on One Set Relation Properties

- Symmetric
 ∀a ∀b (((a, b)∈R) → ((b, a)∈R))
- Asymmetric ((a,a) cannot be an element in R)
 ∀a ∀b (((a, b)∈R) → ((b, a)∉R))
- Antisymmetric ((a,a) may be an element in R)
 ∀a ∀b (((a, b)∈R ∧ (b, a)∈R) → (a = b))
- Asymmetry = Antisymmetry + Irreflexivity

Ch 5.1, 5.2, 5.3

Relation on One Set Relation Properties: Graph

Reflexive ∀a ((a, a) ∈ R) Every node has a self-loop

Irreflexive $\forall a ((a \in A) \rightarrow ((a, a) \notin R))$ No node links to itself

Transitive $\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow ((a,c) \in R))$

Every two adjacent forms a triangle (Not easy to observe in Graph)

Relation on One Set Relation Properties: Graph

Symmetric

 $\forall a \ \forall b \ (\ ((a, b) \in R) \rightarrow ((b, a) \in R) \)$ Every link is bidirectional

Asymmetric ∀a ∀b (((a, b)∈R) → ((b, a)∉R))

No link is bidirectional (Antisymmetric) No node links to itself (Irreflexive)

Antisymmetric

 $\forall a \ \forall b \ (\ ((a, b) \in \mathbb{R} \land (b, a) \in \mathbb{R}) \rightarrow (a = b) \)$ No link is bidirectional

21

Relation on One Set Relation Properties: Matrix

Irreflexive $\forall a ((a \in A) \rightarrow ((a, a) \notin R))$ All 0's on diagonal

Transitive $\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow ((a,c) \in R))$ Not easy to observe in Matrix

Relation on One Set Relation Properties: Matrix

Symmetric $\forall a \ \forall b \ (\ ((a, b) \in R) \rightarrow ((b, a) \in R) \)$ All identical across diagonal

Asymmetric ∀a ∀b (((a, b)∈R) → ((b, a)∉R))

All 1's are across from 0's (Antisymmetric) All 0's on diagonal (Irreflexive)

Antisymmetric $\forall a \forall b (((a, b) \in R \land (b, a) \in R) \rightarrow (a = b))$ All 1's are across from 0's

23

Relation on One Set: Properties of Relation **Example 1**

Consider the following relations on {1, 2, 3, 4}, Which properties these relations have?

• $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$

Reflexive Interviewe Symmetric Asymmetric Antisymmetric

R₂ = {(1,1), (1,2), (2,1)}
 Reflexive Ineflexive Symmetric Asymmetric Antisymmetric

• $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$ Reflexive Transitive Symmetric Asymmetric Antisymmetric

Relation on One Set: Properties of Relation Example 2

Ch 5.1, 5.2, 5.3

25

Relation on One Set: Properties of Relation **Example 3**

- Let A = Z⁺, R = { (a,b) ∈ A × A | a divides b } Is R symmetric, asymmetric, or antisymmetric?
- Symmetric (∀a ∀b (((a, b)∈R) → ((b, a)∈R)))
 - If aRb, it does not follow that bRa
- Asymmetric (∀a ∀b (((a, b)∈R) → ((b, a)∉R)))
 - If a=b, then aRb and bRa
- Antisymmetric (∀a ∀b (((a, b)∈R ∧ (b, a)∈R) → (a = b)))
 - If aRb and bRa, then a=b

Combining Relations

- As R is a subsets of A x B, the set operations can be applied
 - Complement ([—])
 - Union (U)
 - Intersection (∩)
 - Difference (-)
 - Symmetric Complement (⊕)

Combining Relations **Example**

- Given, A = {1,2,3}, B = {1,2,3,4}
- $R_1 = \{(1,1), (2,2), (3,3)\},\ R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$
- $R_1 U R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$
- $R_1 \cap R_2 = \{(1,1)\}$
- $R_1 R_2 = \{(2,2), (3,3)\}$
- $R_2 R_1 = \{(1,2), (1,3), (1,4)\}$
- $R_1 \oplus R_2 = \{(1,2), (1,3), (1,4), (2,2), (3,3)\}$

Combining Relations

- Let R be relation from a set A to a set B
- Inverse Relation $(\mathbb{R}^{-1}) = \{(b,a) \mid (a,b) \in \mathbb{R}\}$
- Complementary Relation $(\overline{\mathbf{R}}) = \{(a,b) \mid (a,b) \notin \mathbf{R}\}$
- Example
 - X = {a, b, c} Y={1, 2}
 - R = {(a, 1), (b, 2), (c, 1)}
 - R⁻¹ = {(1, a), (2, b), (1, c)}
 - E = X × Y = {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)}
 - R = {(a, 2), (b, 1), (c, 2)} = E R

Ch 5.1, 5.2, 5.3

29

Combining Relations

- Let R₁ and R₂ be relations from A to B. Then
 - (R⁻¹)⁻¹ = R
 - $(R_1 U R_2)^{-1} = R_1^{-1} U R_2^{-1}$
 - $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$
 - (A × B)⁻¹ = B × A
 - Ø⁻¹ = Ø
 - $(\overline{\mathsf{R}})^{-1} = \overline{(\mathsf{R}^{-1})}$
 - $(R_1 R_2)^{-1} = R_1^{-1} R_2^{-1}$
 - If $R_1 \subseteq R_2$ then $R_1^{-1} \subseteq R_2^{-1}$

Combining Relations: Theorems Example for the Proof

• **Proof** $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$

- Assume $(a,b) \in R_1 \& (a,b) \in R_2$ $\mathbb{R}^{-1} = \{(b,a) \mid (a,b) \in R\}$
- Recall...
 - $A \cup B = \{ x \mid x \in A \lor x \in B \}$

- L.H.S.
 - $(R_1 \cup R_2) = \{(a,b) \mid (a,b) \in R_1 \lor (a,b) \in R_2 \}$

•
$$(R_1 \cup R_2)^{-1} = \{(b,a) \mid (a,b) \in R_2 \lor (a,b) \in R2 \}$$

•
$$R_1^{-1} = \{(b,a) \mid (a,b) \in R_1\}$$

•
$$R_2^{-1} = \{(b,a) \mid (a,b) \in R_2\}$$

• $R_1^{-1} \cup R_2^{-1} = \{(b,a) \mid (a,b) \in R_2 \lor (a,b) \in R2 \}$

Ch 5.1, 5.2, 5.3

Combining Relations Example 1

- Given
 - R₁ is symmetric
 - R₂ is antisymmetric
- Does it R₁ U R₂ is transitive?
- Not transitive by giving a counterexample
 - R₁ = {(1,2),(2,1)} which is symmetric
 - $R_2 = \{(1,2), (1,3)\}$ which is antisymmetric
 - R₁ U R₂ = {(1,2),(2,1),(1,3)}, not transitive

Combining Relations **Example 2**

- Given R₁ and R₂ are transitive on A
- Does R₁ U R₂ is transitive?

Not transitive by giving a counterexample

- A = {1, 2}
- R₁ = {(1,2)}, which is transitive
- R₂ = {(2,1)}, which is transitive
- R₁ U R₂ = {(1,2), (2,1)}, not transitive

Ch 5.1, 5.2, 5.3

33

Combining Relations: Matrix

- Suppose that R₁ and R₂ are relations on a set A represented by the matrices M_{R1} and M_{R2}, respectively
- Join operator (OR)

$$\mathsf{M}_{\mathsf{R}_1 \, \mathsf{U} \, \mathsf{R}_2} = \mathsf{M}_{\mathsf{R}_1^{\vee}} \, \mathsf{M}_{\mathsf{R}_2}$$

Meet operator (AND)

$$\mathsf{M}_{\mathsf{R}_1 \cap \mathsf{R}_2} = \mathsf{M}_{\mathsf{R}_1} \land \mathsf{M}_{\mathsf{R}_2}$$

Combining Relations: Matrix

Example

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_{R_1 \cup R_2} = M_{R_1} \lor M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Ch 5.1, 5.2, 5.3

35

Combining Relations Composite

- Recall, the composition in functions...
- Let
 - g be a function from the set A to the set B
 - f be a function from the set B to the set C
- The composition of the functions f and g, denoted by f o g, is defined by (f o g)(a) = f(g(a))

Combining Relations Composite

- Let
 - R be a relation from a set A to a set B
 - S be a relation from a set B to a set C
- The composite of R and S is the <u>relation</u> consisting of ordered pairs (a, c), where
 - $a \in A, c \in C$, and
 - There exists an element b ∈ B, such that (a, b) ∈ R and (b, c) ∈ S
- The composite of R and S is denoted by S o R

```
Ch 5.1, 5.2, 5.3
```

37

Combining Relations

- Suppose
 - R be a relation from a set A to a set B
 - S be a relation from a set B to a set C

 $(x, y) \in S \circ R$ implies $\exists z ((x, z) \in R \land (z, y) \in S)$

 Remark: May be more than one element z, where (x, z)∈R and (z, y)∈S

Combining Relations Composite: Example

- What is the composite of the relations R and S, where
 - R is the relation from {1,2,3} to {1,2,3,4} with R = {(1,1),(1,4),(2,3),(3,1),(3,4)}
 - S is the relation from {1,2,3,4} to {0,1,2} with S = {(1,0),(1,2),(2,0),(3,1),(3,2),(4,1)}?
- So R = {(1,0),(1,2),(1,1),(2,1),(2,2),(3,0),(3,2),(3,1)}

Combining Relations Composite: Properties

- Let R₁ and R₂ be relations on the set A.
- Show $(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$
- Proof:

Let
$$(x, y) \in (R_1 \circ R_2)^{-1}$$

$$\begin{array}{l} (x, y) \in (\mathsf{R}_1 \circ \mathsf{R}_2)^{-1} \\ \Leftrightarrow (y, x) \in \mathsf{R}_1 \circ \mathsf{R}_2 \\ \Leftrightarrow \exists z \ ((y, z) \in \mathsf{R}_2 \land (z, x) \in \mathsf{R}_1) \\ \Leftrightarrow \exists z \ ((z, y) \in \mathsf{R}_2^{-1} \land (x, z) \in \mathsf{R}_1^{-1}) \\ \Leftrightarrow (x, y) \in \mathsf{R}_2^{-1} \circ \mathsf{R}_1^{-1} \end{array}$$

Combining Relations Composite: Properties

Let F,G and H be relations on the set A, then

- F o (G U H) = (F o G) U (F o H)
- $F \circ (G \cap H) \subseteq (F \circ G) \cap (F \circ H)$
- G U H) o F = (G o F) U (H o F)
- $(G \cap H) \circ F \subseteq (G \circ F) \cap (H \circ F)$

Ch 5.1, 5.2, 5.3

Combining Relations: Relation on One Set Composite

- Let R be a relation on the set A. The powers Rⁿ, n = 1, 2, 3, ..., are defined recursively by
 - **R**¹ = **R**

. . .

- R² = R o R
- $R^3 = R^2 \circ R = (R \circ R) \circ R$
- Rⁿ⁺¹ = Rⁿ o R

- Let R = {(1,1), (2,1), (3,2), (4,3)}
- Find the powers Rⁿ, n = 2,3,4,...
- $R^2 = R \circ R = \{(1,1), (2,1), (3,1), (4,2)\}$
- $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$
- $R^4 = R^3 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$
- Rⁿ = R³ for n = 5, 6, 7, …

Ch 5.1, 5.2, 5.3

43

4

Combining Relations: Relation on One Set Composite: Matrix

- Suppose
 - R_1 be relation from set A to set B represented by M_{R_1}
 - R_2 be relation from set B to set C represented by M_{R_2}
- The matrix for the composite of R₁ and R₂ is:

 $M_{R_2 \circ R_1}$

- Size of M_{R_1} and M_{R_2} is $|A| \ge |B|$ and $|B| \ge |C|$
- Size of $M_{R_2 \circ R_1}$ is $|A| \times |C|$

Combining Relations: Relation on One Set Composite: Matrix

Ch 5.1, 5.2, 5.3

45

Combining Relations: Relation on One Set Composite: Matrix: Example

Combining Relations: Relation on One Set Composite: Matrix

The powers Rⁿ can defined using matrix as:

$$M_{R^n} = (M_R)^n$$

• Example • Find the matrix representing $M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ $M_{R^2} = (M_R)^2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

Ch 5.1, 5.2, 5.3

Combining Relations: Relation on One Set Composite: Property 1

- Theorem
 If R ⊂ S, then S o R ⊂ S o S
- Assume (x,y) ∈ SoR, there exists a element z, which (x,z)∈R and (z,y)∈S
- As $R \subset S$ and $(x,z) \in R$, $(x,z) \in S$
- Therefore, as (x,z)∈S and (z,y)∈S, (x,y)∈SoS
- $S \circ R \subset S \circ S$
- It implies:
 If R ⊂ S and T ⊂ U, then R o T ⊂ S o U

 An ordered pairs (x, y) is in Rⁿ iff there is a path of length n from x to y in R

Combining Relations: Relation on One Set Composite: Property 2

 An ordered pairs (x, y) is in Rⁿ iff there is a path of length n from x to y in R

- Example
 - In R, 1 > 2 > 4, length = $2 \Leftrightarrow (1,4) \in \mathbb{R}^2$
 - In R, 3 > 2 > 4 > 3, length = $3 \Leftrightarrow (3,3) \in \mathbb{R}^3$
 - $(1,2) \in \mathbb{R}^4 \Leftrightarrow \ln \mathbb{R}, 1 > 2 > 4 > 3 > 2$, length = 4

Theorem

Let R be a relation on A. There is a path of length n from a to b in R iff (a, b) $\in \mathbb{R}^n$

Combining Relations: Relation on One Set Composite: Property 2

- Proof by Induction
 - Show n=1 is true

a path of length n from a to b iff (a, b) $\in \mathbb{R}^n$

- An arc from a to b is a path of length 1, which is in $R^1 = R$
- Hence the assertion is true for n = 1
- Assume it is true for k. Show it is true for k+1
 - As it is true for n = 1, suppose (a, x) is a path of length 1, then (a, x) ∈ R
 - As it is true for n = k, suppose (x, b) is a path of length k, then (x, b) ∈ R^k
 - Considering, (a, x) ∈ R and (x, b) ∈ R^k,
 (a, b) ∈ R^{k+1} = R^k o R as there exists an element x, such that (a, x) ∈ R and (x, b) ∈ R^k
 - The length of (a,b) is k+1

- R is transitive iff $\mathbb{R}^n \subseteq \mathbb{R}$ for n > 0.
- Proof
 - **1.** ($\mathbb{R}^n \subseteq \mathbb{R}$) $\rightarrow \mathbb{R}$ is transitive
 - Suppose (a,b) ∈ R and (b,c) ∈ R
 - (a,c) is an element of R² as R² = R o R
 - As R² ⊆ R , (a,c) ∈ R
 - Hence R is transitive

Ch 5.1, 5.2, 5.3

Combining Relations: Relation on One Set Composite: Property 3

- **2.** R is transitive \rightarrow (Rⁿ \subseteq R)
- Use a proof by induction:
 - Basis: Obviously true for n = 1.
 - Induction: Assume true for n, show it is true for n + 1
 - For any (x, y) is in Rⁿ⁺¹, there is a z such that (x, z) ∈ R and (z, y) ∈ Rⁿ
 - But since $\mathbb{R}^n \subseteq \mathbb{R}$, $(z, y) \in \mathbb{R}$
 - As R is transitive, (x, z) and (z, y) are in R, so (x, y) is in R
 - Therefore, $\mathbb{R}^{n+1} \subseteq \mathbb{R}$

Proof: If R is transitive, Rⁿ is also transitive

- When n = 1, R is transitive
- Assume R^k is transitive
- Show R^{k+1} is transitive

Given (a,b) $\in \mathbb{R}^{k+1}$ and (b,c) $\in \mathbb{R}^{k+1}$, show (a,c) \in **R**^{k+1}

- $R^{k+1} = R^k \circ R$
- As $(a,b) \in \mathbb{R}^{k+1}$, $(\mathbf{d},b) \in \mathbb{R}^k$ and $(a,\mathbf{d}) \in \mathbb{R}$
- As $(b,c) \in \mathbb{R}^{k+1}$, $(\mathbf{f},c) \in \mathbb{R}^k$ and $(b,\mathbf{f}) \in \mathbb{R}$
- As $(a,c) \in \mathbb{R}^{k+1}$, $(?,c) \in \mathbb{R}^k$ and $(a,?) \in \mathbb{R}$

Ch 5.1, 5.2, 5.3

Combining Relations: Relation on One Set Composite: Property 4

- Given $(a,b) \in \mathbb{R}^{k+1}$ and $(b,c) \in \mathbb{R}^{k+1}$, show $(a,c) \in \mathbb{R}^{k+1}$
 - $R^{k+1} = R^k \circ R$
 - As $(a,b) \in \mathbb{R}^{k+1}$, $(\mathbf{d},b) \in \mathbb{R}^k$ and $(a,\mathbf{d}) \in \mathbb{R}$ As $(b,c) \in \mathbb{R}^{k+1}$, $(\mathbf{f},c) \in \mathbb{R}^k$ and $(b,\mathbf{f}) \in \mathbb{R}$

 - As $(a,c) \in \mathbb{R}^{k+1}$, $(?,c) \in \mathbb{R}^k$ and $(a,?) \in \mathbb{R}$
- As "R is transitive iff Rⁿ ⊆ R for n > 0"
- $(d,b) \in \mathbb{R}^k \subseteq \mathbb{R}$
- As R is transitive, $(d,b) \in R$ and $(b,f) \in R$ imply $(d,f) \in R$
- As R is transitive, $(d,f) \in R$ and $(a,d) \in R$ imply $(a,f) \in R$
- Therefore, by considering, $(f,c) \in \mathbb{R}^k$ and $(a,f) \in \mathbb{R}$, $(a,c) \in \mathbb{R}^k$ **R**^{k+1}

Proof: If R is transitive, Rⁿ is also transitive

- When n = 1, R is transitive
- Assume R^k is transitive
- Show R^{k+1} is transitive

Given (a,b) \in R^{k+1} and (b,c) \in $R^{k+1},$ show (a,c) \in R^{k+1}

- R^{k+1} = R^k o R
- As $(a,b) \in \mathbb{R}^{k+1}$, $(a,d) \in \mathbb{R}^k$ and $(d,b) \in \mathbb{R}$
- As $(b,c) \in \mathbb{R}^{k+1}$, $(b,f) \in \mathbb{R}^k$ and $(f,c) \in \mathbb{R}$
- As $(a,c) \in \mathbb{R}^{k+1}$, $(a,?) \in \mathbb{R}^k$ and $(?,c) \in \mathbb{R}$

Ch 5.1, 5.2, 5.3

Combining Relations: Relation on One Set Composite: Property 4

- Given $(a,b) \in \mathbb{R}^{k+1}$ and $(b,c) \in \mathbb{R}^{k+1}$, show $(a,c) \in \mathbb{R}^{k+1}$
 - R^{k+1} = R^k o R
 - As $(a,b) \in \mathbb{R}^{k+1}$, $(a,d) \in \mathbb{R}^k$ and $(d,b) \in \mathbb{R}$
 - As $(b,c) \in \mathbb{R}^{k+1}$, $(b,f) \in \mathbb{R}^k$ and $(f,c) \in \mathbb{R}$
 - As $(a,c) \in \mathbb{R}^{k+1}$, $(a,?) \in \mathbb{R}^k$ and $(?,c) \in \mathbb{R}$
- As "R is transitive iff Rⁿ ⊆ R for n > 0"
- (b,f) $\in \mathbb{R}^k \subseteq \mathbb{R}$
- As R is transitive, (d,b) ∈ R and (b,f) ∈ R imply (d,f) ∈ R
- As R is transitive, $(d,f) \in R$ and $(f,c) \in R$ imply $(d,c) \in R$
- Therefore, by considering, (a,d) ∈ R^k and (d,c) ∈ R, (a,c) ∈ R^{k+1}

n-ary Relation

- Let A₁, A₂, ..., A_n be sets
 An n-ary relation on these sets is a subset of A₁ x A₂ x ... x A_n
- Domains of the relation: the sets A₁, A₂, ..., A_n
- Degree of the relation: n

n-ary Relation: Example

- Let R be the relation on Z x Z x Z⁺ consisting of triples

 (a, b, m), where a, b, and m are integers with m ≥ 1 and a = b (mod m), (i.e. m divides a-b)
- Degree of the relation? 3
- First domain is: the set of all integers
- Second domain is: the set of all integers
- Third domain: the set of positive integers
- Do they belong to R?

Υ

• (7,2,3) **N**

■ (-2,-8,5) N

Relational Database VS n-ary Relation

- A database consists of records made up of fields
- Each record is a n-tuple (n fields)
 - For example:

ID num	Name	Major	GPA
888323	Adams	Data Structure	85
231455	Peter	C++	61

- Domain: ID num, Name, Major, GPA
- Relation: (888323, Adams, Data Structure, 85), (231455, Sam, C++, 61)
- Relations are displayed as tables

ID_number	Student_name	Major	Grade
888323	Adams	Data Structure	85
231455	Peter	C++	61
678543	Sam	Data Structure	98

Ch 5.1, 5.2, 5.3

61

Relational Database VS n-ary Relation

- n-ary relation can be:
 - Determining all n-tuples satisfy certain conditions
 - Joining the records in different tables

ID_number	Major	Grade
888323	Data Structure	85
231455	C++	61
678543	Data Structure	98
453876	Discrete Math	83

ID_number	Student_name
231455	Adams
888323	Peter
102147	Sam
453876	Goodfriend
678543	Rao
786576	Stevens