Discrete Mathematic

Chapter 2: Set Theory

2.3 Functions

Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Functions

- The concept of a function is extremely important in mathematics and computer science
 - Sometimes, a function is called mapping or transformation

Agenda

- Functions
- One-to-One Functions
- Onto Functions
- Increase/Decrease Functions
- Inverse Functions
- Composition of Functions
- Graphs of Functions
- Floor and Ceiling Functions
- Factorial Functions

Functions

- In Mathematic...
 - $f(\mathbf{x}) = \mathbf{x}^2$
 - g(x, y) = x + y
- In Programming…
 - float square (float x) {return x²}
 - float sum (float x, float y) {return x+y}

Input Input

Functions

- Let A and B be nonempty sets
 Function *f* from A to B is an assignment of
 exactly one element of B to each element of A
- Denoted by *f* (a) = b
 b is the unique element of B assigned by the function *f* to the element a of A
- If *f* is a function from A to B, we write *f* : A → B

Functions

- If f is a function from A to B,
 - A is the domain of f
 - **B** is the **codomain** of *f*
- If f(a) = b,
 - b is the image of a
 - a is a preimage of b
- The range of *f* is the set of all images of elements of A

domain

preimage

ſ

 If *f* is a function from A to B, we say that *f* maps A to B

Process

image

b=**f**(a

codomain

Chapter 2.3 Functions

5

Functions

Chapter 2.3 Functions

- A function *f*: A → B can also be defined in terms of a relation from A to B
 - A relation from A to B is a subset of A x B
 - By defining using a relation, a function from A to B contains unique ordered pair (a, b) for every element a ∈ A

Functions

A function is defined by specifying

Input

- 1. Domain
- 2. Codomain

codomain

Output

3. Mapping of elements of the domain to elements in the codomain

domair

- Two functions are equal when these three things are the same
- Therefore, either these three things is changed, we have a new function

Functions: Example 1

- What are the domain, codomain, and range of the function that assigns grades to students?
- Let G be the function that assigns a grade to a student, E.g. G(Mickey) = B

Functions: Example 2

- Let *f* be the function that assigns the last two bits of a bit string of length 2 or greater to that string. What are the domain, codomain and range?
- For example, *f*(11010) = 10
- Domain is the set of

all bit strings of length 2 or greater

- Codomain is set {00, 01, 10, 11}
- Range is set {00, 01, 10, 11}

Function Example 3 In/Decrease Functions

- Function *f* whose domain and codomain are subsets of the set of real numbers is called
 - Increasing if $f(x) \leq f(y)$
 - Decreasing if $f(x) \ge f(y)$
 - Strictly Increasing if f(x) < f(y)</p>
 - Strictly Decreasing if f(x) > f(y)

whenever x < y and x and y are in the domain of f

Function Example 3 In/Decrease Functions

- A function *f* is
 - Increasing if $\forall x \forall y \ (x \le y \rightarrow f(x) \le f(y))$
 - Decreasing if $\forall x \forall y \ (x \le y \rightarrow f(x) \ge f(y))$
 - Strictly Increasing if $\forall x \forall y \ (x \le y \rightarrow f(x) \le f(y))$
 - Strictly Decreasing if $\forall x \forall y \ (x < y \rightarrow f(x) > f(y))$

where the universe of discourse is the domain of f

Chapter 2.3 Functions

9

Function Example 4 Identity Function

- Let A be a set. The identity function on A is the function *i*_A : A → A, where *i*_A(x) = x, for all x ∈ A (Note that *i* is the Greek letter iota)
 - Assigns each element to itself
 - Domain = Codomain

Chapter 2.3 Functions

Function Example 5 Floor and Ceiling Function

- Let x be a real number
 - Floor Function
 - Rounds x down to the closest integer less than or equal to x
 - Notation: x
 - Sometimes call greatest integer function and denoted by [x]
 - Ceiling Functions
 - Rounds x up to the closest integer greater than or equal to x
 - Notation: x

Function Example 5 Floor and Ceiling Function

- Example
 - $\bullet \lfloor 0.5 \rfloor = \mathbf{0} \qquad \bullet \lfloor 3.1 \rfloor = \mathbf{3}$
 - [0.5] = 1 [3.1] = 4• $\lfloor -0.5 \rfloor = -1$ • $\lfloor 7 \rfloor = 7$
 - [-0.5] = **0**
- [7] = **7**
- Floor Function (x)
 Rounds x down to the closest integer less than or equal to x
- Ceiling Functions (x) Rounds x up to the closest integer greater than or equal to x

```
Chapter 2.3 Functions
```

13

Function Operation

Let f₁ and f₂ be functions from A to R
 f₁ + f₂ and f₁ f₂ are also functions from A to R
 defined by

 $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $(f_1 f_2)(x) = f_1(x) f_2(x)$

Functions f₁ + f₂ and f₁ f₂ have been defined by specifying their values at x in terms of the values of f₁ and f₂ at x

Function Operation: Example

- Let f₁ and f₂ be functions from R to R such that f₁(x) = x² and f₂(x) = x - x²
- What are the functions $f_1 + f_2$ and $f_1 f_2$?

$(f_1 + f_2)(x)$	$(f_1 f_2)(x)$
$= f_1(x) + f_2(x)$	$= f_1(x) f_2(x)$
$= x^2 + (x - x^2)$	$= x^2 (x - x^2)$
= x	$= x^3 - x^4$

Images of Subset

Image of S is denoted by f(S), (S is a set)

 $f(S) = \{ t \mid \exists s \in S \ (t = f(s)) \}$, or $f(S) = \{ f(s) \mid s \in S \}$

The image of S under the function f is the subset of B that consists of the images of the elements of S

Functions: Programming

- Domain and codomain of functions are often specified in programming languages
- Example,

Chapter 2.3 Functions

- Pascal : function floor (x: real) : integer
- Java : int floor (float x) {...}
- C++: int floor (float x) {...}
- Domain is the set of real numbers
- Codomain is the set of integers

Images of Subset

- f(S) may be ambiguous:
 - A set (image of S) $({f(s) | s \in S})$
 - Function *f* for the set *S* (input of a function is a set)
 - We assume f(S) is a set in this course

Functions Images of Subset: Example	One-to-One Functions
• Let $A = \{a, b, c, d, e\}$ and $B = \{1, 2, 3, 4\}$ with f(a) = 2 $f(b) = 1$ $f(c) = 4$ $f(d) = 1$ and $f(e) = 1$	 By taking the contrapositive of the definition, a function <i>f</i> is one-to-one if and only if <i>f</i>(a) ≠ <i>f</i>(b) whenever a ≠ b
 Given S = {b, c, d}, what is the image of S? 	 We can express that <i>f</i> is one-to-one using quantifiers as
Image is the set f(S) = {1, 4}	$ \forall a \ \forall b \ (f(a) = f(b) \rightarrow a = b) \text{ or} \\ \forall a \ \forall b \ (a \neq b \rightarrow f(a) \neq f(b)), \\ \text{where the universe of discourse is the domain of the function} $
Chapter 2.3 Functions 21	Chapter 2.3 Functions 23

One-to-One Functions

- Function *f* is said to be <u>one-to-one</u>, or <u>injective</u>, if and only if *f*(a) = *f*(b) implies that a = b for all a and b in the domain of *f*
- One-to-one functions never assign the same value to two different domain elements

Not one-to-one

Chapter 2.3 Functions (Many-to-one)

One-to-One Functions **Example 1**

- Determine if the function f(x) = x + 1 from the set of real numbers to itself is one-to-one
- Suppose f(n) = f(m)
- n+1 = m+1, therefore n = m
- f(x) is one-to-one

One-to-One Functions Example 2

- Determine whether the function f(x) = x² from the set of integers to the set of integers is one-to-one
- Suppose f(n) = f(m)
- n² = m²

Chapter 2.3 Functions

- n may be equal to –m
- n² = m² does not imply n = m
- f(x) is not one-to-one

Onto Functions Example

- Example 1
 - Is the function f(x) = x² from the set of integers to the set of integers onto?
 - There is no integer x with x² = -1, therefore, not onto
- Example 2
 - Is the function f(x) = x + 1 from the set of integers to the set of integers onto?
 - Yes

Chapter 2.3 Functions

Chapter 2.3 Functions

Onto Functions

- Function *f* from A to B is called <u>onto</u>, or <u>surjective</u>, if and only if for every element b ∈ B, there is an element a ∈ A with *f*(a) = b
- A function f is onto if $\forall y \exists x (f(x) = y)$, where
 - Domain for x is the domain of the function
 - Domain for y is the codomain of the function

One-to-one and Onto Functions

- The function *f* is a <u>one-to-one correspondence</u>, or a <u>bijection</u>, if it is both one-to-one and onto
- Suppose that f is a function from a set A to itself
 - If A is **finite**, then **f** is one-to-one if and only if it is onto
 - If A is infinite, this is not necessarily the case
 - We will discuss it later

25

One-to-one and Onto Functions Example 1

- The identity function on A is the function t_A: $A \rightarrow A$, where $\iota_A(x) = x$, for all $x \in A$
 - Assigns each element to itself
- One-to-one?

Onto?

Chapter 2.3 Functions

So it is a bijection

One-to-one and Onto Functions Example 3

Not onto

One-to-one and Onto Functions Example 2

- Either strictly increasing or strictly decreasing function must be one-to-one
- Either increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not necessarily one-to-one

Inverse Functions

- Recall, the definition of a function
 - Let A and B be nonempty sets Function f from A to B is an assignment of exactly one element of **B** to each element of **A**
 - Every element (a) in domain (A) has only one image (f(a))
- Inverse function f⁻¹ (reverse processing)
 - f^{-1} : B \rightarrow A
 - Every element (b) in domain (B) has only one image

One-to-one

Not onto

Chapter 2.3 Functions

Onto

Onto

Not one-to-one Not onto

Inverse Functions

- Let *f* be a one-to-one correspondence from the set A to the set B, *f*(a) = b
- Inverse function of *f*, denoted by *f*⁻¹, is the function that assigns to an element b belonging to B the unique element a in A, *f*⁻¹(b) = a when *f*(a) = b

Be sure not to confuse the function f⁻¹ with the function 1 / f

Chapter 2.3 Functions

Inverse Functions

more than one element a

- If a function *f* is <u>not</u> a one-to-one correspondence, an inverse function of *f* cannot be defined
 - f is not one-to-one

33

f is not onto

Some b in the codomain is the image of no element a

Some b in the codomain is the image of

Inverse Functions

- A function having an inverse function is called invertible
 - Therefore, a function is not invertible if it is not a one-to-one correspondence

Chapter 2.3 Functions

Inverse Functions **Example 1**

- Let f be the function from R to R with f(x) = x². Is f invertible?
- Because f(-2) = f(2) = 4, f is not one-to-one.
- If an inverse function were defined, it would have to assign two elements to 4
- Hence, *f* is not invertible

Inverse Functions Example 2

- Show that if we restrict the function f(x) = x² to a function from the set of all nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible
- One-to-One Function Proof
 - If f(x) = f(y), then $x^2 = y^2$, so $x^2 y^2 = (x + y)(x y) = 0$
 - This means that x + y = 0 or x y = 0, so x = -y or x = y
 - Because both x and y are nonnegative, we must have x = y. It is one-to-one
- Onto Function Proof
 - The codomain is the set of all nonnegative real numbers, so each nonnegative real number has a square root. It is onto
- Therefore, *f* is invertible

Chapter 2.3 Functions		

Composition of Function

- Let
 - g be a function from the set A to the set B
 - f be a function from the set B to the set C
- The composition of the functions *f* and *g*, denoted by *f* o *g*, is defined by

$(f \circ g)(a) = f(g(a))$

Composition of Function

- To find (f o g)(a) = f(g(a))
 - the function g is applied to a to obtain g(a)
 - the function *f* is applied to the result *g*(a) to obtain *f*(*g*(a))
- Note that the composition *f* o *g* cannot be defined unless the range of *g* is a subset of the domain of *f*

Composition of Function **Example**

- Let *f* and *g* be the functions from the set of integers to the set of integers defined by *f*(x) = 2x + 3 and *g*(x) = 3x + 2
- What is the composition of *f* and *g*? What is the composition of *g* and *f*?
 - Both the compositions $f \circ g$ and $g \circ f$ are defined $(f \circ g)(x) = f(g(x))$ $(g \circ f)(x) = g(f(x))$ = f(3x + 2) = g(2x + 3) = 2(3x + 2) + 3 = 3(2x + 3) + 2= 6x + 7 = 6x + 11

38

Composition of Function

 The commutative law does not hold for the composition of functions

 $f \circ g \neq g \circ f$

It is associative :

 $f \circ (g \circ h) = (f \circ g) \circ h$

Graphs of Functions

 Let *f* be a function from the set A to the set B. The graph of the function *f* is the set of ordered pairs

 $\{(a, b) \mid a \in A \text{ and } f(a) = b\}$

 It is often displayed pictorially to aid in understanding the behavior of the function

Chapter 2.3 Functions

Composition of Function

 Let *f* is a one-to-one correspondence between A and B, then

 $f^{-1} \circ f = \iota_A$ and $f \circ f^{-1} = \iota_B$

- where \imath_{A} & \imath_{B} are identity functions on sets A & B respectively
- Such that:
 - $(f^1 \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$
 - $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$

Graphs of Functions **Example 1**

Chapter 2.3 Functions

- Display the graph of the function
 f(n) = 2n + 1 from the set of integers to the set of integers
- The graph of *f* is the set of ordered pairs of the form
 (n, *f*(n)) = (n, 2n + 1),
 where n is an integer

41

Graphs of Functions **Example 2**

- Display the graph of the function f(x) = x²
 from the set of integers to the set of integers
- The graph of *f* is the set of ordered pairs of the form (x, x²), where x is an integer

•(-3,9)	(3,9)
•(-2,4)	(2,4) •
(−1, 1) ●	•(1,1)
	(0,0)

Graphs of Functions **Example 4**

 The graph of the floor function Lx

[n, n + 1)

 The graph of the ceiling function [x]

47

Graphs of Functions

Chapter 2.3 Functions

Example 3

- Display the graph of the function f(x) = x²
 from the set of real to the set of real
- The graph of *f* is the set of ordered pairs of the form (x, x²), where x is an real (infinite Set)

45

Chapter 2.3 Functions