Chapter 2: Set Theory

2.3
 Functions

Dr Patrick Chan

School of Computer Science and Engineering
South China University of Technology

Agenda

- Functions
- One-to-One Functions
- Onto Functions
- Increase/Decrease Functions
- Inverse Functions
- Composition of Functions
- Graphs of Functions
- Floor and Ceiling Functions
- Factorial Functions

Functions

- The concept of a function is extremely important in mathematics and computer science
- Sometimes, a function is called mapping or transformation

Chapter 2.3 Functions

Functions

- In Mathematic...
- $f(x)=x^{2}$
- $g(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$
- In Programming...
- float square (float x) \{return $\left.x^{\wedge} 2\right\}$
- float sum (float x, float y) \{return $x+y\}$

$$
\text { Input } \Rightarrow \text { Process } \Rightarrow \text { Output }
$$

Functions

- Let \mathbf{A} and \mathbf{B} be nonempty sets Function f from \mathbf{A} to \mathbf{B} is an assignment of exactly one element of \boldsymbol{B} to each element of \mathbf{A}
- Denoted by $f(a)=b$ b is the unique element of B assigned by the function f to the element a of A
- If f is a function from A to B, we write $f: \mathrm{A} \rightarrow \mathrm{B}$

Functions

- A function $f: \mathrm{A} \rightarrow$ B can also be defined in terms of a relation from A to B
- A relation from A to B is a subset of $A \times B$
- By defining using a relation, a function from A to B contains unique ordered pair (a, b) for every element $a \in A$
AxB

Functions

- If f is a function from A to B,
- A is the domain of f
- B is the codomain of f
- If $f(\mathrm{a})=\mathrm{b}$,
- b is the image of a
- a is a preimage of b

- The range of f is the set of all images of elements of A
- If f is a function from A to B, we say that f maps A to B

Chapter 2.3 Functions

Functions

Input \square

Process $\quad \Rightarrow$ Outpu

- A function is defined by specifying

1. Domain
2. Codomain

3. Mapping of elements of the domain to elements in the codomain

- Two functions are equal when these three things are the same
- Therefore, either these three things is changed, we have a new function

Functions: Example 1

- What are the domain, codomain, and range of the function that assigns grades to students?
- Let G be the function that assigns a grade to a student, E.g. G(Mickey) = B
- Domain of G = \{Mickey, Minnie, Donald, Goofy\}
- Codomain of G = $\{A, B, C, D, E, F\}$
- Range of $G=\{A, B, F\}$

Functions: Example 2

- Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that string. What are the domain, codomain and range?
- For example, $\boldsymbol{f}(11010)=10$
- Domain is the set of
all bit strings of length 2 or greater
- Codomain is set $\{00,01,10,11\}$
- Range is set $\{00,01,10,11\}$

Function Example 3

In/Decrease Functions

- Function f whose domain and codomain are subsets of the set of real numbers is called
- Increasing if $f(x) \leq f(y)$
- Decreasing if $f(x) \geq f(y)$
- Strictly Increasing if $f(x)<f(y)$
- Strictly Decreasing if $f(x)>f(y)$
whenever $\mathrm{x}<\mathrm{y}$ and x and y are in the domain of f

Chapter 2.3 Functions

Function Example 3
 In/Decrease Functions

- A function f is
- Increasing if $\forall \mathrm{x} \forall \mathrm{y}(\mathrm{x}<\mathrm{y} \rightarrow \boldsymbol{f}(\mathrm{x}) \leq f(\mathrm{y}))$
- Decreasing if $\forall x \forall y(x<y \rightarrow f(x) \geq f(y))$
- Strictly Increasing if $\forall x \forall y(x<y \rightarrow f(x)<f(y))$
- Strictly Decreasing if $\forall \mathrm{x} \forall \mathrm{y}(\mathrm{x}<\mathrm{y} \rightarrow f(\mathrm{x})>f(\mathrm{y}))$
where the universe of discourse is the domain of f

Function Example 4

Identity Function

- Let A be a set. The identity function on A is the function $t_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}$, where $t_{\mathrm{A}}(\mathrm{x})=\mathrm{x}$, for all $\mathrm{x} \in \mathrm{A} \quad$ (Note that l is the Greek letter iota)
- Assigns each element to itself
- Domain = Codomain

Function Example 5
 Floor and Ceiling Function

- Let x be a real number
- Floor Function
- Rounds x down to the closest integer less than or equal to x
- Notation: $\lfloor x\rfloor$
- Sometimes call greatest integer function and denoted by [x]
- Ceiling Functions
- Rounds x up to the closest integer greater than or equal to x
- Notation: $\lceil\mathbf{x}\rceil$

Function Example 5

Floor and Ceiling Function

- Example
- $\lfloor 0.5\rfloor=0$
- $\lfloor 3.1\rfloor=3$
- $\lceil 0.5\rceil=1$
- $\lfloor-0.5\rfloor=-1$
- $\lceil 3.1\rceil=4$
- $\lceil-0.5\rceil=0$
- $\lfloor 7\rfloor=7$
- $\lceil 7\rceil=7$
- Floor Function (Lx \quad)

Rounds x down to the closest integer less than or equal to x
Ceiling Functions ($\lceil\mathbf{x}\rceil$)
Rounds x up to the closest integer greater than or equal to x

Chapter 2.3 Functions

Function Operation

- Let f_{1} and f_{2} be functions from A to R $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to R defined by

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =f_{1}(x)+f_{2}(x) \\
\left(f_{1} f_{2}\right)(x) & =f_{1}(x) f_{2}(x)
\end{aligned}
$$

- Functions $f_{1}+f_{2}$ and $f_{1} f_{2}$ have been defined by specifying their values at x in terms of the values of f_{1} and f_{2} at x

Function Operation: Example

- Let f_{1} and f_{2} be functions from R to R such that $f_{1}(\mathrm{x})=\mathrm{x}^{2}$ and $f_{2}(\mathrm{x})=\mathrm{x}-\mathrm{x}^{2}$
- What are the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$?

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)(x) \\
= & \left.f_{1} f_{2}\right)(x)+f_{2}(x) \\
= & x^{2}+\left(x-x^{2}\right) \\
= & x
\end{aligned}
$$

Images of Subset

- Image of S is denoted by $f(S),(S$ is a set $)$

$$
\begin{gathered}
f(S)=\{t \mid \exists s \in S(t=f(s))\}, \text { or } \\
f(S)=\{f(s) \mid s \in S\}
\end{gathered}
$$

- The image of S under the function f is the subset of B that consists of the images of the elements of S

Chapter 2.3 Functions

Images of Subset

- $f(S)$ may be ambiguous:
- A set (image of S) ($\{f(s) \mid s \in S\})$
- Function f for the set S (input of a function is a set)
- We assume $f(S)$ is a set in this course

Functions

Images of Subset: Example

- Let
$A=\{a, b, c, d, e\}$ and $B=\{1,2,3,4\}$ with $f(\mathrm{a})=2, f(\mathrm{~b})=1, f(\mathrm{c})=4, f(\mathrm{~d})=1$, and $f(\mathrm{e})=1$
- Given $S=\{b, c, d\}$, what is the image of S ?
- Image is the set $f(S)=\{1,4\}$

One-to-One Functions

- By taking the contrapositive of the definition, a function f is one-to-one if and only if $f(\mathrm{a}) \neq f(\mathrm{~b})$ whenever $a \neq b$
- We can express that f is one-to-one using quantifiers as

$$
\begin{aligned}
& \forall \mathrm{a} \forall \mathrm{~b}(f(\mathrm{a})=f(\mathrm{~b}) \rightarrow \mathrm{a}=\mathrm{b}) \text { or } \\
& \forall \mathrm{a} \forall \mathrm{~b}(\mathrm{a} \neq \mathrm{b} \rightarrow f(\mathrm{a}) \neq f(\mathrm{~b})),
\end{aligned}
$$

where the universe of discourse is the domain of the function

One-to-One Functions

Example 1

- Determine if the function $f(x)=x+1$ from the set of real numbers to itself is one-to-one
- Suppose $f(n)=f(m)$
- $\mathrm{n}+1=\mathrm{m}+1$, therefore $\mathrm{n}=\mathrm{m}$
- $f(x)$ is one-to-one

Not one-to-one
(Many-to-one)

One-to-one

One-to-One Functions

Example 2

- Determine whether the function $f(x)=x^{2}$ from the set of integers to the set of integers is one-to-one
- Suppose $f(\mathrm{n})=f(\mathrm{~m})$
- $\mathrm{n}^{2}=\mathrm{m}^{2}$
- n may be equal to -m
- $n^{2}=m^{2}$ does not imply $n=m$
- $f(x)$ is not one-to-one

Onto Functions

- Function f from A to B is called onto, or surjective, if and only if for every element $\overline{\mathrm{b} \in \mathrm{B}}$, there is an element $\mathrm{a} \in \mathrm{A}$ with $\boldsymbol{f}(\mathrm{a})=\mathrm{b}$
- A function f is onto if $\forall y \exists x(f(x)=y)$, where
- Domain for x is the domain of the function
- Domain for y is the codomain of the function

Not onto

Onto
nto

Onto Functions

Example

- Example 1
- Is the function $f(x)=x^{2}$ from the set of integers to the set of integers onto?
- There is no integer x with $x^{2}=-1$, therefore, not onto
- Example 2
- Is the function $f(x)=x+1$ from the set of integers to the set of integers onto?
- Yes

Chapter 2.3 Functions

One-to-one and Onto Functions

- The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto
- Suppose that f is a function from a set A to itself
- If A is finite, then f is one-to-one if and only if it is onto
- If A is infinite, this is not necessarily the case
- We will discuss it later

Chapter 2.3 Functions

One-to-one and Onto Functions
 Example 1

- The identity function on A is the function t_{A} : $\mathrm{A} \rightarrow \mathrm{A}$, where $\tau_{\mathrm{A}}(\mathrm{x})=\mathrm{x}$, for all $\mathrm{x} \in \mathrm{A}$
- Assigns each element to itself
- One-to-one?
- Onto?
- So it is a bijection

One-to-one and Onto Functions

Example 2

- Either strictly increasing or strictly decreasing function must be one-to-one
- Either increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not necessarily one-to-one

One-to-one and Onto Functions Example 3

Not one-to-one
Not onto

Not a function

Inverse Functions

- Recall, the definition of a function
- Let \mathbf{A} and B be nonempty sets

domain
codomain Function f from A to B is an assignment of exactly one element of B to each element of \mathbf{A}
- Every element (a) in domain (A) has only one image ($f(\mathrm{a})$)
- Inverse function f^{-1} (reverse processing)
- $f^{-1}: \mathrm{B} \rightarrow \mathrm{A}$
- Every element (b) in domain (B) has only one image

One-to-one
Not onto

One-to-one
Onto

Not one-to-one Not onto

Inverse Functions

- Let f be a one-to-one correspondence from the set A to the set $B, f(a)=b$
- Inverse function of f, denoted by f^{-1}, is the function that assigns to an element b belonging to B the unique element a in A,
$f^{-1}(\mathrm{~b})=\mathrm{a}$ when $f(\mathrm{a})=\mathrm{b}$

- Be sure not to confuse the function f^{-1} with the function $1 / f$

Inverse Functions

- If a function f is not a one-to-one correspondence, an inverse function of \boldsymbol{f} cannot be defined
- f is not one-to-one

Some b in the codomain is the image of more than one element a

- f is not onto

Some b in the codomain is the image of no element a

Inverse Functions

- A function having an inverse function is called invertible
- Therefore, a function is not invertible if it is not a one-to-one correspondence

Inverse Functions
 Example 1

- Let f be the function from R to R with $f(x)=x^{2}$. Is f invertible?
- Because $f(-2)=f(2)=4, f$ is not one-to-one.
- If an inverse function were defined, it would have to assign two elements to 4
- Hence, f is not invertible

Inverse Functions

Example 2

- Show that if we restrict the function $f(x)=x^{2}$ to a function from the set of all nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible
- One-to-One Function Proof
- If $f(x)=f(y)$, then $x^{2}=y^{2}$, so $x^{2}-y^{2}=(x+y)(x-y)=0$
- This means that $x+y=0$ or $x-y=0$, so $x=-y$ or $x=y$
- Because both x and y are nonnegative, we must have $x=y$. It is one-to-one
- Onto Function Proof
- The codomain is the set of all nonnegative real numbers, so each nonnegative real number has a square root. It is onto
- Therefore, f is invertible

Composition of Function

- Let
- g be a function from the set A to the set B
- f be a function from the set B to the set C
- The composition of the functions \boldsymbol{f} and \boldsymbol{g}, denoted by $f \circ g$, is defined by

$$
(f \circ g)(\mathrm{a})=f(g(\mathrm{a}))
$$

Composition of Function

- To find $(f \circ g)(a)=f(g(a))$
- the function g is applied to a to obtain $g(\mathrm{a})$
- the function f is applied to the result $g(a)$ to obtain $f(g(\mathrm{a})$)
- Note that the composition f ○ g cannot be defined unless the range of g is a subset of the domain of f

Chapter 2.3 Functions

Composition of Function
 Example

- Let f and g be the functions from the set of integers to the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 \mathrm{x}+2$
- What is the composition of f and g ? What is the composition of g and f ?
- Both the compositions $f \circ g$ and $g \circ f$ are defined

$$
\begin{aligned}
(f \circ g)(\mathrm{x}) & =f(\boldsymbol{g}(\mathrm{x})) & (g \circ f)(\mathrm{x}) & =\boldsymbol{g}(f(\mathrm{x})) \\
& =\boldsymbol{f}(3 \mathrm{x}+2) & & =\boldsymbol{g}(2 \mathrm{x}+3) \\
& =2(3 \mathrm{x}+2)+3 & & \\
& =6 \mathrm{x}+7 & & =6(2 \mathrm{x}+3)+2 \\
& & & =6+11
\end{aligned}
$$

Composition of Function

- The commutative law does not hold for the composition of functions

$$
f \circ g \neq g \circ f
$$

- It is associative :

$$
f \circ(g \circ h)=(f \circ g) \circ h
$$

Composition of Function

- Let f is a one-to-one correspondence between A and B, then

$$
f^{-1} \circ f=\imath_{\mathrm{A}} \text { and } f \circ f^{-1}=\imath_{\mathrm{B}}
$$

where $\tau_{\mathrm{A}} \& l_{\mathrm{B}}$ are identity functions on sets $\mathrm{A} \& \mathrm{~B}$ respectively

- Such that:
- $\left(f^{1} \circ f\right)(\mathrm{a})=f^{-1}(f(\mathrm{a}))=f^{1}(\mathrm{~b})=\mathrm{a}$
- $\left(f \circ f^{-1}\right)(\mathrm{b})=f\left(f^{-1}(\mathrm{~b})\right)=f(\mathrm{a})=\mathrm{b}$

Graphs of Functions

- Let f be a function from the set A to the set B . The graph of the function f is the set of ordered pairs

$$
\{(\mathrm{a}, \mathrm{~b}) \mid \mathrm{a} \in \mathrm{~A} \text { and } f(\mathrm{a})=\mathrm{b}\}
$$

- It is often displayed pictorially to aid in understanding the behavior of the function

Graphs of Functions

Example 1

- Display the graph of the function $f(\mathrm{n})=2 \mathrm{n}+1$ from the set of integers to the set of integers
- The graph of f is the set of ordered pairs of the form $(\mathrm{n}, \boldsymbol{f}(\mathrm{n}))=(\mathrm{n}, 2 \mathrm{n}+1)$, where n is an integer

Graphs of Functions

Example 2

- Display the graph of the function $f(x)=x^{2}$ from the set of integers to the set of integers
- The graph of f is the set of ordered pairs of the form (x, x^{2}), where x is an integer

Graphs of Functions

Example 4

- The graph of the floor function $\lfloor x$.

[$n, n+1$)
" The graph of the ceiling function $\lceil\mathrm{x}\rceil$

($\mathrm{n}, \mathrm{n}+1$]

Graphs of Functions

Example 3

- Display the graph of the function $f(x)=x^{2}$ from the set of real to the set of real
- The graph of f is the set of ordered pairs of the form (x, x^{2}), where x is an real (infinite Set)

