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Set
Definition
A set is an unordered collection of objects

The objects in a set are called the elements, or
members, of the set

Notation: . /; 0
= 3 € Adenote that a is an .. e \ ] :
element of the set A @ w @
SVl
= a & Adenotes that a is not Mr O Valr
an element of the set A
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Set

There are many ways to express the sets
» Listing all the elements

= Set builder notation

= Venn diagrams
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Set
Listing all the elements

S ={e,, e,, €5,...,,}
where e; is element in the set

Example

= All vowels in the English alphabet: V = {a, €, i, o, u}
» Odd positive integers < 10: 0 ={1, 3, 5, 7, 9}

» Unrelated elements: U = {John, 3, *}

Ellipsis (...) can be used to represent the general
pattern of elements

= Positive integers less than 100 can be denoted by
{1, 2,3, ..., 99}
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Set
Set Builder

Important Sets:

= Real Numbers
R

= Natural Numbers
N ={0, 1, 2, 3, ...}, counting numbers
(sometimes not consider 0)

» Integers
zZ={.,-3,-2,-1,0,1,2,3,4, ..}
Positive / Negative Integers: Z*/ Z-

= Rational Numbers
Q={p/q|peZ peZ, and g#0 }
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Set
Set Builder

Describe the properties the elements must have to
be members

S = {x| P(x)}
S contains all the elements which make the predicate
P true
Example:

= R={x| xis integer < 100 and > 40}
= O ={ x| xis an odd positive integer less than 10}

={x e Z*| xis odd and x < 10}
Z* is the set of positive integers
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Set
Venn Diagrams

Venn Diagrams are named after the English
mathematician John Venn

A rectangle represents the
universal set U
= Contains all the objects under
consideration

= U may varies depends on z
which objects are of interest

od

Inside the rectangle, circles, or other geometrical
figures are used to represent sets

= Points may represents elements
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Set
Venn Diagrams

Example

= A Venn diagram that represents V, the set of
vowels in the English alphabet

= Rectangle : U

26 letters of the \V}
English alphabet a u

= Circle: V e. o0
the set of vowels
= Elements: a, e, i, 0, U
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Empty Set and Singleton Set

Empty set (null set) is a special set that has
no elements, denoted by & or { }

Example

= The set of all positive integers that are greater
than their squares is the null set

A set with one element is called a
singleton set
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Set

Two sets are equal if and only if they have
the same elements

= Aand B are sets
= A and B are equal if and only if
VX (x € A x € B)
= Notation (=)
We write A = B if Aand B are equal sets
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Set with Empty set

A common error is to confuse with
= @ : the empty set
= {J} :the set consisting of just the empty set

Singleton set:
The single element is the empty set itself

A useful analogy: Folders -
= The empty set ——
An empty folder
* The set consisting of just

the empty set: B WS

A folder with exactly one folder ———
inside, namely, the empty folder
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Subset

The set A is said to be a subset of B if and only
if every element of Ais also an element of B

We use the notation A < B to indicate that A is a
subset of the set B

We see that A c B if and only if the
quantification

Vx (x € A—> x € B)
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Subset

If A and B are sets with A< B and B c A,
then A=B

A = B, where A and B are sets,
if and only if

Vx(xe A—->xeB)and AcB

VX (x e B — x € A), BcA
or equivalently if and only if

VX (x € A x € B) A=B
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Subset

Subset: Vx (x € A—> x € B)

Every nonempty set S is guaranteed to have
at least two subsets,
= Empty set (J < S)

X € Jis always false

= Set S itself (S < S)
X € S - X € S must be true
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Subset: Proper Subset

When we wish to emphasize that a set A is a subset of
the set B but that A # B, we write A < B and say that A
is a proper subset of B

For A — B to be true, it must be
the case that A — B and there
must exist an element x of B that
is not an element of A

That is, A is a proper subset of B
if

VX(xe A>xeB)Adx(xeB—>x¢gA)
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Subset

Sets may have other sets as members

Example:
* A={J, {a}, {b}, {a, b}}
= B = {x | xis a subset of the set {a, b}}
= Note that A=B
{a} e A,buta g A
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Power Set

Many problems involve testing all
combinations of elements of a set to see if
they satisfy some properties

Power set of S is a set has as its members
all the subsets of S

= The power set of S is denoted by P(S)

If a set has n elements, then its power set
has 2" elements
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Finite and Infinite Subset

Let S be a set

If there are exist n distinct elements in S

S is a finite set and that n is the cardinality of S
The cardinality of S is denoted by |S]

Example:
= Abe the set of odd positive integers less than 10, |A] = 5
= S be the set of letters in the English alphabet, |S| = 26
" 2l=0
A set is said to be infinite if it is not finite
= The set of positive integers is infinite
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Power Set: Example

What is the power set of {0, 1, 2}7?
= P({0, 1, 2}) =
{2, {0}, {1}, {2}, {0,1}, {0,2}, {1, 2}, {0,1,2}}

What is the power set of {a}?

= P({a}) = {9, {a}}
What is the power set of J7?

= P(2) = {<}
What is the power set of {J}?
= P2y = {9, {I}}

Ch2.1&22 20



Ordered n-tuple

The order of elements in a collection is often
important

However, sets are unordered

Ordered n-tuple (a, ,a, ,... ,a,) is the ordered

collection that has
= a, as its first element
= a, as its second element

= a, as its n'" element
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Ordered n-tuple

Ordered 2-tuples are called ordered pairs

The ordered pairs (a, b) and (c, d) are equal if
andonlyifa=candb=d

Note that (a, b) and (b, a) are not equal
unlessa=>b
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Ordered n-tuple

Two ordered n-tuples are equal if and only if
each corresponding pair of their elements is
equal

(a4, a,, ..., a,) = (by, by, ..., b,)

ifand only ifa, = b, fori=1,2, ..., n
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Ordered n-tuple
Cartesian Products

A subset R of the Cartesian product
A x B is called a relation from the set A to the
set B

The elements of R are ordered pairs, where
the first element belongs to A and the second
toB
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Ordered n-tuple
Cartesian Products

Let A and B be sets

The Cartesian product of A and B, denoted by
A x B, is the set of all ordered pairs (a, b),
wherea e Aandb € B

AxB={a,b)|]acesAAbeB}
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Ordered n-tuple
Cartesian Products: Example 3

Given

= A represent the set of all students at a
university

= B represent the set of all courses offered at the
university

What is the meaning of A x B?

A x B represents all possible enrollments of
students in courses at the university
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Ordered n-tuple

Cartesian Products: Example 1
GivenA={1,2}and B ={a, b, ¢}
What are Ax B and B x A?

AxB=
{(1,a),(1,b), (1, ¢), (2, a), (2, b), (2, c)}

BxA=
{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

A x B and B x A are not equal, unless

" A=JorB= (sothatAxB =J)or
" A=B
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Ordered n-tuple
Cartesian Products

Generally, the Cartesian product of the sets
A Ay, ... A, denoted by A; x A, X... X A, is
the set of ordered n-tuples (a,, a,, ..., a,),
where a, belongs to A, fori=1, 2, ..., n.

A xA, x..xA, =
{(a,, a5, ...,a,) | a; € A, fori=1,2,...,n}
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Ordered n-tuple
Cartesian Products: Example 3

What is A x B x C, where
A={0,1},B={1,2},and C ={0, 1, 2}?

AxBxC=

{(0,1,0), (0,1,1), (0,1,2),
(0,2,0), (0,2,1), (0,2,2),
(1,1,0), (1,1,1), (1,1,2),
(1,2,0), (1,2,1), (1,2,2)
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Set Notation with Quantifiers

Example

= \WWhat do the statements
Vx e R(x?=0)and 3x € Z (x2 = 1) mean?

= Vx € R(x220)

For every real number x, x> 2 0

The square of every real number is nonnegative
»Ix e Z (x2=1)

There exists an integer x such that x? = 1

There is an integer whose square is 1
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Set Notation with Quantifiers

Sometimes we restrict the domain of a
quantified statement explicitly by making use
of set

Example

"|VX € S|(P(x)) denotes the universal
quantification of P(x) over all elements in the
set S

Vx € S (P(x)) is shorthand for Vx (x € S —» P(x))

= Similarly,|3x € S |(P(x)) denotes the existential
quantification of P(x) over all elements in S

dx € S (P(x)) is shorthand for 3x (x € S A P(x))
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Truth Sets of Quantifiers

We will now tie together concepts from set
theory and from predicate logic

Given a predicate P, and a domain D, we
define the truth set of P to be the set of
elements x in D for which P(x) is true

The truth set of P(x) is denoted by
{x € D | P(x)}
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Truth Sets of Quantifiers

Given the domain is the set of integers, what is the truth
set of the following predicate?

= P(x) is "|x] = 1"
x| =1 when x=1orx=-1
The truth set of P is the set {-1, 1}
= Q(x) is "x2 = 2"
There is no integer x for which x2 = 2
The truth set of Q is empty set
* R(x) is "|x| = x"
|x| =xifand only if x = 0
The truth set of R is N, the set of nonnegative
integers
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Set Combination

Two sets can be combined in many different
ways

= Complement (7))

= Union (V)

= |ntersection (M)

= Difference (-)

= Symmetric Difference (®)
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Truth Sets of Quantifiers

Note that

= VX P(x) is true over the domain U
if and only if the truth set of P is the set U

= 3x P(x) is true over the domain U
if and only if the truth set of P is non empty
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Set Combination
Complement

Let U be the universal set .
The complement of the set A, denoted by A, is the
complement of A with respect to U

The complement of the setAis U -A.
An element x belongs to A if and only if x ¢ A
A= {xIx¢gA}
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Set Combination

Union

Let A and B be sets

Union of the sets A and B, denoted by A U B, is the
set that contains those elements that are either in A
or in B, or in both

An element x belongs to the union of the sets A and
B if and only if x belongs to A or x belongs to B

AUB={x|xeAvxeB}

Notation: U (Union)
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Set Combination

Difference

Let A and B be sets
Difference of A and B, denoted by A - B, is the set
containing those elements that are in A but not in B

The difference of A and B is also called the
complement of B with respect to A

An element x belongs to the difference of A and

B if and only if
xeAand x ¢ B

A-B={x|xeAax¢g B}
A-B=ANB

'
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Set Combination

Intersection

Let A and B be sets
Intersection of the sets A and B, denoted by A N B,
is the set containing those elements in both A and B

An element x belongs to the intersection of the sets
A and B if and only if x belongs to A and B

ANB={x|xeAArxeB}

Notation: N (iNteraction)
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Set Combination

Symmetric Difference

Let A and B be sets
Symmetric Difference of A and B, denoted by A ©
B, is the set containing those elements is either in A
or B, but not in both

An element x belongs to the symmetric different of
the sets A and B if and only if x belongs to A XOR B

A@B={x|(xeAvxeB)a
(xe ArxeB)}

A®B=(A-B)U(B-A)
A®B = (AUB)-(B)A)
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Set Combination

Summary

ANB={x|xeAArxeB}
A-B={x|xecAAnx g B} .

ADB={x|(xeAvxeB)a
(xe ArxeB)} “‘
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Set Combination: Property

A-B={x|xeAAXx ¢ B}
ANB={x|xeAAxeB}

A-B=ANB

e« o IO

Ch21&22 43

Set Combination: Example

Universal set is {1...6},
A={1,3,5and B={1, 2, 3}
A= {2, 4,6
AUB={1,2,3, 5}
ANB={1,3}

A-B= {5}

B-A= {2}

A®B=1{2, 5}
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Set Combination: Property

|AUB[=[A|+|B|-[ANB|
The generalization of this result to unions of an

arbitrary number of sets is called the principle of
inclusion-exclusion
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- - - -
Set Combination: Property Set Idenfientyaws TP
pvF=p
Principle of Inclusion-Exclusion for three sets: Recall... Domination Laws SIS
" In Chapter 1 A=
f \I Idempotent Laws pvp=p
IAUBUC]| Q/ S
L Double Negation Law |- (-p)=p
- . Commutative Laws pvg=qvp
N N () PAQ=gAPp
= + + P o P
| A | | B | | C | =/ \gl/ +( "--l/ +/ _/ Associative Laws pv(@vn=(pEvavr
@& % pr(@ann=(Paqnar
- A ﬂ B — . — Distributive Laws pv(an=(pEvag)a(pvr)
l | / \-. / \;. / \. pAa(@vr) =(pPAaq)v(par)
- | B n C | - l.--" \‘“‘:ﬁ’/ - | \._:\ﬁ/ - ( “—\i/ De Morgan’s Laws S(pvQ)=Tp A g
A ¥ Y (pPArg)="pPVvq
- | A ﬂ C | Pl Absorption Laws pv(paq)=p
+ KT pA(pva)=p
+ | A ﬂ B ﬂ C | v Negation Laws pvop =T
L S PATp= =
- - Identity Laws AUZ=A
Set Combination: Property ANU=A
For Domination Laws AUU=U
Two sets are called disjoint if their Set... ANY=9
. . ) Idempotent Laws AUA=A
intersection is the empty set ANA=A
Complementation Law (f) =A
Commutative Laws AUB=BUA
ANB=BNA
Associative Laws AUBUC)=(AUB)UC
Example: AN(BNC)=(ANB)NC
Distributive Laws AN(BUC)=(ANB)U(ANC)
= A={1,3,5,7,9and B = {2,4,6,8,10} AUBNC)=(AUB)N (AU C)
. — De Morgan’s Laws AUB=ANB
ANB=0 ANB=AUB
= A and B are disjoint Absorption Laws AUANB)=A
AN(AUB)=A
Complement Laws AUA=U
ANA=Q

Ch2.1&22
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Set Identifies

How to show two sets (A and B) are identical?
= Membership Table

= Builder Notation

= Subset (i.,e. AcBand B c A)
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Set Identifies

Builder Notation
Prove that ANB=AUB

Using Builder Notation and equivalence rules

ANB
={x|x¢& (ANB)}
={x|7((x e A)n(x € B))}
={x|(x e A) v 7(x € B))}
={x|(xeA)v(x¢eB)}
={x|(xeA)v(xeB)}
=AUB
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Set Identifies

Membership Table
Prove that ANB=AUB

Using membership table

A|B|ANB|ANB| A | B ‘AUB
111 1 0 0| 0 0
110 0 1 0 | 1 1
0| 1 0 1 1 0 1
01 0 0 1 1 1 1
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Set Identifies

Subset
Prove that ANB=AUB

Using subset (implication & equivalence rules)

= ShowANBcAUB
ANB
Letx ¢ (AN B)
=7((x e A) A (x € B))
7(x € A) v 7(x € B))
(xeA)v (x ¢ B)
=(xeA)v(xeB)
Therefore, subset of AU B

» ShowAUBcANB
AUB

Let (x € A) v (X € B)
=(xgA)v(x¢gB)

=7(x e A) v 7(x € B))
=7((x e A) A (x € B))

=x ¢ (AN B)

Therefore, subset of AN B
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Generalized

Unions and Intersections

Union of a collection of sets is the set that
contains those elements that are members of at
least one set in the collection

4U4,U..U4,=J 4

Intersection of a collection of sets is the set that
contains those elements that are members of all the
sets in the collection

A4N4N..N4,=(_ 4

Generalized
Unions and Intersections

Example 1
“let A={0,2,4,6,8},B ={0,1,2,3,4},
C ={0,3,6,9}

= Whatare AUBUCandANBNC?
AUBUC-= {0,152y3,4!6,8!9}

ANBNC-= {0}
n maybe infinite
Generalized Generalized
Unions and Intersections Unions and Intersections
Another notation Set of i, e.g. {1..n} Example 2

L}%Ai :{Hﬁliel(xe/li)}

x is union of all 4, Forany i, x € 4, is correct
x is an element in any 4;

Setof i, e.g. {1..n}

ﬂie]/l,- :{H| Vie](xeAl.)}

x is intersection of all 4, Forall i, x € 4, is correct
x is an element in all 4,
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= Suppose that A, = {1,2,3,...,i} fori =
1,2,3,...

U_ 4= _123..i
M. 4=1{)_1.23...i

{1,2,3,..i}

Uj

Ch2.1&22 56



Computer Representation of Sets

Many ways to represent sets in a computer

One method is to store the elements of the set in an
unordered fashion

= E.g. in C++, we can use set to store set
set <int> a;
a.insert (9);

» The operations of computing the union, intersection, or
difference of two sets would be time-consuming
Including searching a large amount of element

A easier way is discussed
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Computer Representation of Sets

Equal -
Union bitwise OR
Intersection bitwise AND
Complement bitwise NOT
*?l ¥, 1010
’é’l':"f:: 0111 13| ? 1000
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Computer Representation of Sets

Assume the universal set U is
» Finite
= Reasonable size
Smaller than the memory size

Methods

= First, specify an arbitrary ordering of f‘?’:? u o 0

the elements of U, for instance a,,

82 ..... an a1 a2 as a4
» Represent a subset A with the bit

string of length n, where the it" bit in

this string is q.'? N 1010
S «'$)
if a, belongs to A o

0 if a, does not belong to A ,{'?" ¥ ' 0111
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Computer Representation of Sets

Example
= Let U={1,2,34,5,6,7,8,9,10}
A={1,3,5,7,9}
B={1,2,3,4,5}
= What is the bit string of
A 1010101010

B 1111100000
B 0000011111
ANB 1010100000
AUB 1111101010
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