Discrete Mathematic

Chapter 2: Set Theory 2.1 Sets 2.2

Set Operations

Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Set

Definition

A set is an **unordered** collection of objects

- The objects in a set are called the elements, or members, of the set
- Notation:
 - a ∈ A denote that a is an element of the set A
 - a ∉ A denotes that a is not an element of the set A

Agenda

- Ch 2.1
 - Set
 - The Power Set
 - Cartesian Products
 - Using Set Notation with Quantifiers
 - Truth Sets of Quantifiers
- Ch 2.2
 - Set Combination
 - Set Identifies
 - Generalized Unions and Intersections

Set

Ch 2.1 & 2.2

- There are many ways to express the sets
 - Listing all the elements
 - Set builder notation
 - Venn diagrams

2

Set Listing all the elements

 $S = \{e_1, e_2, e_3, \dots, e_n\}$

where **e**_i is **element** in the set

- Example
 - All vowels in the English alphabet: V = {a, e, i, o, u}
 - Odd positive integers < 10: O = {1, 3, 5, 7, 9}</p>
 - Unrelated elements: U = {John, 3, *}
- Ellipsis (...) can be used to represent the general pattern of elements
 - Positive integers less than 100 can be denoted by {1, 2, 3, ..., 99}

Set Builder

- Important Sets:
 - Real Numbers
 R
 - Natural Numbers
 N = {0, 1, 2, 3, ...}, counting numbers (sometimes not consider 0)
 - Integers
 - **Z** = {..., -3, -2, -1, 0, 1, 2, 3, 4, ...}
 - Positive / Negative Integers: Z⁺ / Z⁻
 - Rational Numbers
 Q = { p / q | p∈Z, p∈Z, and q≠0 }

Ch 2.1 & 2.2

Set Builder

 Describe the properties the elements must have to be members

 $S = \{x \mid P(x)\}$

- **S** contains all the elements which make the predicate P true
- Example:
 - R = { x | x is integer < 100 and > 40}
 - O = { x | x is an odd positive integer less than 10}
 - = {x \in Z⁺ | x is odd and x < 10}
 - Z⁺ is the set of positive integers

Set Venn Diagrams

- Venn Diagrams are named after the English mathematician John Venn
- A rectangle represents the universal set U
 - Contains all the objects under consideration
 - U may varies depends on which objects are of interest

- Inside the rectangle, circles, or other geometrical figures are used to represent sets
 - Points may represents elements

6

5

Ch 2.1 & 2.2

Set Venn Diagrams

- Example
 - A Venn diagram that represents V, the set of vowels in the English alphabet
 - Rectangle : U
 - 26 letters of the English alphabet
 - Circle: V
 - the set of vowels
 - Elements: a, e, i, o, u

9

Ch 2.1 & 2.2

Empty Set and Singleton Set

- Empty set (null set) is a special set that has no elements, denoted by Ø or { }
- Example
 - The set of all positive integers that are greater than their squares is the null set
- A set with one element is called a singleton set

Ch 2.1 & 2.2

11

Set

- Two sets are equal if and only if they have the same elements
 - A and B are sets
 - A and B are equal if and only if

 $\forall x (x \in A \leftrightarrow x \in B)$

- Notation (=)
 - We write A = B if A and B are equal sets

Set with Empty set

- A common error is to confuse with
 - Ø : the empty set
 - {Ø} : the set consisting of just the empty set
 Singleton set: The single element is the empty set itself
- A useful analogy: Folders
 - The empty set
 An empty folder
 - The set consisting of just the empty set:
 - A folder with exactly one folder inside, namely, the empty folder

Subset

- The set A is said to be a subset of B if and only if every element of A is also an element of B
- We use the notation A
 <u>B</u> to indicate that A is a subset of the set B
- We see that A B if and only if the quantification

$\forall x (x \in A \rightarrow x \in B)$

Subset

- If A and B are sets with A ⊆ B and B ⊆ A, then A = B
- A = B, where A and B are sets, if and only if $\forall x (x \in A \rightarrow x \in B) \text{ and } A \subseteq B$ $\forall x (x \in B \rightarrow x \in A), B \subseteq A$ or equivalently if and only if $\forall x (x \in A \leftrightarrow x \in B) A = B$

Ch 2.1 & 2.2

13

Subset

Ch 2.1 & 2.2

Subset: $\forall x (x \in A \rightarrow x \in B)$

- Every nonempty set S is guaranteed to have at least two subsets,
 - Empty set ($\emptyset \subseteq S$)
 - $x \in \emptyset$ is always false
 - Set S itself (S \subseteq S)
 - $x \in S \rightarrow x \in S$ must be true

Subset: Proper Subset

- When we wish to emphasize that a set A is a subset of the set B but that A ≠ B, we write A ⊂ B and say that A is a proper subset of B
- For A ⊂ B to be true, it must be the case that A ⊆ B and there must exist an element x of B that is not an element of A
- That is, A is a proper subset of B if

 $\forall x \ (x \in A \rightarrow x \in B) \land \exists x \ (x \in B \rightarrow x \notin A)$

14

Subset

 Sets may have other sets as members Example: A = {Ø, {a}, {b}, {a, b}} B = {x x is a subset of the set {a, b}} Note that A = B {a} ∈ A, but a ∉ A 	 Many problems involve testing all combinations of elements of a set to see if they satisfy some properties Power set of S is a set has as its members all the subsets of S 	
	 If a set has n elements, then its power set 	
	has 2 ⁿ elements	

17

Ch 2.1 & 2.2

Power Set

Ch 2.1 & 2.2

Finite and Infinite Subset

- Let S be a set
- If there are exist n distinct elements in S
- S is a finite set and that n is the cardinality of S
- The cardinality of S is denoted by |S|
- Example:
 - A be the set of odd positive integers less than 10, |A| = 5
 - S be the set of letters in the English alphabet, |S| = 26
 - |Ø| = 0
- A set is said to be infinite if it is not finite
 - The set of positive integers is infinite

Power Set: Example

- What is the power set of {0, 1, 2}?
 - P({0, 1, 2}) =
 {Ø, {0}, {1}, {2}, {0,1}, {0,2}, {1, 2}, {0,1,2}}
- What is the power set of {a}?
 P({a}) = {Ø, {a}}
- What is the power set of Ø?
 P(Ø) = {∅}
- What is the power set of {∅}?
 - $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

18

Ordered n-tuple	Ordered n-tuple
 The order of elements in a collection is often important However, sets are unordered Ordered n-tuple (a₁, a₂,, a_n) is the ordered collection that has a₁ as its first element a₂ as its second element a_n as its nth element 	 Ordered 2-tuples are called ordered pairs The ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d Note that (a, b) and (b, a) are not equal unless a = b
Ch 2.1 & 2.2 21	Ch 2.1 & 2.2 23
Ordered n-tuple	Ordered n-tuple Cartesian Products

Two ordered n-tuples are equal if and only if each corresponding pair of their elements is equal

 $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$

if and only if $a_i = b_i$, for i = 1, 2, ..., n

- A subset R of the Cartesian product A x B is called a relation from the set A to the set B
- The elements of R are ordered pairs, where the first element belongs to A and the second to B

Ordered n-tuple Cartesian Products	Ordered n-tuple Cartesian Products: Example 3
Let A and B be sets	 Given
 The Cartesian product of A and B, denoted by A x B, is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B 	 A represent the set of all students at a university B represent the set of all courses offered at the university
A x B = {(a, b) a ∈ A ∧ b ∈ B}	What is the meaning of A x B?
	 A x B represents all possible enrollments of students in courses at the university
Ch 2.1 & 2.2 25	Ch 2.1 & 2.2 27
Ordered n-tuple Cartesian Products: Example 1 • Given $A = \{1, 2\}$ and $B = \{a, b, c\}$ • What are $A \ge B$ and $B \ge A$? • $A \ge B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$ • $A \ge B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$ • $A \ge B$ and $B \ge A$ are not equal, unless • $A \ge B$ or $B = \emptyset$ (so that $A \ge B = \emptyset$) or • $A = B$	• Generally, the Cartesian product of the sets $A_1, A_2,, A_n$, denoted by $A_1 \ge A_2 \ge \ge A_n$, is the set of ordered n-tuples $(a_1, a_2,, a_n)$, where a_i belongs to A_i for $i = 1, 2,, n$. $A_1 \ge A_2 \ge \ge A_n =$ $\{(a_1, a_2,, a_n) \mid a_i \in A_i \text{ for } i = 1, 2,, n\}$

Ordered n-tuple Cartesian Products: Example 3	Set Notation with Quantifiers
What is A x B x C, where A = {0, 1}, B = {1, 2}, and C = {0, 1, 2}?	 Example What do the statements ∀x ∈ R (x² ≥ 0) and ∃x ∈ Z (x² = 1) mean?
A x B x C = {(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)}	 ∀x ∈ R (x² ≥ 0) For every real number x, x² ≥ 0 The square of every real number is nonnegative ∃x ∈ Z (x² = 1) There exists an integer x such that x² = 1 There is an integer whose square is 1
Ch 2.1 & 2.2 29	Ch 2.1 & 2.2 31

Set Notation with Quantifiers

- Sometimes we restrict the domain of a quantified statement explicitly by making use of set
- Example
 - ∀x ∈ S (P(x)) denotes the universal quantification of P(x) over all elements in the set S

• $\forall x \in S (P(x))$ is shorthand for $\forall x (x \in S \rightarrow P(x))$

Similarly, ∃x ∈ S (P(x)) denotes the existential quantification of P(x) over all elements in S

■ $\exists x \in S (P(x))$ is shorthand for $\exists x (x \in S \land P(x))$

Truth Sets of Quantifiers

- We will now tie together concepts from set theory and from predicate logic
- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x) is true
- The truth set of P(x) is denoted by {x ∈ D | P(x)}

Truth Sets of Quantifiers	Set Combination		
 Given the domain is the set of integers, what is the truth set of the following predicate? P(x) is " x = 1" x = 1 when x = 1 or x = -1 The truth set of P is the set {-1, 1} Q(x) is "x² = 2" There is no integer x for which x² = 2 The truth set of Q is empty set R(x) is " x = x" x = x if and only if x ≥ 0 The truth set of R is N, the set of nonnegative integers 	 Two sets can be combined in many different ways Complement (⁻) Union (∪) Intersection (∩) Difference (-) Symmetric Difference (⊕) 		
Ch 2.1 & 2.2 33	Ch 2.1 & 2.2 35		
Truth Sets of Quantifiers	Set Combination Complement		
 Note that \forall x P(x) is true over the domain U if and only if the truth set of P is the set U 	 Let U be the universal set The complement of the set A, denoted by A, is the complement of A with respect to U 		

- if and only if the truth set of P is the set U
- $\exists x P(x)$ is true over the domain U if and only if the truth set of P is non empty
- The complement of the set \overline{A} is U A.
- An element x belongs to \overline{A} if and only if $x \notin A$

 $\overline{A} = \{x \mid x \notin A\}$

Set Combination

Let A and B be sets

Union of the sets **A** and **B**, denoted by **A U B**, is the **set** that contains those elements that are either in A or in B, or in both

 An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B

$$\mathsf{A} \mathsf{U} \mathsf{B} = \{ \mathsf{x} \mid \mathsf{x} \in \mathsf{A} \lor \mathsf{x} \in \mathsf{B} \}$$

Notation: U (Union)

Ch 2.1 & 2.2

Set Combination Intersection

Let A and B be sets

Intersection of the sets **A** and **B**, denoted by $\mathbf{A} \cap \mathbf{B}$, is the set containing those elements in both A and B

 An element x belongs to the intersection of the sets A and B if and only if x belongs to A and B

 $A\cap B = \{ x \mid x \in A \land x \in B \}$

Notation: ∩ (i∩teraction)

Set Combination Difference

- Let A and B be sets
 Difference of A and B, denoted by A B, is the set containing those elements that are in A but not in B
- The difference of A and B is also called the complement of B with respect to A
- An element x belongs to the difference of A and B if and only if x ∈ A and x ∉ B

 $A - B = \{x \mid x \in A \land x \notin B\}$ $A - B = A \cap \overline{B}$

Ch 2.1 & 2.2

Set Combination Symmetric Difference

Let A and B be sets

Symmetric Difference of A and B, denoted by A ⊕ B, is the set containing those elements is either in A or B, but not in both

An element x belongs to the symmetric different of the sets A and B if and only if x belongs to A XOR B

 $A \oplus B = \{ x \mid (x \in A \lor x \in B) \land \\ \neg (x \in A \land x \in B) \}$

$$A \oplus B = (A - B) \cup (B - A)$$
$$A \oplus B = (A \cup B) - (B) A$$

Set Combination: Example

- Universal set is {1...6},
- A = {1, 3, 5} and B = {1, 2, 3}
- $\overline{A} = \{2, 4, 6\}$
- A U B = {1, 2, 3, 5}
- A ∩ B = {1, 3}
- A B = **{5**}
- B A = **{2**}
- A ⊕ B = {2, 5}

Set Combination: Property

The generalization of this result to unions of an arbitrary number of sets is called the **principle of inclusion-exclusion**

Cat Idam		_
Set Iden	Identify Laws	$p \wedge T \equiv p$
		$p \lor F \equiv p$
Recall	Domination Laws	$p \lor T \equiv T$
In Chanter 1		$p \wedge F \equiv F$
	Idempotent Laws	$D \lor D \equiv D$
		$p \wedge p \equiv p$
	Double Negation Law	= $(=n)$ $=$ n
	Double Negation Law	'('p)≡p
	Commutative Laws	$p \lor q \equiv q \lor p$
		$p \land q \equiv q \land p$
	Associative Laws	$p \lor (q \lor r) \equiv (p \lor q) \lor r$
		$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
	Distributive Laws	
	Distributive Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
		$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
	De Morgan's Laws	$p \lor q = p \lor p$ ר
		$p \land q = p \lor q$
	Absorption Laws	$p \lor (p \land q) \equiv p$
		$p \wedge (p \vee q) \equiv p$
	Ne notional anno	
	Negation Laws	p ∨ ¬p ≡ I
Ch 2 1 8 2 2		$p \land \neg p \equiv r$

Set Combination: Property

Two sets are called **disjoint** if their intersection is the empty set

• Example:

- A = {1,3,5,7,9} and B = {2,4,6,8,10}
- $A \cap B = \emptyset$
- A and B are disjoint

_	Identity Laws	$\begin{array}{l} A \ U \ \varnothing = A \\ A \ O \ U = A \end{array}$
For Set…	Domination Laws	
	Idempotent Laws	$\begin{array}{c} A \cup A = A \\ A \cap A = A \end{array}$
	Complementation Law	$(\overline{\overline{A}}) = A$
	Commutative Laws	A U B = B U A A ∩ B = B ∩ A
	Associative Laws	A U (B U C) = (A U B) U C A ∩ (B ∩ C) = (A ∩ B) ∩ C
	Distributive Laws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	De Morgan's Laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A \cup B}$
	Absorption Laws	$\begin{array}{l} A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \end{array}$
	Complement Laws	AUĀ=U A∩Ā=∅

46

Ch 2.1 & 2.2

Set Identifies

- How to show two sets (A and B) are identical?
 - Membership Table
 - Builder Notation
 - Subset (i.e. $A \subset B$ and $B \subset A$)

Set Identifies Builder Notation

- Prove that $A \cap B = A \cup B$
- Using Builder Notation and equivalence rules

 $A \cap B$ $= \{ x \mid x \notin (A \cap B) \}$ $= \{ x \mid \neg((x \in A) \land (x \in B)) \}$ $= \{ x \mid \neg(x \in A) \lor \neg(x \in B) \} \}$ $= \{ x \mid (x \notin A) \lor (x \notin B) \}$ $= \{ x \mid (\overline{x} \in A) \lor (\overline{x} \in B) \}$ $=\overline{A}U\overline{B}$

Ch 2.1 & 2.2

Set Identifies Membership Table

- Prove that $\overline{A \cap B} = \overline{A \cup B}$
- Using membership table

А	В	$A \cap B$	A∩B	Ā	B	AUB
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

Set Identifies Subset

Ch 2.1 & 2.2

49

- Prove that $\overline{A \cap B} = \overline{A \cup B}$
- Using subset (implication & equivalence rules)

 $A \cap B$ Let x ∉ (A ∩ B)

- $= \neg((x \in A) \land (x \in B))$
- $= (x \notin A) \lor (x \notin B) \qquad \qquad = \neg((x \in A) \land (x \in B))$
- $= (x \in \overline{A}) \vee (x \in \overline{B})$

Therefore, subset of A U B

• Show $A \cap B \subset A \cup B$ • Show $A \cup B \subset A \cap B$ AUB Let $(x \in \overline{A}) \lor (x \in \overline{B})$ $= (x \notin A) \lor (x \notin B)$ $= \neg (x \in A) \lor \neg (x \in B)) \qquad = \neg (x \in A) \lor \neg (x \in B))$ = x ∉ (A ∩ B) Therefore, subset of $A \cap B$

50

Generalized Unions and Intersections

Union of a collection of sets is the set that contains those elements that are members of at least one set in the collection

 $A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$

Intersection of a **collection of sets** is the set that contains those elements that are members of all the sets in the collection

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

n maybe infinite

53

Generalized Unions and Intersections

- Example 1
 - Let $A = \{0, 2, 4, 6, 8\}$, $B = \{0, 1, 2, 3, 4\}$, $C = \{0, 3, 6, 9\}$
 - What are A U B U C and A \cap B \cap C? A U B U C = {0,1,2,3,4,6,8,9}

 $A \cap B \cap C = \{0\}$

Generalized Unions and Intersections

Another notation Set of i, e.g. {1..n} $\exists i \in I (x \in A_i)$ x is union of all A_i For any i, $x \in A_i$ is correct x is an element in any A_i Set of i, e.g. {1..n} $\forall i \in I (x \in A_i)$ x is intersection of all A_i For all i, $x \in A_i$ is correct x is an element in all A_i 54

Generalized Unions and Intersections

Example 2

Ch 2.1 & 2.2

Suppose that A_i = {1,2,3,...,i} for i = 1.2.3....

$$\bigcup_{i \in I} A_i = \bigcup_{i \in I} \{1, 2, 3, \dots, i\} = \{1, 2, 3, \dots, i\}$$

$$\bigcap_{i \in I} A_i = \bigcap_{i \in I} \{1, 2, 3, \dots, i\} = \{1\}$$

Ch 2.1 & 2.2

Ch 2.1 & 2.2

Computer Representation of Sets

- Many ways to represent sets in a computer
- One method is to store the elements of the set in an unordered fashion
 - E.g. in C++, we can use set to store set
 - set <int> a;
 - a.insert(9);
 - The operations of computing the union, intersection, or difference of two sets would be time-consuming
 - Including searching a large amount of element
- A easier way is discussed

Computer Representation of Sets

- Equal
- Union bitwise OR

0111 💽 👰

- Intersection
- bitwise AND
- Complement bitwise NOT

1000

59

- **Computer Representation of Sets**
- Assume the universal set U is
 - Finite

Ch 2.1 & 2.2

- Reasonable size
 - Smaller than the memory size

Methods

- First, specify an *arbitrary ordering* of the elements of U, for instance a₁, a₂, ..., a_n
- Represent a subset A with the *bit* string of length n, where the ith bit in this string is
 - 1 if a_i belongs to A
 - 0 if a_i does not belong to A

 a_3

1010

a₄

58

 a_2

a₁

57

Computer Representation of Sets

Example

Ch 2.1 & 2.2

• Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

B = {1, 2, 3, 4, 5}

- What is the bit string of
 - A 1010101010
 B 1111100000
 - B 0000011111
 - A∩B **101010000**
 - AUB **1111101010**