2.1
Sets

2.2
 Set Operations

Dr Patrick Chan
School of Computer Science and Engineering
South China University of Technology

Set

- Definition

A set is an unordered collection of objects

- The objects in a set are called the elements, or members, of the set
- Notation:
- $a \in A$ denote that a is an element of the set A
- a $\notin \mathrm{A}$ denotes that a is not
 an element of the set A

Set

- There are many ways to express the sets
- Listing all the elements
- Set builder notation
- Venn diagrams

Set

Listing all the elements

$$
S=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}
$$

where e_{i} is element in the set

- Example

- All vowels in the English alphabet: $V=\{a, e, i, o, u\}$
- Odd positive integers < 10: $O=\{1,3,5,7,9\}$
- Unrelated elements: U = \{John, 3, *\}
- Ellipsis (...) can be used to represent the general pattern of elements
- Positive integers less than 100 can be denoted by $\{1,2,3, \ldots, 99\}$

Set
 Set Builder

- Describe the properties the elements must have to be members

$$
S=\{x \mid P(x)\}
$$

S contains all the elements which make the predicate P true

- Example:
- $\mathbf{R}=\{x \mid x$ is integer <100 and $>40\}$
- $\mathbf{O}=\{x \mid x$ is an odd positive integer less than 10\}

$$
=\left\{x \in Z^{+} \mid x \text { is odd and } x<10\right\}
$$

- Z^{+}is the set of positive integers

Set

Set Builder

- Important Sets:

- Real Numbers

R

- Natural Numbers
$\mathbf{N}=\{0,1,2,3, \ldots\}$, counting numbers (sometimes not consider 0)
- Integers

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

- Positive / Negative Integers: $\mathbf{Z}^{+} /$Z $^{-}$
- Rational Numbers
$\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, p \in \mathbf{Z}$, and $q \neq 0\}$

Set

Venn Diagrams

- Venn Diagrams are named after the English mathematician John Venn
- A rectangle represents the universal set U
- Contains all the objects under consideration
- U may varies depends on which objects are of interest

- Inside the rectangle, circles, or other geometrical figures are used to represent sets
- Points may represents elements

Set

Venn Diagrams

- Example
- A Venn diagram that represents V , the set of vowels in the English alphabet
- Rectangle: U
- 26 letters of the English alphabet
- Circle: V
- the set of vowels
- Elements: a, e, i, o, u

Set

- Two sets are equal if and only if they have the same elements
- A and B are sets
- A and B are equal if and only if

$$
\forall x(x \in A \leftrightarrow x \in B)
$$

- Notation (=)
- We write $A=B$ if A and B are equal sets

Empty Set and Singleton Set

- Empty set (null set) is a special set that has no elements, denoted by \varnothing or \{ \}
- Example
- The set of all positive integers that are greater than their squares is the null set
- A set with one element is called a singleton set

Set with Empty set

- A common error is to confuse with
- \varnothing : the empty set
- $\{\varnothing\}$: the set consisting of just the empty set
- Singleton set:

The single element is the empty set itself

- A useful analogy: Folders
- The empty set
- An empty folder

- The set consisting of just the empty set:
- A folder with exactly one folder
inside, namely, the empty folder

Subset

- The set \mathbf{A} is said to be a subset of \mathbf{B} if and only if every element of A is also an element of B
- We use the notation $\mathbf{A} \subseteq \mathbf{B}$ to indicate that A is a subset of the set B
- We see that $\mathbf{A} \subseteq \mathbf{B}$ if and only if the quantification

$$
\forall x(x \in A \rightarrow x \in B)
$$

Subset: $\forall \mathrm{x}(\mathrm{x} \in \mathrm{A} \rightarrow \mathrm{x} \in \mathrm{B})$

Subset

- Every nonempty set S is guaranteed to have at least two subsets,
- Empty set ($\varnothing \subseteq$ S)
- $x \in \varnothing$ is always false
- Set S itself $(\mathbf{S} \subseteq \mathbf{S})$
- $x \in S \rightarrow x \in S$ must be true

Subset

- If A and B are sets with $A \subseteq B$ and $B \subseteq A$, then $A=B$
- $A=B$, where A and B are sets, if and only if

$$
\begin{array}{ll}
\forall x(x \in A \rightarrow x \in B) \text { and } & A \subseteq B \\
\forall x(x \in B \rightarrow x \in A), & B \subseteq A
\end{array}
$$

or equivalently if and only if

$$
\forall \mathbf{x}(\mathbf{x} \in \mathbf{A} \leftrightarrow \mathbf{x} \in \mathbf{B})
$$

$$
A=B
$$

Subset: Proper Subset

- When we wish to emphasize that a set A is a subset of the set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B
- For $A \subset B$ to be true, it must be the case that $A \subseteq B$ and there must exist an element x of B that is not an element of A
- That is, A is a proper subset of B

$$
\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \rightarrow x \notin A)
$$

Subset

- Sets may have other sets as members
- Example:
- $A=\{\varnothing,\{a\},\{b\},\{a, b\}\}$
- $B=\{x \mid x$ is a subset of the set $\{a, b\}\}$
- Note that $A=B$
$\{\mathrm{a}\} \in \mathrm{A}$, but $\mathrm{a} \notin \mathrm{A}$

Power Set

- Many problems involve testing all combinations of elements of a set to see if they satisfy some properties
- Power set of S is a set has as its members all the subsets of S
- The power set of S is denoted by $P(S)$
- If a set has n elements, then its power set has 2^{n} elements

Finite and Infinite Subset

- Let S be a set
- If there are exist n distinct elements in S
- S is a finite set and that n is the cardinality of S
- The cardinality of S is denoted by $|\mathbf{S}|$
- Example:
- A be the set of odd positive integers less than $10,|A|=5$
- S be the set of letters in the English alphabet, $|\mathbf{S}|=26$
- $|\varnothing|=0$
- A set is said to be infinite if it is not finite
- The set of positive integers is infinite

Power Set: Example

- What is the power set of $\{0,1,2\}$?
- $P(\{0,1,2\})=$
$\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$
- What is the power set of $\{\mathrm{a}\}$?
- $P(\{a\})=\{\varnothing,\{a\}\}$
- What is the power set of \varnothing ?

$$
\cdot P(\varnothing)=\{\varnothing\}
$$

- What is the power set of $\{\varnothing\}$?
- $P(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}$

Ordered n-tuple

- The order of elements in a collection is often important
- However, sets are unordered
- Ordered n -tuple $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ is the ordered collection that has
- a_{1} as its first element
- a_{2} as its second element
-...
- a_{n} as its $n^{\text {th }}$ element

Ordered n-tuple

- Two ordered n-tuples are equal if and only if each corresponding pair of their elements is equal

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

if and only if $a_{i}=b_{i}$, for $i=1,2, \ldots, n$

Ordered n-tuple

- Ordered 2-tuples are called ordered pairs
- The ordered pairs (a, b) and (c, d) are equal if and only if $a=c$ and $b=d$
- Note that (a, b) and (b, a) are not equal unless $\mathrm{a}=\mathrm{b}$

Ordered n-tuple

Cartesian Products

- A subset \mathbf{R} of the Cartesian product $A \mathbf{x} B$ is called a relation from the set A to the set B
- The elements of \mathbf{R} are ordered pairs, where the first element belongs to A and the second to B

Ordered n-tuple

Cartesian Products

- Let A and B be sets
- The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Ordered n-tuple

Cartesian Products: Example 1

- Given $A=\{1,2\}$ and $B=\{a, b, c\}$
- What are $A \times B$ and $B \times A$?
- $A \times B=$

$$
\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}
$$

- $\mathrm{B} \times \mathrm{A}=$
$\{(\mathrm{a}, 1),(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{c}, 2)\}$
- $A \times B$ and $B \times A$ are not equal, unless
- $A=\varnothing$ or $B=\varnothing$ (so that $A \times B=\varnothing$) or
- $\mathrm{A}=\mathrm{B}$

Ordered n-tuple

Cartesian Products: Example 3

- Given
- A represent the set of all students at a university
- B represent the set of all courses offered at the university
- What is the meaning of $A \times B$?
- A x B represents all possible enrollments of students in courses at the university

Ordered n-tuple

Cartesian Products

- Generally, the Cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$, denoted by $A_{1} \times A_{2} \times \ldots \times A_{n}$, is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$.

$$
\begin{aligned}
& A_{1} \times A_{2} \times \ldots \times A_{n}= \\
& \quad\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\}
\end{aligned}
$$

Ordered n-tuple

Cartesian Products: Example 3

- What is $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$, where $A=\{0,1\}, B=\{1,2\}$, and $C=\{0,1,2\}$?
- $\mathrm{A} \times \mathrm{B} \times \mathrm{C}=$ $\{(0,1,0),(0,1,1),(0,1,2)$, (0,2,0), (0,2,1), (0,2,2),
$(1,1,0),(1,1,1),(1,1,2)$,
$(1,2,0),(1,2,1),(1,2,2)\}$

Set Notation with Quantifiers

- Example
- What do the statements
$\forall x \in R\left(x^{2} \geq 0\right)$ and $\exists x \in Z\left(x^{2}=1\right)$ mean?
- $\forall x \in R\left(x^{2} \geq 0\right)$
- For every real number $x, x^{2} \geq 0$
- The square of every real number is nonnegative
- $\exists x \in Z\left(x^{2}=1\right)$
- There exists an integer x such that $x^{2}=1$
- There is an integer whose square is 1

Truth Sets of Quantifiers

- We will now tie together concepts from set theory and from predicate logic
- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which $P(x)$ is true
- The truth set of $P(x)$ is denoted by $\{x \in D I P(x)\}$

Truth Sets of Quantifiers

- Given the domain is the set of integers, what is the truth set of the following predicate?
- $P(x)$ is " $|x|=1 "$
- $|x|=1$ when $x=1$ or $x=-1$
- The truth set of P is the set $\{-1,1\}$
- $Q(x)$ is " $x^{2}=2$ "
- There is no integer x for which $x^{2}=2$
- The truth set of Q is empty set
- $R(x)$ is " $|x|=x$ "
- $|x|=x$ if and only if $x \geq 0$
- The truth set of R is N, the set of nonnegative integers

Truth Sets of Quantifiers

- Note that
- $\forall x P(x)$ is true over the domain U if and only if the truth set of P is the set U
- $\exists x P(x)$ is true over the domain U if and only if the truth set of P is non empty

Set Combination

- Two sets can be combined in many different ways
- Complement (${ }$)
- Union (\cup)
- Intersection (\cap)
- Difference (-)
- Symmetric Difference (\oplus)

Set Combination

Complement

- Let U be the universal set

The complement of the set \mathbf{A}, denoted by $\overline{\mathbf{A}}$, is the complement of A with respect to U

- The complement of the set \bar{A} is $U-A$.
- An element x belongs to \bar{A} if and only if $x \notin A$

$$
\bar{A}=\{x \mid x \notin A\}
$$

Set Combination

Union

- Let A and B be sets

Union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B , or in both

- An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B
$A \cup B=\{x \mid x \in A \vee x \in B\}$
- Notation: U (Union)

37

Set Combination

Intersection

- Let A and B be sets

Intersection of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B

- An element x belongs to the intersection of the sets A and B if and only if x belongs to A and B
$A \cap B=\{x \mid x \in A \wedge x \in B\}$
- Notation: \cap (interaction)

Set Combination

Difference

Let A and B be sets
Difference of A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B

- The difference of A and B is also called the complement of B with respect to A
- An element x belongs to the difference of A and B if and only if
$x \in A$ and $x \notin B$
$A-B=\{x \mid x \in A \wedge x \notin B\}$
$A-B=A \cap \bar{B}$

Ch 2.1 \& 2.2

Set Combination

Symmetric Difference

- Let A and B be sets

Symmetric Difference of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A} \oplus$
B, is the set containing those elements is either in A or B, but not in both

- An element x belongs to the symmetric different of the sets A and B if and only if x belongs to A XOR B
$A \oplus B=\{x \mid(x \in A \vee x \in B) \wedge$ $\neg(x \in A \wedge x \in B)\}$
$A \oplus B=(A-B) U(B-A)$
$A \oplus B=(A \cup B)-(B) A)$

Set Combination

Summary

- $\bar{A}=\{x \mid x \notin A\}$
- $A \cup B=\{x \mid x \in A \vee x \in B\}$
- $A \cap B=\{x \mid x \in A \wedge x \in B\}$
- $A-B=\{x \mid x \in A \wedge x \notin B\}$

A B
- $A \oplus B=\{x \mid(x \in A \vee x \in B) \wedge$

$$
\neg(x \in A \wedge x \in B)\}
$$

Set Combination: Example

- Universal set is $\{1 \ldots 6\}$,
- $A=\{1,3,5\}$ and $B=\{1,2,3\}$
- $\bar{A}=\{2,4,6\}$
- $A \cup B=\{1,2,3,5\}$
- $A \cap B=\{1,3\}$
- $A-B=\{5\}$
- $B-A=\{2\}$
- $A \oplus B=\{2,5\}$

Set Combination: Property

$$
\begin{aligned}
A-B & =\{x \mid x \in A \wedge x \notin B\} \\
A \cap B & =\{x \mid x \in A \wedge x \in B\}
\end{aligned}
$$

Ch 2.1 \& 2.2

Set Combination: Property

$|A \cup B|=|A|+|B|-|A \cap B|$

- The generalization of this result to unions of an arbitrary number of sets is called the principle of inclusion-exclusion

Set Combination: Property

" Principle of Inclusion-Exclusion for three sets:

|AUBUC|

$=|A|+|B|+|C|$

$-|A \cap B|$
$-|B \cap C|$
$-|A \cap C|$
$+|A \cap B \cap C|$

Set Combination: Property

- Two sets are called disjoint if their intersection is the empty set

- Example:
- $A=\{1,3,5,7,9\}$ and $B=\{2,4,6,8,10\}$
- $A \cap B=\varnothing$
- A and B are disjoint

Set Iden

Recall...
In Chapter 1

Identify Laws	$\begin{aligned} & p \wedge T \equiv p \\ & p \vee F \equiv p \end{aligned}$
Domination Laws	$\begin{aligned} & p \vee T \equiv T \\ & p \wedge F \equiv F \end{aligned}$
Idempotent Laws	$\begin{aligned} & p \vee p \equiv p \\ & p \wedge p \equiv p \end{aligned}$
Double Negation Law	$\neg(\neg p) \equiv p$
Commutative Laws	$\begin{aligned} & p \vee q \equiv q \vee p \\ & p \wedge q \equiv q \wedge p \end{aligned}$
Associative Laws	$\begin{aligned} & p \vee(q \vee r) \equiv(p \vee q) \vee r \\ & p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r \end{aligned}$
Distributive Laws De Morgan's Laws	$\begin{aligned} & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\ & p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\ & \neg(p \vee q) \equiv \neg p \wedge \neg q \\ & \neg(p \wedge q) \equiv \neg p \vee \neg q \end{aligned}$
Absorption Laws	$\begin{aligned} & p \vee(p \wedge q) \equiv p \\ & p \wedge(p \vee q) \equiv p \end{aligned}$
Negation Laws	$\begin{aligned} & p \vee \neg p \equiv T \\ & p \wedge \neg p \equiv F \\ & \hline \end{aligned}$

Ch 2.1 \& 2.2

For
Set...

Identity Laws	$\begin{aligned} & A \cup \varnothing=A \\ & A \cap U=A \end{aligned}$
Domination Laws	$\begin{aligned} & A \cup U=U \\ & A \cap \varnothing=\varnothing \end{aligned}$
Idempotent Laws	$\begin{aligned} & A \cup A=A \\ & A \cap A=A \end{aligned}$
Complementation Law	$(\overline{\mathrm{A}})=\mathrm{A}$
Commutative Laws	$\begin{aligned} & A \cup B=B \cup A \\ & A \cap B=B \cap A \end{aligned}$
Associative Laws	$\begin{aligned} & A \cup(B \cup C)=(A \cup B) \cup C \\ & A \cap(B \cap C)=(A \cap B) \cap C \end{aligned}$
Distributive Laws	$\begin{aligned} & A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\ & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \end{aligned}$
De Morgan's Laws	$\begin{aligned} & \overline{\mathrm{A} \mathrm{\cup B}}=\overline{\mathrm{A}} \cap \bar{B} \\ & \overline{\mathrm{~A} \cap B}=\overline{\mathrm{A}} \cup \bar{B} \end{aligned}$
Absorption Laws	$\begin{aligned} & A \cup(A \cap B)=A \\ & A \cap(A \cup B)=A \end{aligned}$
Complement Laws	$\begin{aligned} & A \cup \bar{A}=U \\ & A \cap \bar{A}=\varnothing \end{aligned}$

Set Identifies

- How to show two sets (A and B) are identical?
- Membership Table
- Builder Notation
- Subset (i.e. $A \subseteq B$ and $B \subseteq A$)

Set Identifies

Builder Notation

- Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
- Using Builder Notation and equivalence rules

$$
\begin{aligned}
& A \cap B \\
= & \{x \mid x \notin(A \cap B)\} \\
= & \{x \mid \neg((x \in A) \wedge(x \in B))\} \\
= & \{x \mid \neg(x \in A) \vee \neg(x \in B))\} \\
= & \{x \mid(x \notin A) \vee(x \notin B)\} \\
= & \{x \mid(\bar{x} \in A) \vee(\bar{x} \in B)\} \\
= & \bar{A} \cup \bar{B}
\end{aligned}
$$

Set Identifies

Subset

- Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
- Using subset (implication \& equivalence rules)
- Show $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B} \quad$ - Show $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\bar{A} \cap B
$$

Let $x \notin(A \cap B)$
$=\neg((x \in A) \wedge(x \in B))$
$=\neg(x \in A) \vee \neg(x \in B))$
$=(x \notin A) \vee(x \notin B)$
$=(x \in \bar{A}) \vee(x \in \bar{B})$
Therefore, subset of $\bar{A} \cup B$

$$
\bar{A} \cup \bar{B}
$$

$$
\text { Let }(x \in \bar{A}) \vee(x \in \bar{B})
$$

$$
=(x \notin A) \vee(x \notin B)
$$

$$
=\neg(x \in A) \vee \neg(x \in B))
$$

$$
=\neg((x \in A) \wedge(x \in B))
$$

$$
=x \notin(A \cap B)
$$

Therefore, subset of $A \cap B$

Generalized

Unions and Intersections

- Union of a collection of sets is the set that contains those elements that are members of at least one set in the collection

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}
$$

- Intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection

$$
A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}
$$

n maybe infinite

Generalized

Unions and Intersections

- Example 1
- Let $A=\{0,2,4,6,8\}, B=\{0,1,2,3,4\}$,

$$
C=\{0,3,6,9\}
$$

- What are $A \cup B \cup C$ and $A \cap B \cap C$?
- $A \cup B \cup C=\{0,1,2,3,4,6,8,9\}$
$-A \cap B \cap C=\{0\}$

Generalized

Unions and Intersections

- Example 2
- Suppose that $A_{i}=\{1,2,3, \ldots, i\}$ for $\mathrm{i}=$ 1,2,3,...

$$
\begin{aligned}
& \bigcup_{i \in I} A_{i}=\bigcup_{i \in I}\{1,2,3, \ldots, i\}=\{1,2,3, \ldots i\} \\
& \bigcap_{i \in I} A_{i}=\bigcap_{i \in I}\{1,2,3, \ldots, i\}=\{1\}
\end{aligned}
$$

Computer Representation of Sets

- Many ways to represent sets in a computer
- One method is to store the elements of the set in an unordered fashion
- E.g. in C++, we can use set to store set
- set <int> a;
- a.insert(9);
- The operations of computing the union, intersection, or difference of two sets would be time-consuming
- Including searching a large amount of element
- A easier way is discussed

Computer Representation of Sets

- Assume the universal set U is
- Finite
- Reasonable size
- Smaller than the memory size
- Methods
- First, specify an arbitrary ordering of the elements of U, for instance a_{1}, a_{2}, \ldots, a_{n}
- Represent a subset A with the bit string of length n, where the $\mathrm{i}^{\text {th }}$ bit in this string is
- 1 if a_{i} belongs to A
- $\mathbf{0}$ if a_{i} does not belong to A
- $\bar{B} \quad 0000011111$
- A \cap B 1010100000
- AUB 1111101010

57

Computer Representation of Sets

- Example
- Let $U=\{1,2,3,4,5,6,7,8,9,10\}$

$$
A=\{1,3,5,7,9\}
$$

- What is the bit string of
- A 1010101010
-B 1111100000

Computer Representation of Sets

- Equal =
- Union bitwise OR
- Intersection bitwise AND
- Complement bitwise NOT

CTY \% 1010
90111

Ch 2.1 \& 2.2
59
1000

$$
B=\{1,2,3,4,5\}
$$

$$
\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}
$$

