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= Limitation 1:

p : Johnis a SCUT student
q : Peteris a SCUT student
r: Maryis a SCUT student

= Try to represent them using propositional
variable

= However, these propositions are very similar

= A more powerful type of logic
named Predicate Logic will be introduced
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Predicates

Predicate logic is an extension of propositional
logic that permits concisely reasoning about whole
classes of entities

John Peter Mary

Predicate Logic
distinguishes the subject
of a sentence from its

Propositional Logic
treats simple
propositions as atomic

Predicates

Predicate is a function of proposition
Example:

Convention:
lowercase variables denote objects
UPPERCASE variables denote predicates

Propositional Function /

Predicate Variable Predicate
~— A A ~
P(x) : xis greater than 3

Refer to

The truth value of proposition function can only be
determined when the values of variables are
known

entities predicate
Predicates Predicates
Example: Propositional function can have more than
= P(x):“x >3 one variables

= What is P(4)? v/
= Whatis P(2)? ¢

= P(x) : “x is a singer” |
= P(Michael Jackson)?\/ ,'
= P(Bruce Lee)? &
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Example:

" P(X,y):x+y=7
P(2, 5)

"Q(X,Y,2):Xx=y+z
Q(5,2,8) &
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Predicates

General case

= A statement involving the n variables x,, x,, ...,
X, can be denoted by

P(x4, X5 ...; X,,)
= A statement of the form P(x,, x,, ..., X,) is the
value of the propositional function P at the
n-tuple (x4, X5, ..., X,,)
= Pis also called a n-place predicate or
a n-ary predicate

Chapter 1.3 & 1.4 9

Limitation of Propositional Logic

Limitation 2:
= Given = Given

P: “Every student in SCUT P: "Peter cannot pass this

is clever” Discrete Maths subject”

Q: “Peter is SCUT student” Q: “Peteris a SCUT student”
= What can we conclude? * What can we conclude?

“At least one student in
SCUT cannot pass this
Discrete Maths subject”

“Peter is clever”

» No rules of propositional logic can
conclude the truth of this statement
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Limitation of Propositional Logic

Propositional Logic does not adequately
express the following meanings

= Every, all, some, partial, at least one, one, etc

A more powerful tool, Quantifiers, will be
introduced
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Quantifiers

Quantification expresses the extent to which a
predicate is true over a range of elements

For example g eter Paul Mary
= Using Propositional Logic & "-.!:‘
p: Peter has iPhone _ \ T
q: Paul has iPhone iPhone
r: Mary has iPhone L OU IaSS an

Assume our class only contains three students

= Using Predicate
P(x) : x has iPhone

» Using Quantifier

g(Eet"f) P(x) : x has iPhone
(Paul) For all x, P(x) is true
P(Mary)

Domain consists of
all student in this class
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Quantifiers

Four aspects should be mentioned in Quantification

" oo all some.) @ gl iy
2. Variable ‘e
3. Predicate T
4. Domain 'Y Our’dlass

<F(x) : x has iPhone>
ForG@alDx, P(x) is true
Domain consists ofallistudendin this class>

The area of logic that deals with predicates and
quantifiers is called the Predicate Calculus
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Quantifiers

Universes of Discourse (U.D.s)
= Also called the domain of discourse

= Refers to the collection of objects being
discussed in a specific discourse

I do not need O,

= Example:
P(x) : “x breaths oxygen® :
Domain consists of humans i
P(x) is true for all x?
D(orilain consists of c?gtures il
P(x) is true for all x? € Human
Creatures
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Quantifiers

Three types of quantification will be focused:
» Universal Quantification
i.e. all, none
= Existential Quantification
i.e. some, few, many
= Unique Quantification
i.e. exactly one

Can be expressed by using Universal
Quantification and Existential Quantification
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Quantifiers

Universal Quantifiers (ALL)

Definition
Universal quantification of P(x) is the statement
“P(x) is true for all values of x in the domain”

Notation: Vx P(x)
= VLL, reversed “A”

» Read as
"for all x P(x)"
"for every x P(x)"

Truth value
* True when P(x) is true for all x

= False otherwise

An element for which P(x) is false is called a
counterexample
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Quantifiers
Universal Quantifiers

When all of the elements in the universe of discourse can be
listed one by one (discrete) (e.g. X{,X,...,X,),
Vx P(x) = P(x4) A P(x5) A ... A P(x,)

For example
= Our class has three students: John, Peter and Mary
= Every student in our class has attended the class

Quantifiers
Existential Quantifiers (SOME)

Definition

Existential quantification of P(x) is the proposition
“There exists an element x in the domain

such that P(x) is true”

Notation: 3x P(x)
= IXIST, reversed “E”

= Read as
“There is an x such that P(x)”
“There is at least one x such that P(x)”
"For some x P(x)"

Truth value
» False when P(x) is false for all x
* True otherwise

Quantifiers 'f'
Existential Quantifiers Quantifiers
When all of the elements in the universe of discourse can be Examples:

listed one by one (discrete) (e.9. Xq,X5,...,X,),
dx P(x) = P(x,) v P(x;) v ... v P(x,)
For example

= Our class has three students: John, Peter and Mary
= Any student in our class has attended the class
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» P(x): x+1>x, U.D.s: the set of real number
VX P(x) ? True

P(x) is always true
Ax P(x) ? True

* Q(x): x<2, U.D.s: the set of real number
Vx Q(x) ? False
Ix Q(x) ? True

Q(y) is false when y 2 3 (counterexamples)
Q(y) is true when y < 2

= S(x): 2x<x, U.D.s: the set of real positive number
VX S(x) ? False

Ix S(x) ? False S(x) is always false
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Universal Quantifiers

Examples:
= P(x): x2<10,
U.D.s. the positive integer not exceeding 4
vx P(x) ?
Vx P(x)=P(1) AP(2) AP3) A P(4) =F

dx P(x) ?
Ix P(x)= P(1) v P2) v PB)vP@4) =T

Py PRy PRl P4)%

counterexample
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Quantifiers

How can we prove the followings:
= Universal quantification is true

= Universal quantification is false |

= Existential quantification is true |

= Existential quantification is false

Finding one is ok
(counterexample)

Need to consider ALL

Statement | When true? When false?
Bl | e or e e oo
3x P(x) ;I;r;il\'li iicshaFr:(::) < e, P(x) is false for every x.
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Precedence of Quantifiers

Recall,
P d (o) t
e ——— 4=V and 3 have higher
2 A AND preCedenCe than all
3 v ® | OrR XOR logical operators
4 from proposition
= il lculus
o > Equivalent ca
Example
= VX P(x) A Q(x)
(VXP(x) A QKX)o VX (P(x)AQ(X)) K
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© Small Exercise ©

How to interpret the following expression:

= Vx (P(x) A3z Q(x,z) = 3y R(x,y)) v Q(x,y)

= Vx (P(x) A (32 Q(x,2)) = (y R(x.y)) ) v Q(x,Y)
— —

= VX ((P(x) A (32 Q(x,2))) > (Fy R(x,y)) ) v Q(x,y)

~
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Bound and Free Variable

Free Variable: No any restriction

Bound Variable: Some restrictions
(quantifier or condition)

Example:
" P(x):“x>3" Free Variable Not Proposition
* P(x):“x>3"and x =4 Bound Variable Proposition

= VX P(X, ¥) x:Bound Variable y:Free Variable Not Proposition

All the variables that occur in a quantifier must be
bounded to turn it into a proposition
* j.e. the truth value can be determined

Giving restrictions on a free variable is called
blinding
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Scope

The part of a logical expression to which a
quantifier is applied is called the scope of
this quantifier

For example
Scope of Jy
I_H
vx (P(x) A (3y Q(y)) ) v R(z)
Scopt?of VX
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© Small Exercise ©

vx ((P(x) A (3z Q(x,2))) - (y R(x,y)) ) v Q(x,y)
~— H_/J

N— v B

= Scope of 3z:  Q(x,2)

= Scope of 3y:  R(x,y)

= Scope of VX: P(x) A3z Q(x,z) — Iy R(x,y)

= Free Variable: x, yin Q(x,y)

= Bound Variable: x, y, zin the first component
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© Small Exercise ©

V Not a free variable

= Any problem?

x is not a free variable in 3x P(x), therefore the Vx
binding is not used

VX @/\ @ 1st x is Bounded variable 2" x is Free variable

= |s x a free variable?

The variable x in Q(x) is outside of the scope of the Vx
quantifier, and is therefore free

(Vx F@ A (Ix @) Different variables

= Are x the same?
» This is legal, because there are 2 different x
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Recall....

3x (x2>1)
= Domain of x is real number\/
= Domain of x is between -1 and 1 §¢

VX (x221)
= Domain of x is integer $€
= Domain of x is positive integer‘/

Chapter 1.3 & 1.4
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Recall, the Equivalences

Two propositions P and Q are logically
equivalent if P <> Q is a tautology

P < Q means (P—>Q) A (Q—>P)
= (P—Q): Given P, Qis true

= (Q—>P): Given Q, P is true
Therefore,

if we want to show P = Q,
we can show P—-Q and Q—P

Chapter 1.3 & 1.4
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Quantifiers: Logical Implication & Equivalence

Universal Quantification
Vx (P(x) A Q(x)) = Vx P(x) A VX Q(x)

" VX (P(x) A Q(x)) = Vx P(x) A VX Q(x)/

Peter John Mary Jessica

Px):xislazy +
P ax):xlikesbeer v v

Peter John Mary Jessica

w P(x): x is lazy / \/ \/ /
P ax): xlkesbeer v v
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Quantifiers: Logical Implication & Equivalence

Universal Quantification
Y X (P ~=Qx))="vxPc)~NxQX)
= VX (P(x) Q) =>-x=P )= XQ(X)

Peter John Mary Jessica

W P(x):xislazy %€ ‘/ ‘/ \/
§ “‘ Q(x): x likes beer \/ X X X

a [\ x P(x) v VX Q(x) > Vx (P(x) v Q(x)) /

Peter John Mary Jessica

R 7 P(x):xislazy X X X X
i of Q(x): x likes beer / \/ \/ \/
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Quantifiers: Logical Implication & Equivalence

Existential Quantification
AX (P~ Qx))=TxP)A3IXQ(X)_
"|dx (P(x) A Q(x)) = Ix P(x) A 3x Q(x) /

Peter John

Mary Jessica

W OP(x):xislazy € \/ Ve ‘/
sl am:xikebeer ¢ v X %

Peter John

P(x): x is lazy \/ X X X
' Q(x) x like beer 3¢ \/ b X

Mary Jessica
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Quantifiers: Logical Implication & Equivalence

Existential Quantification
dx (P(x) v Q(x)) = Ax P(x) v dx Q(x)
= Ix (P(x) v Q(x)) = Ix P(x) v 3x Q(x) /

Peter John Mary Jessica

X X X X
X v x x

7 P(x): xis lazy
@ " Q(x): x like beer

Peter John Mary Jessica

x x v x
X X X X

P(x): x is lazy

Q(x): x like beer
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Quantifiers

Logical Implication & Equivalence
For Universal Quantifiers,
= Vx (P(x) A Q(x)) = VX P(x) A VX Q(x)
= VX P(x) v Vx Q(x) = Vx (P(x) v Q(x))

For Existential Quantifiers,

= 3x (P(x) A Q(x)) = Ix P(x) A 3x Q(x)
= 9x (P(x) v Q(x)) = Ix P(x) v 3x Q(x)
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Quantifiers: Logical Equivalence

VX (A AP(X))=A A VX P(x) *Afc%oes not Ct§)|nSiSt

VX (A v P(x))=A v Vx P(x) 5 A

IX (A A P(X)) = A A IxP(X) Zi(\(;:()pz()) A

ax (A v P(x)) = A v 3xP(x) =3x ("P(x)) VA
= 3x (P(x) v A)

Vx P(x) » A =3x (P(x) > A)| 0> |= 3x (P(x) > A)

A — VX P(x) = Vx (A — P(x)) |:> A — VxP(x)

Ix P(x) > A=Vx (P(x) > A) =7(A) \:AVXPP(X)
= Vx(™ Vv

A5 IxPx)=3x (A >PX) | vig A‘ _Z P(xg‘”
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Negating Quantifiers

Universal Quantification

De Morgan’s Laws for Quantifiers
VvV x P(x) = 2x 2 P(x)

There is a student is bad

Not all students are good

Ye:”*’%

P(x): x is a good student
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Negating Quantifiers

Existential Quantification
De Morgan’s Laws for Quantifiers
=3x P(x) = ¥x 7P(x)

There is not exist a good student

All students are bad

o ot
‘-*“?r*"t‘\

Ye:”*’%

P(x): x is a good student

Chapter 1.3 & 1.4 38

© Small Exercise ©

What are the negation of the following
statements?

= VX (X2>X)
VX(X2>X) =

= 3x (x2=2)
3x(x%=2) =
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© Small Exercise ©

Show that
AV x(P(x)—>Q(x)) = Ix(P(x)A7Q(x))

VX (P(X)—>Q(x))
= VX (P(X)vQ(x))
= Ix (7P(x)vQ(x))
= IX (P(X)A"Q(x))
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Translation Using Quantifiers

Translating from English to Logical
Expressions with quantifiers
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Translation Using Quantifiers

Universal Quantification

Using predicates and quantifiers, express the
statement

|Every||student lin this class|is lazy
\4 X

Universe of
Discourse

= Quantifier: Universal Quantifier

= Variable: x

= Universe of discourse: the students in the class
= Propositional Function: P(x) : x is lazy

» Answer: Vx P(x)

Predicate
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Translation Using Quantifier1 The universal quantifier

Universal Qua Ntl connects with a implication

Another way to express the statement:

|Eveﬂ|§tudent|in this classlis lazy |

\v4 X Predicate (Q) Predicate (P)
Quantifier: Universal Quantifier
Variable: x

Universe of discourse: Any person

Propositional Function: P(x): x is lazy
Q(x): x is a student in this class

Answer:

vx (Q(x) = P(x)) vV

For every person, if he/she is in this class, he/she is lazy

Vx (Q(x) A P(x)) &

For every person, he/she is in this class and lazy
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Translation Using Quantifiers

Existential Quantification

Using predicates and quantifiers, express the
statement

Some|||students in this class||are Iazi
= ) ¢

Universe of
Discourse

= Quantifier: Existential Quantifier

= Variable: x

= Universe of discourse: the students in the class
= Propositional Function: P(x) : x is lazy

= Answer: dx P(x)

Predicate
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Translation Using Quantifieﬁ The existential quantifier

Existential Qua connects with a conjunction

Another way to express the statement:

|Som4|students in this class"are Iazx]

3 X Predicate (Q) Predicate (P)
Quantifier: Existential Quantifier
Variable: x

Universe of discourse: Any person

Propositional Function: P(x): x is lazy
Q(x): x is a student in this class

Answer: . .
Include the case which contains
Idx (Q(X) - P(X)) x no person in this class
For some persons, if he/she is in this class, he/she is lazy
Ix (Q(X) A P(x)) v

For some persons, he/she is in this class and lazy
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© Small Exercise ©

Using predicates and quantifiers, set the
domain as

1. Staff in IBM company
2. Any persons

express the following statements:

= Every staff in IBM company has visited
Mexico

= Some staff in IBM company has visited
Canada or Mexico
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© Small Exercise ©

Every staff in IBM company has visited Mexico

Solution 2:
= Universal Quantifier

Solution 1:
= Universal Quantifier

= Variable: x = Variable: x

= U.D.: Staffs in IBM = U.D.: Any person
company = Let Q(x): x is a staff

= Let P(x): x has visited in IBM company
Mexico = Let P(x): x has visited

= Vx P(x) Mexico

Vx (Q(x) > P(x))
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© Small Exercise ©

Some staff in IBM company has visited
Canada or Mexico

Solution 1: Solution 2:
= Existential Quantifier = Existential Quantifier
= Variable: x = Variable: x
= U.D.: Staffs in IBM = U.D.: Any person
company » Let S(x): x is a staff in IBM
» Let P(x): x has visited company
Mexico = Let P(x): x has visited
» Let Q(x): x has visited Mexico
Canada = Let Q(x): x has visited
» Jx (P(x) v Q(x)) Canada
= Ix (S(x) A (P(x) v Q(x)))



© Small Exercise ©

Some students in this class has visited
Canada or Mexico

Better Solution: Solution 2:
= Existential Quantifier = Existential Quantifier
= Variable: x = Variable: x

U.D.: Any person
Let S(x): x is a student in

= U.D.: Any person
= Let S(x): xis a student in

this class this class
= Let P(x has visited = Let Pix): x has visited

= 3x (S(x) ~ (P(x, Canada) v
P(x, Mexico)))

] X): X has visited
Canada

= 3x (S(x) ~ (PX) v Q(X)))
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Quantifiers

with Restricted Domains
An abbreviated notation is often used to restrict
the domain of a quantifier
Example

= the square of any real number|which greater than 10 |is
greater than 100

= Using Domain

Vx (x>>100),

U.D.s: the set of real number which is bigger than10
= Using Predicate

vx (x>10 — x2>0), U.D.s: the set of real number

= Using Abbreviated Notation
vx(>10)(x>>100), U.D.s: the set of real number
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Quantifiers
with Restricted Domains
Example

= Given that the domain in each case consists of the
real number, what do the following statements mean?

Vx<0 (x2>0)

The square of negative real number is positive
Vy=0 (y320)

The cube of nonzero real number is nonzero
dz>0 (z2=2)

There is a positive square root of 2
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© Small Exercise ©

Using predicates and quantifiers, express the
following statements:

= Every mail message larger than one megabyte
will be compressed

= |f a user is active, at least one network link will
be available.
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© Small Exercise ©

Every mail message larger than one
megabyte will be compressed

Solution:

= Let S(m, y) be
"Mail message m is larger than y megabytes"
Domain of m:
Domain of y :

= Let C(m) denote
"Mail message m will be compressed”

" Vm (S(m, 1) - C(m))
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© Small Exercise ©

If a user is active, at least one network link
will be available.

Solution
" Let A(u) be
"User u is active"
Domain of u :
" Let S(n, x) be
"Network link n is in state x"
Domain of n:
Domain of x :

= Ju A(u) = In S(n, available)
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Nested Quantifiers

Two quantifiers are nested if one is within the
scope of the other

How to interpret it?

= If quantifiers are same type, the order is not a matter
3x Jy “x+y=0" } Same meaning
dy Ix “x+y=0"

= |f quantifiers are different types, read from left to right
Vx dy “x+y=0"

} Different meaning
Jy Vx “x+y=0"
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Nested Quantifiers

Different Type

If quantifiers are different types, read from left to
right

Example 1:

* P(x, y) = “x loves y”
vx 3y P(x, y) VS

vx Jy “x loves y”
= For all x, there is at least one y, to make P(x,y) happens
= For all persons, there is a person they love
= ALL people loves some people

dy Vx P(x, y)

Jdy Vx “x loves y”
= At least one Yy, all x, to make P(x,y) happens
= There is a person who is loved by all persons
= Some people are loved by ALL people
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Nested Quantifiers

Different Type

Example 2:
= P(x, y) = “x+y=0”
vx3Ay P(x,y) VS 3y VxP(x,y)

Vx 3y (x+y=0) \/
= For all x, there is at least one y, to make P(x,y)
happens

= Every real number has an additive inverse

Jy Vx (x+y=0) ¢
= At least one y, all x, to make P(x,y) happens

= There is a real number which all real number are its
inverse addition
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Nested Quantifiers

Same Type

If quantifiers are the same type, the order is not a
matter

Example:

= Given
Parent(x,y) : “x is a parent of y”
Child(x,y) : “x is a child of y”

= Vx Vy (Parent(x,y) — Child(y,x))
» Yy Vx (Parent(x,y) —» Child(y,x))

= Two equivalent ways to represent the statement:
For all x and y, if x is a parent of y, y is a child of x
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Nested Quantifiers: Example 1

Let domain be the real numbers,
P(x,y): “xy = 0”

Which one(s) is correct?

= VX VyP(x,y) & = 3x 3y P(x, y) ‘/

.vxayP(X’y)/ .HxvyP(Xiy)/
eg.y=0 e.g.x=0
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Nested Quantifiers: Example 2

Translate the statement

VX (C(x) A 3y (C(y) A F(x)))
into English, where v
= C(x) is “x has a computer”,
* F(x,y) is “x and y are friends” and

= the universe of discourse for both x and y is the set of
all students in your school

Every student in your school has a computer
and has a friend who has a computer.
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Nested Quantifiers: Example 3
Tﬁnslate the statement

a person is female is a parenhis

rson is someone’s mother”
as a logical expression

Let
» F(x): x is female
= P(x): x is a parent
= M(x,y): x is y’'s mother
The domain is the set of all people
vx ( (F(x) A P(x)) = 3y M(x, y) ), or
Vx 3y ((F(x) A P(x)) - M(x, y) )

At leastone y

(F(x) A P() = M(x, )
"R T

All x
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© Small Exercise ©

Translating the following statement into logic
expression:

“The sum of the two positive integers is always
positive”

" Vx Vy (x+y > 0)
The domain for two variables consists of all positive
integers

= Vx Vy ((x>0) A (y>0) — (x+y > 0))
The domain for two variables consists of all integers
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© Small Exercise ©

Q(x, y, z) be the statement "x + y = z"
The domain of all variables consists of all real

What are the meaning of the following
statements?

= Vx Vy 3z Q(x,y,z) /

For all real numbers x and for all real numbers y
there is a real number z such that x +y =z

= 3z Vx Vy Q(x,y,z) x

There is a real number z such that for all real
numbers x and for all real numbers vy it is true that
X+y=2z
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© Small Exercise ©

Translate the statement

dx Vy Vz

( (F(x,y) A F(x,2) A (y#2)) - —F(y,z) )
into English,Vv(here

= F(a,b) means a and b are friends and

= the universe of discourse for x, y and z is the
set of all students in your school

There is a student none of whose friends are
also friends each other
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Nested Quantifiers

Exactly One

It also called uniqueness quantification of P(x) is
the proposition “There exists a unique x such that
the predicate is true”

In the book, the notation is: 3! xP(x) , 3, xP(x)

But we will try to express the concept of “exactly
one” using the Universal and Existential quantifiers

In next few slides, we assume
L(X, y) be the statement “x loves y”

Four cases will be discussed
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Nested Quantifiers L(x,y): "xloves y”’

Exactly One: Case 1

It means...

= Mary loves one person8 @L(Mary, X)

= |f any people who is no Maryﬁwust not love
him/her vz ((z#X) — L(Mary, 2) )

dx (L(Mary, x) AVz ((z # x) > = L(Mary, z)))
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Nested Quantifiers

L(x,y): "xlovesy’

Exactly One: Case 1 (v2)

It means...

L(Mary, x)
= Mary loves one person (X) «—
= [f Mary must love any person, he/she mus e®

vz (L(Mary, z) — (z =®)

3x (L(Mary, x) AVz ( L(Mary, z) - (z=x) ) )
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Nested Quantifiers L(x,y): "xlovesy”

Exactly One: Case 1

Version 1 P - " q
Ix (L(Mary, x) A Vz ([z # x) > “L(Mary, z))
Version 2 q —> p
Ix ( L(Mary, x) A Vz (|L(Mary, z) - (z=Xx))

N

N

As p — g and its Contrapositive are
equivalent, Version 1 and 2 are the same
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Nested Quantifiers

L(x,y): "xlovesy’

Exactly One: Case 2

It means...
= One person ® loves Mary
= |f anyone loves Mary, he/she must be®

vz ( L(z, Mary) - (z=x))

dx L(x, Mary)

Ix (L(x, Mary) AVz ( L(z, Mary) > (z=x)) )
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L(x,y): "xlovesy’

Nested Quantifiers

Exactly One: Case 3

It means...
= Everyone @ loves a person ® Vy 3x L(y, x)
= H@Ioves someone, it must be®
vz (L(y,2) > (z=X))

vy Ix (L(y, x) AVz (L(y,2) > (z=X)) )
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Nested Quantifiers

L(x,y): "xlovesy’

Exactly One: Case 4

It means...
= A person (X) loves&veryone(y) 3Ix Vy L(x,y)
= [f anyone-leves(@yitmustbelx)

= If anyone loves@ll peopld, it must be(X)

Vz (VwL(z,w) > (z=Xx))
%_J

Ix Vy (L(x,y) AVZ (VWL(z,w) > (z=x)))
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Nested Quantifiers

Exactly One: Case 4
Exactly one person loves all people

ax vy ( L(y, x) A Vz (VW L(z, w) > (z =X) ))

Is the following answer also correct?
3x vy (L(y, X) A Vz (|L(z, y)|— (z=X)))
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Nested Quantifiers

Exactly One: Case 4

Ix Vy (L(y, Xx) AVz (L(z,y) > (z=X)))

VX (P(x) A Q(x)) = VX P(x) A ¥X Q(X)

< X (VY L(Y, X) A VY VZ (L(z,y) = (z=X)))
< Ix (Vy L(y, x) AVZ Vy (L(z, y) > (z=X)))
< I (VY Ly, X) A VZ YW (L(z, W) > (2 =X) ))

ax Vy (L(y, X) A Vz (VYW L(z, w) > (z=X)))

VX (A AP(Xx))=A A VX P(x)

< X (Vy L(y, X) A VZ (VYW L(z, w) > (z=X)))
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Nested Quantifiers

Exactly One: Case 4
ax (Vy L(y, x) AVzVw (L(z, w) —> (z=x)))
Ix (Vy L(y, X) A VZ (VW L(z, w) = (z=X)))

P(x): x works hard
A: China is great

Are they the same? No!
= Vx (P(x) > A)
For all people, if he/she works hard, China is great
Any people works hard will make China great
= Vx (P(x)) > A
if all people work hard, China is great

= Therefore, Vx (P(x) > A)=3Ix P(x) > A
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Nested Quantifiers

Exactly One: Case 4

ax (Vy L(y, x) AVzVw (L(z, w) —> (z=x)))
ax (Vy L(y, x) A Vz (VW L(z, w) —> (z=X)))

Are they the same? No!
" Vz(Vw (L(z,w) > (z=X)))

For any people (z) and any people (w), A .

A
if z is loved by w, z is x B§B B is oy person
- VZ ( VW (L(Z, W)) _) (z - x) ) C C loved by all people
For anyone (z),
if z is loved by all people (all w), z is x
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Nested Quantifiers L(x, y): "x loves y”

Exactly One: Case 1 VS Case 3
Case 1:|Mary|loves exactly one person

Ix (L(Mary, x) AVz (L(Mary, z) > (z=x)) )

Case 3:|All people [love exactly one person

vy 3x (L(y, x) AVz (L(y,2) > (z=x)) )
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Nested Quantifiers

L(x,y): "xlovesy’

Exactly One: Case 2 VS Case 4
Case 2: Exactly one person loves|Mary

Ix (L(x,/Mary) AVvz ( L(z,/Mary) > (z=x)))

Case 4: Exactly one person loves|all people

Ix|Vy|( L(X,ly) AVz (VWIL(z,W) > (z=x)))
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L(x,y): "xlovesy”

© Small Exercise ©

There is exactly one person whom everybody
loves

It means...

= A person is loved by everyone

= |f anyone is loved by everyone, it must be x
Vz(VwL(w,z) > (z=x))

Ix Vy L(y, x)

Ix Vy (L(y, Xx) AVz (VW L(w, 2) > (z=X)))
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L(x,y): "xlovesy”

© Small Exercise ©

Exactly two people love Mary

It means... 3x3y ( L(x, Mary) AL(y, Mary) A (x#y) )
= At least two persons love Mary
= At most two persons love Mary
If anyone loves Mary, he/she must be x ory
vz (L(z, Mary) > ((z=x) v (z=y)))

dx 3y ( L(x, Mary) AL(y, Mary) A (x#y) A
vz (L(z, Mary) > ((z=x) v (z=Yy))) )
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Nested Quantifiers

Recall,

= When all of the elements in the universe of
discourse can be listed one by one (discrete)
(€.9- X4, X5,...,X,),

Vx P(x) = P(x,) A P(x5) A ... AP(X,)
Ax P(x) = P(x,) v P(x,) v ... v P(x,)
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Vx P(x) = P(x,) A P(X,) A ... AP(X,,)
Ax P(x) = P(x{) v P(x,) v ... v P(x,)

Nested Quan

Example
» Find an expression equivalent to
Vx 3y P(x, y)

where the universe of discourse consists of the
positive integer not exceeding 37?

vX3yP(x, y) = @R (3yP(x, y))

=GyP(1, v) AGYP(2, y) AEYP3, v)

2
= [P(1,1) v P(1,2) v P(1,3)] A
[P(2,1) v P(2,2) v P(2,3)] A
[P(3,1) v P(3,2) v P(3,3)]
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Negating Nested Quantifiers

Recall, De Morgan’s Laws for Quantifiers
= = VX P(x) =
= =3x P(x) =

They also can be applied in Nested
Quantifiers

Chapter 1.3 & 1.4 82

Negating Nested Quantifiers

Example:
= What is the negation of vx 3y (xy = 1)?

= VX 3y (xy = 1) =-vx 3y (xy = 1)
o ke Sy seaen Y =3 (A3y (xy = 1))
= 3x (Vy (xy = 1))

=3Ix (Vy (xy # 1))

Some x, for all y,

cannot make “xy = 1” success = E|X\Vly (Xy # 1)
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Can you understand it now?

DOES EVERYONE | T ]
| WANT BEER?

8

8
.

L
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