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Limitation of Propositional Logic

 Limitation 1:

 John is a SCUT student

 Peter is a SCUT student

 Mary is a SCUT student

 Try to represent them using propositional 
variable

 However, these propositions are very similar

 A more powerful type of logic 
named Predicate Logic will be introduced

p :

q :

r :

is a SCUT student

is a SCUT student

is a SCUT student
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Predicates

 Predicate logic is an extension of propositional 
logic that permits concisely reasoning about whole 
classes of entities

 Propositional Logic
treats simple 
propositions as atomic 
entities

 Predicate Logic
distinguishes the subject
of a sentence from its 
predicate

John Peter Mary
????
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 Predicate is a function of proposition

 Example:

 The truth value of proposition function can only be 
determined when the values of variables are 
known

Propositional Function / 
Predicate

x is greater than 3

Variable

xP(x) :

Convention:
• lowercase variables denote objects
• UPPERCASE variables denote predicates

Predicates

Predicate

Refer to
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 Example:

 P(x) : “x > 3” 

 What is P(4)?

 What is P(2)?

 P(x) : “x is a singer”

 P(Michael Jackson)?

 P(Bruce Lee)?


Predicates



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 Propositional function can have more than 
one variables

 Example:

 P(x, y): x + y = 7

 P(2, 5)

 Q(x, y, z): x = y + z

 Q(5, 2, 8) 



Predicates
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 General case

 A statement involving the n variables x1, x2, …, 
xn can be denoted by 

P(x1, x2, …, xn)

 A statement of the form P(x1, x2, …, xn) is the 
value of the propositional function P at the 
n-tuple (x1, x2, …, xn)

 P is also called a n-place predicate or 
a n-ary predicate

Predicates
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Limitation of Propositional Logic

 Limitation 2:

 Given

P: “Every student in SCUT 
is clever”

Q: “Peter is SCUT student”

 What can we conclude?

“Peter is clever”

 Given

P: “Peter cannot pass this 
Discrete Maths subject”

Q: “Peter is a SCUT student”

 What can we conclude?

“At least one student in 
SCUT cannot pass this 
Discrete Maths subject”

 No rules of propositional logic can 
conclude the truth of this statement
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Limitation of Propositional Logic

 Propositional Logic does not adequately 
express the following meanings

 Every, all, some, partial, at least one, one, etc

 A more powerful tool, Quantifiers, will be 
introduced
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Our class

Quantifiers

 Quantification expresses the extent to which a 
predicate is true over a range of elements

 For example

 Using Quantifier
 P(x) : x has iPhone
 For all x, P(x) is true 
 Domain consists of 

all student in this class

 Using Propositional Logic
 p: Peter has iPhone
 q: Paul has iPhone
 r: Mary has iPhone

 Using Predicate
 P(x) : x has iPhone
 P(Peter)
 P(Paul)
 P(Mary)

MaryPeter Paul

iPhone

Assume our class only contains three students
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Quantifiers

 Four aspects should be mentioned in Quantification
1. Quantifier

(e.g. all, some…)

2. Variable

3. Predicate

4. Domain

 The area of logic that deals with predicates and 
quantifiers is called the Predicate Calculus

P(x) : x has iPhone

For all x, P(x) is true 

Domain consists of all student in this class

Our class

Peter Paul Mary
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 Universes of Discourse (U.D.s)

 Also called the domain of discourse

 Refers to the collection of objects being 
discussed in a specific discourse

 Example:

 P(x) : “x breaths oxygen“

 Domain consists of humans
P(x) is true for all x?

 Domain consists of creatures
P(x) is true for all x?

Creatures 

Human

Alien

I do not need O2

Quantifiers



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 Three types of quantification will be focused:

 Universal Quantification

 i.e. all, none

 Existential Quantification

 i.e. some, few, many

 Unique Quantification

 i.e. exactly one

 Can be expressed by using Universal 
Quantification and Existential Quantification

Quantifiers
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Quantifiers

Universal Quantifiers (ALL)
 Definition

Universal quantification of P(x) is the statement 
“P(x) is true for all values of x in the domain”

 Notation: x P(x)
 LL, reversed “A”
 Read as 

 "for all x P(x)" 
 "for every x P(x)" 

 Truth value 
 True when P(x) is true for all x
 False otherwise

 An element for which P(x) is false is called a 
counterexample
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Our class

Quantifiers

Universal Quantifiers 
 When all of the elements in the universe of discourse can be 

listed one by one (discrete) (e.g. x1,x2,…,xn), 

x P(x)  P(x1) P(x2) ... P(xn)

 For example
 Our class has three students: John, Peter and Mary

 Every student in our class has attended the class

John Peter Mary

and and
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Quantifiers

Existential Quantifiers (SOME)
 Definition

Existential quantification of P(x) is the proposition 
“There exists an element x in the domain 
such that P(x) is true”

 Notation: x P(x)
 XIST, reversed “E”
 Read as

 “There is an x such that P(x)”
 “There is at least one x such that P(x)”
 "For some x P(x)" 

 Truth value 
 False when P(x) is false for all x
 True otherwise



Chapter 1.3 & 1.4 19

Our class

Quantifiers

Existential Quantifiers
 When all of the elements in the universe of discourse can be 

listed one by one (discrete) (e.g. x1,x2,…,xn), 

x P(x)  P(x1) P(x2) ... P(xn)

 For example
 Our class has three students: John, Peter and Mary

 Any student in our class has attended the class

John Peter Mary

or or
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Quantifiers

 Examples:

 P(x): x+1>x, U.D.s: the set of real number

 x P(x) ?

 x P(x) ?

 Q(x): x<2, U.D.s: the set of real number

 x Q(x) ?

 x Q(x) ?

 S(x): 2x<x, U.D.s: the set of real positive number

 x S(x) ?

 x S(x) ?

Q(y) is false when y ≥ 3 

Q(y) is true when y < 2 

P(x) is always true

S(x) is always false

True

False

True

True

False

False

(counterexamples)
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 Examples:

 P(x): x2<10, 
U.D.s. the positive integer not exceeding 4

 x P(x) ?

 x P(x) ?

P(1) P(2) P(3) P(4)

Universal Quantifiers

  
counterexample

x P(x)  P(1) P(2) P(3) P(4)

x P(x)  P(1) P(2) P(3) P(4)  F

 T
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Quantifiers

 How can we prove the followings: 

 Universal quantification is true

 Universal quantification is false

 Existential quantification is true

 Existential quantification is false
John Peter Mary

Attend the class?

Finding one is ok
(counterexample)

Need to consider ALL

Statement When true? When false?

x P(x)
P(x) is true for every x There is an x 

for which P(x) is false.

x P(x)
There is an x 
for which P(x) is true.

P(x) is false for every x.
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Precedence of Quantifiers

 Recall,

 Example
 x P(x)  Q(x)

Precedence Operator

1 ¬ NOT

2  AND

3   OR   XOR

4  Imply

5 ↔ Equivalent

  and  have higher 
precedence than all 
logical operators 
from proposition 
calculus

x (P(x)Q(x))(xP(x))  Q(x) 
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 Small Exercise 

 How to interpret the following expression:

 x (P(x)  z Q(x,z)  y R(x,y))  Q(x,y)

 x ( P(x)  (z Q(x,z))  (y R(x,y)) )  Q(x,y)

 x ( (P(x)  (z Q(x,z)))  (y R(x,y)) )  Q(x,y)



Chapter 1.3 & 1.4 25

Bound and Free Variable

 Free Variable: No any restriction

 Bound Variable: Some restrictions
(quantifier or condition)

 Example:
 P(x) : “x > 3”
 P(x) : “x > 3” and x = 4
 x P(x, y)

 All the variables that occur in a quantifier must be 
bounded to turn it into a proposition
 i.e. the truth value can be determined

 Giving restrictions on a free variable is called 
blinding

Free Variable

Bound Variable

x:Bound Variable y:Free Variable

Not Proposition

Not Proposition

Proposition
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Scope

 The part of a logical expression to which a 
quantifier is applied is called the scope of 
this quantifier

 For example

x (P(x)  (y Q(y)) )  R(z)

Scope of y

Scope of x
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 Small Exercise 

 x ( (P(x)  (z Q(x,z)))  (y R(x,y)) )  Q(x,y)

 Scope of z:

 Scope of y:

 Scope of x:

 Free Variable:

 Bound Variable:

P(x)  z Q(x,z)  y R(x,y)

Q(x,z)

R(x,y)

x, y in Q(x,y)

x, y, z in the first component
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 Small Exercise 

 x x P(x)

 Any problem?

x is not a free variable in x P(x), therefore the x
binding is not used

 x P(x)  Q(x)

 Is x a free variable?

The variable x in Q(x) is outside of the scope of the x 
quantifier, and is therefore free

 (x P(x))  (x Q(x))

 Are x the same?

 This is legal, because there are 2 different x

2nd x is Free variable

Not a free variable

Different variables

1st x is Bounded variable
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Recall….

 x (x2>1)

 Domain of x is real number

 Domain of x is between -1 and 1

 x (x2≥1)

 Domain of x is integer

 Domain of x is positive integer
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Recall, the Equivalences

 Two propositions P and Q are logically 
equivalent if P  Q is a tautology

 P  Q means (PQ)  (QP)

 (PQ) : Given P, Q is true

 (QP) : Given Q, P is true

 Therefore, 
if we want to show P  Q, 
we can show PQ and QP
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Peter John Mary Jessica

P(x): x is lazy

Q(x): x likes beer

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x)) 

Quantifiers: Logical Implication & Equivalence

Universal Quantification

Peter John Mary Jessica













P(x): x is lazy

Q(x): x likes beer
















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 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x)) 

Peter John Mary Jessica

P(x): x is lazy

Q(x): x likes beer

Peter John Mary Jessica

P(x): x is lazy

Q(x): x likes beer

Quantifiers: Logical Implication & Equivalence

Universal Quantification


 









 









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 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x))

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Quantifiers: Logical Implication & Equivalence

Existential Quantification 


























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 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x))

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Quantifiers: Logical Implication & Equivalence

Existential Quantification




























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Quantifiers

Logical Implication & Equivalence

 For Universal Quantifiers,

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x))

 For Existential Quantifiers,

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)
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Quantifiers: Logical Equivalence

 x (A  P(x))  A  x P(x)

 x (A  P(x))  A  x P(x)

 x (A  P(x))  A  xP(x)

 x (A  P(x))  A  xP(x)

 x P(x)  A 

 A  x P(x) 

 x P(x)  A  x (P(x)  A)

 A  x P(x)  x (A  P(x))

* A does not consist 
of free variable x

xP(x)  A
 ¬(xP(x))  A
 x (¬P(x))  A
 x (¬P(x)  A)
 x (P(x)  A)

A  xP(x)
 ¬(A)  xP(x)
 x(¬(A)  P(x))
 x(A  P(x))

x (P(x)  A)

x (A  P(x))
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???
??

Negating Quantifiers 

Universal Quantification

 De Morgan’s Laws for Quantifiers

P(x): x is a good student

Yes No

Not all students are good There is a student is bad

x ¬P(x)¬x P(x)  ?
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???
??

Negating Quantifiers 

Existential Quantification 

 De Morgan’s Laws for Quantifiers

P(x): x is a good student

Yes No

There is not exist a good student All students are bad

?¬x P(x)  x ¬P(x)



Chapter 1.3 & 1.4 39

 Small Exercise 

 What are the negation of the following 
statements?

x (x2>x)

¬x(x2>x)  x ¬(x2>x)  x (x2x) 

x (x2=2)

¬x(x2=2)  x ¬(x2=2)  x (x22) 
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 Small Exercise 

 Show that 

¬x(P(x)Q(x))  x(P(x)¬Q(x)) 

¬x (P(x)Q(x))

 ¬x (¬P(x)Q(x))

 x (P(x)¬Q(x))

 x ¬(¬P(x)Q(x))
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Translation Using Quantifiers 

 Translating from English to Logical 
Expressions with quantifiers 
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Translation Using Quantifiers

Universal Quantification 
 Using predicates and quantifiers, express the 

statement 

 Quantifier:

 Variable: 

 Universe of discourse:

 Propositional Function:

 Answer: x P(x)

Every student in this class is lazy

x Universe of 
Discourse

 Predicate

x

the students in the class

P(x) : x is lazy

Universal Quantifier
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Translation Using Quantifiers

Universal Quantification
 Another way to express the statement:

 Quantifier:
 Variable:
 Universe of discourse: 
 Propositional Function:

 Answer:

Every student in this class is lazy

x Predicate (P)Predicate (Q)




The universal quantifier 
connects with a implication

Q(x): x is a student in this class
P(x): x is lazy

Any person
x
Universal Quantifier

For every person, if he/she is in this class, he/she is lazy

For every person, he/she is in this class and lazy

x (Q(x)  P(x))

x (Q(x)  P(x))
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Translation Using Quantifiers

Existential Quantification 
 Using predicates and quantifiers, express the 

statement 

 Quantifier:

 Variable: 

 Universe of discourse:

 Propositional Function:

 Answer: x P(x)

Some students in this class are lazy

x Universe of 
Discourse

 Predicate

x

the students in the class

P(x) : x is lazy

Existential Quantifier
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Translation Using Quantifiers

Existential Quantification
 Another way to express the statement:

 Quantifier:
 Variable:
 Universe of discourse: 
 Propositional Function:

 Answer:

Some students in this class are lazy

x Predicate (P)Predicate (Q)

The existential quantifier 
connects with a conjunction

Q(x): x is a student in this class
P(x): x is lazy

Any person
x
Existential Quantifier




For some persons, if he/she is in this class, he/she is lazy

For some persons, he/she is in this class and lazy

x (Q(x)  P(x))

x (Q(x)  P(x))

Include the case which contains 
no person in this class
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 Small Exercise 

 Using predicates and quantifiers, set the 
domain as

1. Staff in IBM company

2. Any persons

express the following statements:

 Every staff in IBM company has visited 
Mexico

 Some staff in IBM company has visited 
Canada or Mexico
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 Small Exercise 

 Every staff in IBM company has visited Mexico

 Solution 1:

 Universal Quantifier

 Variable: x

 U.D.: Staffs in IBM 
company

 Let P(x): x has visited 
Mexico

 x P(x)

 Solution 2:

 Universal Quantifier 

 Variable: x

 U.D.: Any person

 Let Q(x): x is a staff 
in IBM company

 Let P(x): x has visited 
Mexico

 x (Q(x)  P(x))
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 Small Exercise 

 Some staff in IBM company has visited 
Canada or Mexico

 Solution 1:

 Existential Quantifier

 Variable: x

 U.D.: Staffs in IBM 
company

 Let P(x): x has visited 
Mexico

 Let Q(x): x has visited 
Canada

 x (P(x)  Q(x))

 Solution 2:

 Existential Quantifier

 Variable: x

 U.D.: Any person

 Let S(x): x is a staff in IBM 
company

 Let P(x): x has visited 
Mexico

 Let Q(x): x has visited 
Canada

 x (S(x)  (P(x)  Q(x)))
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 Small Exercise 

 Some students in this class has visited 
Canada or Mexico

 Solution 2:

 Existential Quantifier

 Variable: x

 U.D.: Any person

 Let S(x): x is a student in 
this class

 Let P(x): x has visited 
Mexico

 Let Q(x): x has visited 
Canada

 x (S(x)  (P(x)  Q(x)))

 Better Solution:

 Existential Quantifier 

 Variable: x

 U.D.: Any person

 Let S(x): x is a student in 
this class

 Let P(x, loc): x has visited 
loc

 x (S(x)  (P(x, Canada) 
P(x, Mexico)))
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Quantifiers 
with Restricted Domains
 An abbreviated notation is often used to restrict 

the domain of a quantifier

 Example
 the square of any real number which greater than 10 is 

greater than 100

 Using Domain
x (x2 100), 
U.D.s: the set of real number which is bigger than 10

 Using Predicate
x (x>10  x20), U.D.s: the set of real number

 Using Abbreviated Notation
x >10 (x2100), U.D.s: the set of real number
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Quantifiers 
with Restricted Domains
 Example

 Given that the domain in each case consists of the 
real number, what do the following statements mean?

x0 (x20)  x (x0x20)

The square of negative real number is positive

y0 (y30)  y (y0  y30)

The cube of nonzero real number is nonzero

 z0 (z2=2)  z (z  0  z2=2)

There is a positive square root of 2

Chapter 1.3 & 1.4 52

 Small Exercise 

 Using predicates and quantifiers, express the 
following statements: 

 Every mail message larger than one megabyte 
will be compressed

 If a user is active, at least one network link will 
be available.
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 Small Exercise 

 Every mail message larger than one 
megabyte will be compressed

 Solution: 

 Let S(m, y) be 
"Mail message m is larger than y megabytes" 
 Domain of m : all mail messages

 Domain of y : positive real number

 Let C(m) denote 
"Mail message m will be compressed" 

 m (S(m, 1)  C(m))
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 Small Exercise 

 If a user is active, at least one network link 
will be available.

 Solution
 Let A(u) be 

"User u is active" 
 Domain of u : all users

 Let S(n, x) be 
"Network link n is in state x" 
 Domain of n : all network links

 Domain of x : all possible states for a network link

 u A(u)  n S(n, available)
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Nested Quantifiers

 Two quantifiers are nested if one is within the 
scope of the other

 How to interpret it?
 If quantifiers are same type, the order is not a matter

 x y “x+y=0” 

 y x “x+y=0”

 If quantifiers are different types, read from left to right

 x y “x+y=0”

 y x “x+y=0”

Same meaning

Different meaning
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Nested Quantifiers

Different Type
 If quantifiers are different types, read from left to 

right

 Example 1: 
 P(x, y) = “x loves y”
x y P(x, y) VS y x P(x, y)

 x y “x loves y”
 For all x, there is at least one y, to make P(x,y) happens

 For all persons, there is a person they love

 ALL people loves some people

 y x “x loves y”
 At least one y, all x, to make P(x,y) happens

 There is a person who is loved by all persons

 Some people are loved by ALL people
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Nested Quantifiers

Different Type

 Example 2:

 P(x, y) = “x+y=0” 
x y P(x, y) VS y x P(x, y)

x y (x+y=0) 

 For all x, there is at least one y, to make P(x,y) 
happens

 Every real number has an additive inverse

 y x (x+y=0) 

 At least one y, all x, to make P(x,y) happens

 There is a real number which all real number are its 
inverse addition




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Nested Quantifiers

Same Type

 If quantifiers are the same type, the order is not a 
matter

 Example:

 Given

 Parent(x,y) : “x is a parent of y”

 Child(x,y) : “x is a child of y”

 x y (Parent(x,y)  Child(y,x))

 y x (Parent(x,y)  Child(y,x))

 Two equivalent ways to represent the statement:

 For all x and y, if x is a parent of y, y is a child of x
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 x y P(x, y)

 x y P(x, y)

 x y P(x, y)

 x y P(x, y) 

Nested Quantifiers: Example 1

 Let domain be the real numbers,

 P(x,y): “xy = 0”

 Which one(s) is correct?








e.g. y = 0 e.g. x = 0
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Nested Quantifiers: Example 2

 Translate the statement 

x (C(x)  y (C(y)  F(x,y)))

into English, where
 C(x) is “x has a computer”,

 F(x,y) is “x and y are friends” and 

 the universe of discourse for both x and y is the set of 
all students in your school

Every student in your school has a computer 
and has a friend who has a computer.
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Nested Quantifiers: Example 3

 Translate the statement 
“If a person is female and is a parent, then this 
person is someone’s mother”
as a logical expression

 Let 
 F(x): x is female
 P(x): x is a parent
 M(x,y): x is y’s mother

 The domain is the set of all people

x ( (F(x)  P(x))  y M(x, y) ), or

x y ( (F(x)  P(x))  M(x, y) )

(F(x)  P(x))  M(x, y)

At least one y

All x
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 Small Exercise 

 Translating the following statement into logic 
expression:

“The sum of the two positive integers is always 
positive”

 x y (x+y > 0)
The domain for two variables consists of all positive 
integers

 x y ((x>0)  (y>0)  (x+y > 0))
The domain for two variables consists of all integers
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 Small Exercise 

 Q(x, y, z) be the statement "x + y = z" 

 The domain of all variables consists of all real

 What are the meaning of the following 
statements? 
 x y z Q(x,y,z)

 For all real numbers x and for all real numbers y
there is a real number z such that x + y = z

 z x y Q(x,y,z)
 There is a real number z such that for all real 

numbers x and for all real numbers y it is true that 
x + y = z
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 Small Exercise 

 Translate the statement 

x y z 
( (F(x,y)  F(x,z)  (y≠z))  F(y,z) )

into English, where 

 F(a,b) means a and b are friends and 

 the universe of discourse for x, y and z is the 
set of all students in your school

There is a student none of whose friends are 
also friends each other
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Nested Quantifiers

Exactly One

 It also called uniqueness quantification of P(x) is 
the proposition “There exists a unique x such that 
the predicate is true”

 In the book, the notation is: ! xP(x) , 1 xP(x)

 But we will try to express the concept of “exactly 
one” using the Universal and Existential quantifiers

 In next few slides, we assume 
L(x, y) be the statement “x loves y”

 Four cases will be discussed
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Nested Quantifiers

Exactly One: Case 1

 Mary loves exactly one person

 It means…

 Mary loves one person (x)

 If any people who is not x, Mary must not love 
him/her

L(x, y) :  "x loves y”

x L(Mary, x)

z ( )

x L(Mary, x) z ((z ≠ x)  ¬ L(Mary, z))( )

¬L(Mary, z)(z ≠ x)
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Nested Quantifiers

Exactly One: Case 1 (v2)

 Mary loves exactly one person

 It means…

 Mary loves one person (x)

 If Mary must love any person, he/she must be x

x L(Mary, x)

z ( )

x L(Mary, x) z ( L(Mary, z)  (z = x) )( )

L(Mary, z)  (z = x)

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 1

 Mary loves exactly one person

 Version 1

 Version 2

 As p  q and its Contrapositive are
equivalent, Version 1 and 2 are the same

x L(Mary, x) z ((z ≠ x)  ¬L(Mary, z))( )

x L(Mary, x) z ( L(Mary, z)  (z = x) )( )

¬p ¬ q

pq





L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 2

 Exactly one person loves Mary

 It means…

 One person (x) loves Mary

 If anyone loves Mary, he/she must be x

x L(x, Mary)

z ( )

x L(x, Mary) z ( L(z, Mary)  (z = x) )( )

L(z, Mary)  (z = x)

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 3

 All people love exactly one person

 It means…

 Everyone (y) loves a person (x)

 If y loves someone, it must be x

y x L(y, x)

z ( )L(y, z)  (z = x)

y x L(y, x) z ( L(y, z)  (z = x) )( )

L(x, y) :  "x loves y”
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z ( )

Nested Quantifiers

Exactly One: Case 4

 Exactly one person loves all people

 It means…

 A person (x) loves everyone (y)

 If anyone loves y, it must be x

 If anyone loves all people, it must be x

x y L(x, y)

L(z, w)  (z = x)w

x y L(x, y) z (w L(z, w)  (z = x) )( )

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 4

 Exactly one person loves all people

 Is the following answer also correct?
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x y ( L(y, x)  z (w L(z, w)  (z = x) ))

x y ( L(y, x)  z ( L(z, y)  (z = x) ))
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Nested Quantifiers

Exactly One: Case 4
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x y ( L(y, x)  z (w L(z, w)  (z = x) ))

x y ( L(y, x)  z ( L(z, y)  (z = x) ))

 x (y L(y, x)  y z ( L(z, y)  (z = x) ))

 x (y L(y, x)  z y ( L(z, y)  (z = x) ))

 x (y L(y, x)  z w ( L(z, w)  (z = x) ))

 x ( y L(y, x)  z (w L(z, w)  (z = x) ))

x (A  P(x))  A  x P(x)

x (P(x)  Q(x))  x P(x)  x Q(x)
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Nested Quantifiers

Exactly One: Case 4

 Are they the same?

 x (P(x)  A)

 For all people, if he/she works hard, China is great

 Any people works hard will make China great

 x (P(x))  A

 if all people work hard, China is great

 Therefore, x (P(x)  A)  x P(x)  A
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x ( y L(y, x)  z w ( L(z, w)  (z = x) ))
x ( y L(y, x)  z (w L(z, w)  (z = x) ))

P(x): x works hard

A: China is great
No!
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Nested Quantifiers

Exactly One: Case 4

 Are they the same?

 z ( w (L(z, w)  (z = x) ) )
 For any people (z) and any people (w), 

if z is loved by w, z is x

 z ( w (L(z, w))  (z = x) )
 For anyone (z), 

if z is loved by all people (all w), z is x
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No!

A

C

B

A

C

B
x is B
B is only person 
loved by all people

x ( y L(y, x)  z w ( L(z, w)  (z = x) ))
x ( y L(y, x)  z (w L(z, w)  (z = x) ))
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Nested Quantifiers

Exactly One: Case 1 VS Case 3

 Case 1: Mary loves exactly one person

 Case 3: All people love exactly one person

x L(Mary, x) z ( L(Mary, z)  (z = x) )( )

y x L(y, x) z ( L(y, z)  (z = x) )( )

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 2 VS Case 4

 Case 2: Exactly one person loves Mary

 Case 4: Exactly one person loves all people

x L(x, Mary) z ( L(z, Mary)  (z = x) )( )

x y L(x, y) z (w L(z, w)  (z = x) )( )

L(x, y) :  "x loves y”
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 Small Exercise 

 There is exactly one person whom everybody 
loves

 It means…

 A person is loved by everyone

 If anyone is loved by everyone, it must be x

L(x, y) :  "x loves y”

z ( )

x y L(y, x)

L(w, z)  (z = x)w

x y L(y, x) z (w L(w, z)  (z = x) )( )
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z ( )

 Small Exercise 

 Exactly two people love Mary

 It means…

 At least two persons love Mary

 At most two persons love Mary

 If anyone loves Mary, he/she must be x or y

x y ( )L(x, Mary) L(y, Mary) (x ≠ y) 

L(z, Mary)  (z = x) (z = y)

x y ( L(x, Mary) L(y, Mary) (x ≠ y) 

)



( )

z ( )L(z, Mary)  (z = x) (z = y)( )

L(x, y) :  "x loves y”
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Nested Quantifiers

 Recall,

 When all of the elements in the universe of 
discourse can be listed one by one (discrete) 
(e.g. x1,x2,…,xn), 

x P(x)  P(x1)  P(x2)  ... P(xn)

x P(x)  P(x1)  P(x2)  ...  P(xn)
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x (yP(x, y))

Nested Quantifiers

 Example

 Find an expression equivalent to 

x y P(x, y)

where the universe of discourse consists of the 
positive integer not exceeding 3?

xyP(x, y)

yP(1, y)  yP(2, y)  yP(3, y)

[P(1,1)  P(1,2)  P(1,3)] 
[P(2,1)  P(2,2)  P(2,3)] 
[P(3,1)  P(3,2)  P(3,3)]



x P(x)  P(x1)  P(x2)  ... P(xn)
x P(x)  P(x1)  P(x2)  ...  P(xn)
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Negating Nested Quantifiers

 Recall, De Morgan’s Laws for Quantifiers

¬x P(x)  x ¬P(x)

¬x P(x)  x ¬P(x)

 They also can be applied in Nested 
Quantifiers
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Negating Nested Quantifiers

 Example:

 What is the negation of x y (xy = 1)?

 ¬x y (xy = 1)

= x (¬y (xy = 1))

= ¬x (y (xy = 1))

= x (y ¬(xy = 1))

= x (y (xy ≠ 1))

= xy (xy ≠ 1)

Not every x, there are some y, 
can make “xy=1” success

Some x, for all y, 
cannot make “xy = 1” success
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Can you understand it now?


