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Limitation of Propositional Logic

 Limitation 1:

 John is a SCUT student

 Peter is a SCUT student

 Mary is a SCUT student

 Try to represent them using propositional 
variable

 However, these propositions are very similar

 A more powerful type of logic 
named Predicate Logic will be introduced

p :

q :

r :

is a SCUT student

is a SCUT student

is a SCUT student
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Predicates

 Predicate logic is an extension of propositional 
logic that permits concisely reasoning about whole 
classes of entities

 Propositional Logic
treats simple 
propositions as atomic 
entities

 Predicate Logic
distinguishes the subject
of a sentence from its 
predicate

John Peter Mary
????

Chapter 1.3 & 1.4 6

 Predicate is a function of proposition

 Example:

 The truth value of proposition function can only be 
determined when the values of variables are 
known

Propositional Function / 
Predicate

x is greater than 3

Variable

xP(x) :

Convention:
• lowercase variables denote objects
• UPPERCASE variables denote predicates

Predicates

Predicate

Refer to
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 Example:

 P(x) : “x > 3” 

 What is P(4)?

 What is P(2)?

 P(x) : “x is a singer”

 P(Michael Jackson)?

 P(Bruce Lee)?


Predicates
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 Propositional function can have more than 
one variables

 Example:

 P(x, y): x + y = 7

 P(2, 5)

 Q(x, y, z): x = y + z

 Q(5, 2, 8) 



Predicates
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 General case

 A statement involving the n variables x1, x2, …, 
xn can be denoted by 

P(x1, x2, …, xn)

 A statement of the form P(x1, x2, …, xn) is the 
value of the propositional function P at the 
n-tuple (x1, x2, …, xn)

 P is also called a n-place predicate or 
a n-ary predicate

Predicates
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Limitation of Propositional Logic

 Limitation 2:

 Given

P: “Every student in SCUT 
is clever”

Q: “Peter is SCUT student”

 What can we conclude?

“Peter is clever”

 Given

P: “Peter cannot pass this 
Discrete Maths subject”

Q: “Peter is a SCUT student”

 What can we conclude?

“At least one student in 
SCUT cannot pass this 
Discrete Maths subject”

 No rules of propositional logic can 
conclude the truth of this statement
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Limitation of Propositional Logic

 Propositional Logic does not adequately 
express the following meanings

 Every, all, some, partial, at least one, one, etc

 A more powerful tool, Quantifiers, will be 
introduced
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Our class

Quantifiers

 Quantification expresses the extent to which a 
predicate is true over a range of elements

 For example

 Using Quantifier
 P(x) : x has iPhone
 For all x, P(x) is true 
 Domain consists of 

all student in this class

 Using Propositional Logic
 p: Peter has iPhone
 q: Paul has iPhone
 r: Mary has iPhone

 Using Predicate
 P(x) : x has iPhone
 P(Peter)
 P(Paul)
 P(Mary)

MaryPeter Paul

iPhone

Assume our class only contains three students
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Quantifiers

 Four aspects should be mentioned in Quantification
1. Quantifier

(e.g. all, some…)

2. Variable

3. Predicate

4. Domain

 The area of logic that deals with predicates and 
quantifiers is called the Predicate Calculus

P(x) : x has iPhone

For all x, P(x) is true 

Domain consists of all student in this class

Our class

Peter Paul Mary
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 Universes of Discourse (U.D.s)

 Also called the domain of discourse

 Refers to the collection of objects being 
discussed in a specific discourse

 Example:

 P(x) : “x breaths oxygen“

 Domain consists of humans
P(x) is true for all x?

 Domain consists of creatures
P(x) is true for all x?

Creatures 

Human

Alien

I do not need O2

Quantifiers
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 Three types of quantification will be focused:

 Universal Quantification

 i.e. all, none

 Existential Quantification

 i.e. some, few, many

 Unique Quantification

 i.e. exactly one

 Can be expressed by using Universal 
Quantification and Existential Quantification

Quantifiers
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Quantifiers

Universal Quantifiers (ALL)
 Definition

Universal quantification of P(x) is the statement 
“P(x) is true for all values of x in the domain”

 Notation: x P(x)
 LL, reversed “A”
 Read as 

 "for all x P(x)" 
 "for every x P(x)" 

 Truth value 
 True when P(x) is true for all x
 False otherwise

 An element for which P(x) is false is called a 
counterexample
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Our class

Quantifiers

Universal Quantifiers 
 When all of the elements in the universe of discourse can be 

listed one by one (discrete) (e.g. x1,x2,…,xn), 

x P(x)  P(x1) P(x2) ... P(xn)

 For example
 Our class has three students: John, Peter and Mary

 Every student in our class has attended the class

John Peter Mary

and and
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Quantifiers

Existential Quantifiers (SOME)
 Definition

Existential quantification of P(x) is the proposition 
“There exists an element x in the domain 
such that P(x) is true”

 Notation: x P(x)
 XIST, reversed “E”
 Read as

 “There is an x such that P(x)”
 “There is at least one x such that P(x)”
 "For some x P(x)" 

 Truth value 
 False when P(x) is false for all x
 True otherwise
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Our class

Quantifiers

Existential Quantifiers
 When all of the elements in the universe of discourse can be 

listed one by one (discrete) (e.g. x1,x2,…,xn), 

x P(x)  P(x1) P(x2) ... P(xn)

 For example
 Our class has three students: John, Peter and Mary

 Any student in our class has attended the class

John Peter Mary

or or
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Quantifiers

 Examples:

 P(x): x+1>x, U.D.s: the set of real number

 x P(x) ?

 x P(x) ?

 Q(x): x<2, U.D.s: the set of real number

 x Q(x) ?

 x Q(x) ?

 S(x): 2x<x, U.D.s: the set of real positive number

 x S(x) ?

 x S(x) ?

Q(y) is false when y ≥ 3 

Q(y) is true when y < 2 

P(x) is always true

S(x) is always false

True

False

True

True

False

False

(counterexamples)
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 Examples:

 P(x): x2<10, 
U.D.s. the positive integer not exceeding 4

 x P(x) ?

 x P(x) ?

P(1) P(2) P(3) P(4)

Universal Quantifiers

  
counterexample

x P(x)  P(1) P(2) P(3) P(4)

x P(x)  P(1) P(2) P(3) P(4)  F

 T
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Quantifiers

 How can we prove the followings: 

 Universal quantification is true

 Universal quantification is false

 Existential quantification is true

 Existential quantification is false
John Peter Mary

Attend the class?

Finding one is ok
(counterexample)

Need to consider ALL

Statement When true? When false?

x P(x)
P(x) is true for every x There is an x 

for which P(x) is false.

x P(x)
There is an x 
for which P(x) is true.

P(x) is false for every x.
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Precedence of Quantifiers

 Recall,

 Example
 x P(x)  Q(x)

Precedence Operator

1 ¬ NOT

2  AND

3   OR   XOR

4  Imply

5 ↔ Equivalent

  and  have higher 
precedence than all 
logical operators 
from proposition 
calculus

x (P(x)Q(x))(xP(x))  Q(x) 
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 Small Exercise 

 How to interpret the following expression:

 x (P(x)  z Q(x,z)  y R(x,y))  Q(x,y)

 x ( P(x)  (z Q(x,z))  (y R(x,y)) )  Q(x,y)

 x ( (P(x)  (z Q(x,z)))  (y R(x,y)) )  Q(x,y)
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Bound and Free Variable

 Free Variable: No any restriction

 Bound Variable: Some restrictions
(quantifier or condition)

 Example:
 P(x) : “x > 3”
 P(x) : “x > 3” and x = 4
 x P(x, y)

 All the variables that occur in a quantifier must be 
bounded to turn it into a proposition
 i.e. the truth value can be determined

 Giving restrictions on a free variable is called 
blinding

Free Variable

Bound Variable

x:Bound Variable y:Free Variable

Not Proposition

Not Proposition

Proposition

Chapter 1.3 & 1.4 26

Scope

 The part of a logical expression to which a 
quantifier is applied is called the scope of 
this quantifier

 For example

x (P(x)  (y Q(y)) )  R(z)

Scope of y

Scope of x
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 Small Exercise 

 x ( (P(x)  (z Q(x,z)))  (y R(x,y)) )  Q(x,y)

 Scope of z:

 Scope of y:

 Scope of x:

 Free Variable:

 Bound Variable:

P(x)  z Q(x,z)  y R(x,y)

Q(x,z)

R(x,y)

x, y in Q(x,y)

x, y, z in the first component

Chapter 1.3 & 1.4 28

 Small Exercise 

 x x P(x)

 Any problem?

x is not a free variable in x P(x), therefore the x
binding is not used

 x P(x)  Q(x)

 Is x a free variable?

The variable x in Q(x) is outside of the scope of the x 
quantifier, and is therefore free

 (x P(x))  (x Q(x))

 Are x the same?

 This is legal, because there are 2 different x

2nd x is Free variable

Not a free variable

Different variables

1st x is Bounded variable
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Recall….

 x (x2>1)

 Domain of x is real number

 Domain of x is between -1 and 1

 x (x2≥1)

 Domain of x is integer

 Domain of x is positive integer
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Recall, the Equivalences

 Two propositions P and Q are logically 
equivalent if P  Q is a tautology

 P  Q means (PQ)  (QP)

 (PQ) : Given P, Q is true

 (QP) : Given Q, P is true

 Therefore, 
if we want to show P  Q, 
we can show PQ and QP
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Peter John Mary Jessica

P(x): x is lazy

Q(x): x likes beer

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x)) 

Quantifiers: Logical Implication & Equivalence

Universal Quantification

Peter John Mary Jessica













P(x): x is lazy

Q(x): x likes beer
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 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x)) 

Peter John Mary Jessica

P(x): x is lazy

Q(x): x likes beer

Peter John Mary Jessica

P(x): x is lazy

Q(x): x likes beer

Quantifiers: Logical Implication & Equivalence

Universal Quantification
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 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x))

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Quantifiers: Logical Implication & Equivalence

Existential Quantification 
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 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x))

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Peter John Mary Jessica

P(x): x is lazy

Q(x): x like beer

Quantifiers: Logical Implication & Equivalence

Existential Quantification
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Quantifiers

Logical Implication & Equivalence

 For Universal Quantifiers,

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x P(x)  x Q(x)  x (P(x)  Q(x))

 For Existential Quantifiers,

 x (P(x)  Q(x))  x P(x)  x Q(x)

 x (P(x)  Q(x))  x P(x)  x Q(x)
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Quantifiers: Logical Equivalence

 x (A  P(x))  A  x P(x)

 x (A  P(x))  A  x P(x)

 x (A  P(x))  A  xP(x)

 x (A  P(x))  A  xP(x)

 x P(x)  A 

 A  x P(x) 

 x P(x)  A  x (P(x)  A)

 A  x P(x)  x (A  P(x))

* A does not consist 
of free variable x

xP(x)  A
 ¬(xP(x))  A
 x (¬P(x))  A
 x (¬P(x)  A)
 x (P(x)  A)

A  xP(x)
 ¬(A)  xP(x)
 x(¬(A)  P(x))
 x(A  P(x))

x (P(x)  A)

x (A  P(x))
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???
??

Negating Quantifiers 

Universal Quantification

 De Morgan’s Laws for Quantifiers

P(x): x is a good student

Yes No

Not all students are good There is a student is bad

x ¬P(x)¬x P(x)  ?
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???
??

Negating Quantifiers 

Existential Quantification 

 De Morgan’s Laws for Quantifiers

P(x): x is a good student

Yes No

There is not exist a good student All students are bad

?¬x P(x)  x ¬P(x)
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 Small Exercise 

 What are the negation of the following 
statements?

x (x2>x)

¬x(x2>x)  x ¬(x2>x)  x (x2x) 

x (x2=2)

¬x(x2=2)  x ¬(x2=2)  x (x22) 
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 Small Exercise 

 Show that 

¬x(P(x)Q(x))  x(P(x)¬Q(x)) 

¬x (P(x)Q(x))

 ¬x (¬P(x)Q(x))

 x (P(x)¬Q(x))

 x ¬(¬P(x)Q(x))
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Translation Using Quantifiers 

 Translating from English to Logical 
Expressions with quantifiers 
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Translation Using Quantifiers

Universal Quantification 
 Using predicates and quantifiers, express the 

statement 

 Quantifier:

 Variable: 

 Universe of discourse:

 Propositional Function:

 Answer: x P(x)

Every student in this class is lazy

x Universe of 
Discourse

 Predicate

x

the students in the class

P(x) : x is lazy

Universal Quantifier
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Translation Using Quantifiers

Universal Quantification
 Another way to express the statement:

 Quantifier:
 Variable:
 Universe of discourse: 
 Propositional Function:

 Answer:

Every student in this class is lazy

x Predicate (P)Predicate (Q)




The universal quantifier 
connects with a implication

Q(x): x is a student in this class
P(x): x is lazy

Any person
x
Universal Quantifier

For every person, if he/she is in this class, he/she is lazy

For every person, he/she is in this class and lazy

x (Q(x)  P(x))

x (Q(x)  P(x))
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Translation Using Quantifiers

Existential Quantification 
 Using predicates and quantifiers, express the 

statement 

 Quantifier:

 Variable: 

 Universe of discourse:

 Propositional Function:

 Answer: x P(x)

Some students in this class are lazy

x Universe of 
Discourse

 Predicate

x

the students in the class

P(x) : x is lazy

Existential Quantifier
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Translation Using Quantifiers

Existential Quantification
 Another way to express the statement:

 Quantifier:
 Variable:
 Universe of discourse: 
 Propositional Function:

 Answer:

Some students in this class are lazy

x Predicate (P)Predicate (Q)

The existential quantifier 
connects with a conjunction

Q(x): x is a student in this class
P(x): x is lazy

Any person
x
Existential Quantifier




For some persons, if he/she is in this class, he/she is lazy

For some persons, he/she is in this class and lazy

x (Q(x)  P(x))

x (Q(x)  P(x))

Include the case which contains 
no person in this class
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 Small Exercise 

 Using predicates and quantifiers, set the 
domain as

1. Staff in IBM company

2. Any persons

express the following statements:

 Every staff in IBM company has visited 
Mexico

 Some staff in IBM company has visited 
Canada or Mexico
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 Small Exercise 

 Every staff in IBM company has visited Mexico

 Solution 1:

 Universal Quantifier

 Variable: x

 U.D.: Staffs in IBM 
company

 Let P(x): x has visited 
Mexico

 x P(x)

 Solution 2:

 Universal Quantifier 

 Variable: x

 U.D.: Any person

 Let Q(x): x is a staff 
in IBM company

 Let P(x): x has visited 
Mexico

 x (Q(x)  P(x))
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 Small Exercise 

 Some staff in IBM company has visited 
Canada or Mexico

 Solution 1:

 Existential Quantifier

 Variable: x

 U.D.: Staffs in IBM 
company

 Let P(x): x has visited 
Mexico

 Let Q(x): x has visited 
Canada

 x (P(x)  Q(x))

 Solution 2:

 Existential Quantifier

 Variable: x

 U.D.: Any person

 Let S(x): x is a staff in IBM 
company

 Let P(x): x has visited 
Mexico

 Let Q(x): x has visited 
Canada

 x (S(x)  (P(x)  Q(x)))
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 Small Exercise 

 Some students in this class has visited 
Canada or Mexico

 Solution 2:

 Existential Quantifier

 Variable: x

 U.D.: Any person

 Let S(x): x is a student in 
this class

 Let P(x): x has visited 
Mexico

 Let Q(x): x has visited 
Canada

 x (S(x)  (P(x)  Q(x)))

 Better Solution:

 Existential Quantifier 

 Variable: x

 U.D.: Any person

 Let S(x): x is a student in 
this class

 Let P(x, loc): x has visited 
loc

 x (S(x)  (P(x, Canada) 
P(x, Mexico)))
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Quantifiers 
with Restricted Domains
 An abbreviated notation is often used to restrict 

the domain of a quantifier

 Example
 the square of any real number which greater than 10 is 

greater than 100

 Using Domain
x (x2 100), 
U.D.s: the set of real number which is bigger than 10

 Using Predicate
x (x>10  x20), U.D.s: the set of real number

 Using Abbreviated Notation
x >10 (x2100), U.D.s: the set of real number
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Quantifiers 
with Restricted Domains
 Example

 Given that the domain in each case consists of the 
real number, what do the following statements mean?

x0 (x20)  x (x0x20)

The square of negative real number is positive

y0 (y30)  y (y0  y30)

The cube of nonzero real number is nonzero

 z0 (z2=2)  z (z  0  z2=2)

There is a positive square root of 2
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 Small Exercise 

 Using predicates and quantifiers, express the 
following statements: 

 Every mail message larger than one megabyte 
will be compressed

 If a user is active, at least one network link will 
be available.
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 Small Exercise 

 Every mail message larger than one 
megabyte will be compressed

 Solution: 

 Let S(m, y) be 
"Mail message m is larger than y megabytes" 
 Domain of m : all mail messages

 Domain of y : positive real number

 Let C(m) denote 
"Mail message m will be compressed" 

 m (S(m, 1)  C(m))
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 Small Exercise 

 If a user is active, at least one network link 
will be available.

 Solution
 Let A(u) be 

"User u is active" 
 Domain of u : all users

 Let S(n, x) be 
"Network link n is in state x" 
 Domain of n : all network links

 Domain of x : all possible states for a network link

 u A(u)  n S(n, available)
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Nested Quantifiers

 Two quantifiers are nested if one is within the 
scope of the other

 How to interpret it?
 If quantifiers are same type, the order is not a matter

 x y “x+y=0” 

 y x “x+y=0”

 If quantifiers are different types, read from left to right

 x y “x+y=0”

 y x “x+y=0”

Same meaning

Different meaning
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Nested Quantifiers

Different Type
 If quantifiers are different types, read from left to 

right

 Example 1: 
 P(x, y) = “x loves y”
x y P(x, y) VS y x P(x, y)

 x y “x loves y”
 For all x, there is at least one y, to make P(x,y) happens

 For all persons, there is a person they love

 ALL people loves some people

 y x “x loves y”
 At least one y, all x, to make P(x,y) happens

 There is a person who is loved by all persons

 Some people are loved by ALL people
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Nested Quantifiers

Different Type

 Example 2:

 P(x, y) = “x+y=0” 
x y P(x, y) VS y x P(x, y)

x y (x+y=0) 

 For all x, there is at least one y, to make P(x,y) 
happens

 Every real number has an additive inverse

 y x (x+y=0) 

 At least one y, all x, to make P(x,y) happens

 There is a real number which all real number are its 
inverse addition
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Nested Quantifiers

Same Type

 If quantifiers are the same type, the order is not a 
matter

 Example:

 Given

 Parent(x,y) : “x is a parent of y”

 Child(x,y) : “x is a child of y”

 x y (Parent(x,y)  Child(y,x))

 y x (Parent(x,y)  Child(y,x))

 Two equivalent ways to represent the statement:

 For all x and y, if x is a parent of y, y is a child of x
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 x y P(x, y)

 x y P(x, y)

 x y P(x, y)

 x y P(x, y) 

Nested Quantifiers: Example 1

 Let domain be the real numbers,

 P(x,y): “xy = 0”

 Which one(s) is correct?








e.g. y = 0 e.g. x = 0
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Nested Quantifiers: Example 2

 Translate the statement 

x (C(x)  y (C(y)  F(x,y)))

into English, where
 C(x) is “x has a computer”,

 F(x,y) is “x and y are friends” and 

 the universe of discourse for both x and y is the set of 
all students in your school

Every student in your school has a computer 
and has a friend who has a computer.
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Nested Quantifiers: Example 3

 Translate the statement 
“If a person is female and is a parent, then this 
person is someone’s mother”
as a logical expression

 Let 
 F(x): x is female
 P(x): x is a parent
 M(x,y): x is y’s mother

 The domain is the set of all people

x ( (F(x)  P(x))  y M(x, y) ), or

x y ( (F(x)  P(x))  M(x, y) )

(F(x)  P(x))  M(x, y)

At least one y

All x

Chapter 1.3 & 1.4 62

 Small Exercise 

 Translating the following statement into logic 
expression:

“The sum of the two positive integers is always 
positive”

 x y (x+y > 0)
The domain for two variables consists of all positive 
integers

 x y ((x>0)  (y>0)  (x+y > 0))
The domain for two variables consists of all integers
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 Small Exercise 

 Q(x, y, z) be the statement "x + y = z" 

 The domain of all variables consists of all real

 What are the meaning of the following 
statements? 
 x y z Q(x,y,z)

 For all real numbers x and for all real numbers y
there is a real number z such that x + y = z

 z x y Q(x,y,z)
 There is a real number z such that for all real 

numbers x and for all real numbers y it is true that 
x + y = z

Chapter 1.3 & 1.4 64

 Small Exercise 

 Translate the statement 

x y z 
( (F(x,y)  F(x,z)  (y≠z))  F(y,z) )

into English, where 

 F(a,b) means a and b are friends and 

 the universe of discourse for x, y and z is the 
set of all students in your school

There is a student none of whose friends are 
also friends each other
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Nested Quantifiers

Exactly One

 It also called uniqueness quantification of P(x) is 
the proposition “There exists a unique x such that 
the predicate is true”

 In the book, the notation is: ! xP(x) , 1 xP(x)

 But we will try to express the concept of “exactly 
one” using the Universal and Existential quantifiers

 In next few slides, we assume 
L(x, y) be the statement “x loves y”

 Four cases will be discussed
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Nested Quantifiers

Exactly One: Case 1

 Mary loves exactly one person

 It means…

 Mary loves one person (x)

 If any people who is not x, Mary must not love 
him/her

L(x, y) :  "x loves y”

x L(Mary, x)

z ( )

x L(Mary, x) z ((z ≠ x)  ¬ L(Mary, z))( )

¬L(Mary, z)(z ≠ x)
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Nested Quantifiers

Exactly One: Case 1 (v2)

 Mary loves exactly one person

 It means…

 Mary loves one person (x)

 If Mary must love any person, he/she must be x

x L(Mary, x)

z ( )

x L(Mary, x) z ( L(Mary, z)  (z = x) )( )

L(Mary, z)  (z = x)

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 1

 Mary loves exactly one person

 Version 1

 Version 2

 As p  q and its Contrapositive are
equivalent, Version 1 and 2 are the same

x L(Mary, x) z ((z ≠ x)  ¬L(Mary, z))( )

x L(Mary, x) z ( L(Mary, z)  (z = x) )( )

¬p ¬ q

pq





L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 2

 Exactly one person loves Mary

 It means…

 One person (x) loves Mary

 If anyone loves Mary, he/she must be x

x L(x, Mary)

z ( )

x L(x, Mary) z ( L(z, Mary)  (z = x) )( )

L(z, Mary)  (z = x)

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 3

 All people love exactly one person

 It means…

 Everyone (y) loves a person (x)

 If y loves someone, it must be x

y x L(y, x)

z ( )L(y, z)  (z = x)

y x L(y, x) z ( L(y, z)  (z = x) )( )

L(x, y) :  "x loves y”
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z ( )

Nested Quantifiers

Exactly One: Case 4

 Exactly one person loves all people

 It means…

 A person (x) loves everyone (y)

 If anyone loves y, it must be x

 If anyone loves all people, it must be x

x y L(x, y)

L(z, w)  (z = x)w

x y L(x, y) z (w L(z, w)  (z = x) )( )

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 4

 Exactly one person loves all people

 Is the following answer also correct?
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x y ( L(y, x)  z (w L(z, w)  (z = x) ))

x y ( L(y, x)  z ( L(z, y)  (z = x) ))
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Nested Quantifiers

Exactly One: Case 4
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x y ( L(y, x)  z (w L(z, w)  (z = x) ))

x y ( L(y, x)  z ( L(z, y)  (z = x) ))

 x (y L(y, x)  y z ( L(z, y)  (z = x) ))

 x (y L(y, x)  z y ( L(z, y)  (z = x) ))

 x (y L(y, x)  z w ( L(z, w)  (z = x) ))

 x ( y L(y, x)  z (w L(z, w)  (z = x) ))

x (A  P(x))  A  x P(x)

x (P(x)  Q(x))  x P(x)  x Q(x)
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Nested Quantifiers

Exactly One: Case 4

 Are they the same?

 x (P(x)  A)

 For all people, if he/she works hard, China is great

 Any people works hard will make China great

 x (P(x))  A

 if all people work hard, China is great

 Therefore, x (P(x)  A)  x P(x)  A
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x ( y L(y, x)  z w ( L(z, w)  (z = x) ))
x ( y L(y, x)  z (w L(z, w)  (z = x) ))

P(x): x works hard

A: China is great
No!
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Nested Quantifiers

Exactly One: Case 4

 Are they the same?

 z ( w (L(z, w)  (z = x) ) )
 For any people (z) and any people (w), 

if z is loved by w, z is x

 z ( w (L(z, w))  (z = x) )
 For anyone (z), 

if z is loved by all people (all w), z is x

75

No!

A

C

B

A

C

B
x is B
B is only person 
loved by all people

x ( y L(y, x)  z w ( L(z, w)  (z = x) ))
x ( y L(y, x)  z (w L(z, w)  (z = x) ))
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Nested Quantifiers

Exactly One: Case 1 VS Case 3

 Case 1: Mary loves exactly one person

 Case 3: All people love exactly one person

x L(Mary, x) z ( L(Mary, z)  (z = x) )( )

y x L(y, x) z ( L(y, z)  (z = x) )( )

L(x, y) :  "x loves y”
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Nested Quantifiers

Exactly One: Case 2 VS Case 4

 Case 2: Exactly one person loves Mary

 Case 4: Exactly one person loves all people

x L(x, Mary) z ( L(z, Mary)  (z = x) )( )

x y L(x, y) z (w L(z, w)  (z = x) )( )

L(x, y) :  "x loves y”
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 Small Exercise 

 There is exactly one person whom everybody 
loves

 It means…

 A person is loved by everyone

 If anyone is loved by everyone, it must be x

L(x, y) :  "x loves y”

z ( )

x y L(y, x)

L(w, z)  (z = x)w

x y L(y, x) z (w L(w, z)  (z = x) )( )



Chapter 1.3 & 1.4 79

z ( )

 Small Exercise 

 Exactly two people love Mary

 It means…

 At least two persons love Mary

 At most two persons love Mary

 If anyone loves Mary, he/she must be x or y

x y ( )L(x, Mary) L(y, Mary) (x ≠ y) 

L(z, Mary)  (z = x) (z = y)

x y ( L(x, Mary) L(y, Mary) (x ≠ y) 

)



( )

z ( )L(z, Mary)  (z = x) (z = y)( )

L(x, y) :  "x loves y”
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Nested Quantifiers

 Recall,

 When all of the elements in the universe of 
discourse can be listed one by one (discrete) 
(e.g. x1,x2,…,xn), 

x P(x)  P(x1)  P(x2)  ... P(xn)

x P(x)  P(x1)  P(x2)  ...  P(xn)



Chapter 1.3 & 1.4 81

x (yP(x, y))

Nested Quantifiers

 Example

 Find an expression equivalent to 

x y P(x, y)

where the universe of discourse consists of the 
positive integer not exceeding 3?

xyP(x, y)

yP(1, y)  yP(2, y)  yP(3, y)

[P(1,1)  P(1,2)  P(1,3)] 
[P(2,1)  P(2,2)  P(2,3)] 
[P(3,1)  P(3,2)  P(3,3)]



x P(x)  P(x1)  P(x2)  ... P(xn)
x P(x)  P(x1)  P(x2)  ...  P(xn)
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Negating Nested Quantifiers

 Recall, De Morgan’s Laws for Quantifiers

¬x P(x)  x ¬P(x)

¬x P(x)  x ¬P(x)

 They also can be applied in Nested 
Quantifiers
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Negating Nested Quantifiers

 Example:

 What is the negation of x y (xy = 1)?

 ¬x y (xy = 1)

= x (¬y (xy = 1))

= ¬x (y (xy = 1))

= x (y ¬(xy = 1))

= x (y (xy ≠ 1))

= xy (xy ≠ 1)

Not every x, there are some y, 
can make “xy=1” success

Some x, for all y, 
cannot make “xy = 1” success
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Can you understand it now?


