Discrete Mathematic

Chapter 1: Logic and Proof
1.1
Propositional Logic
1.2
Propositional
Equivalences

Dr Patrick Chan

School of Computer Science and Engineering South China University of Technology

Warm Up...

 John is a cop. John knows first aid. Therefore, all cops know first aid

Chapter 1.1 & 1.2

Agenda

- Ch1.1 Propositional Logic
 - Proposition
 - Propositional Operator
 - Compound Proposition
 - Applications
- Ch1.2 Propositional Equivalences
 - Logical Equivalences
 - Using De Morgan's Laws
 - Constructing New Logical Equivalences

Warm Up...

 Human walks by two legs. Human is mammal. Mammal walks by two legs.

Chapter 1.1 & 1.2 2 Chapter 1.1 & 1.2 4

Warm Up...

 The clock alarm of my iphone does not work today. The clock alarm of iphone does not work on 1-1-2011. So, today is 1-1-2011

Chapter 1.1 & 1.2 5

Warm Up...

 Some students work hard to study. Some students fail in examination. So, some work hard students fail in examination.

Small Quiz

- Next few pages contain 4 questions
- Write down the answer of each question on a paper
- Remember
 - No Discussion
 - Do not modify answers you written down

Chapter 1.1 & 1.2 7

Small Quiz: Question 1

- According to the law, only a person who is elder than 21-year-old can have alcoholic drink
- You are a police. Which person(s) you need to check?

Drink Tea Drink Beer 23-year-old 19-year-old

Chapter 1.1 & 1.2 6 Chapter 1.1 & 1.2 8

Small Quiz: Question 2

- According to a policy of a company, if someone surf the Internet longer than 2 hours, he/she has to earn more than 300k
- You are the boss of this company. Which staff(s) you need to check?

1h Surfing

Chapter 1.1 & 1.2

3h Surfing

Earned 200k Earned 400k

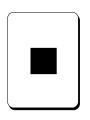
9 Chapter 1.1 & 1.2 11

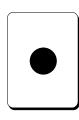
Small Quiz: Question 3

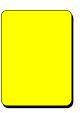
- A company publishes a desk
 Each card has two sides: a character and a number
- If one side of a card is a vowel, the number on the other side should be even number
- You are a QC staff. Which card(s) you need to check?

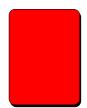
Small Quiz: Question 4

- A company publishes another desk: each card has two sides: a shape and a color
- If one side of a card is a circle, the color on the other side should be yellow
- You are a QC staff. Which card(s) you need to check?



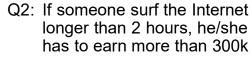






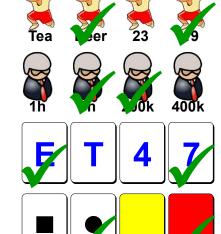
Small Game: Answer

Q1: Only a person who is elder than 21-year-old can have alcoholic drink



Q3: If one side of a card is a vowel, the number on the other side is even number

Q4: If one side of a card is a circle, the color on the other side is yellow



Chapter 1.1 & 1.2 10 Chapter 1.1 & 1.2 1.

Introduction

- In this chapter, we will explain how to
 - make up a correct mathematical argument
 - prove the arguments

Chapter 1.1 & 1.2

Propositions

- Proposition (also called statement) is a declarative sentence (declares a fact) that is either true or false, but not both
- Truth value of a proposition is either True/False (T/F) to indicate its correctness
- Example:
 - Keep quite ★ Not declarative

 - 1 + 1 = 3 False
 - x + 2 = 4
 Can be either true or false
 Can be turned into proposition when x is defined

Propositions

- Proposition Variable is letters denote propositions
 - Conventional letters are *p*,*q*,*r*,*s*,.....*P*,*Q* ,.....
 - Example: *r* : Peter is a boy
- Proposition Logic is the area of logic that deals with propositions
- Logic Operators
 - NOT
 - AND
 - OR
 - XOR
- If... then
- (Conditional Statement)
- If and Only If
- (Biconditional Statement)

Proposition Logic

Negation Operator (Not)

Definition

Chapter 1.1 & 1.2

- Let p be a proposition
- Negation of p is the statement "It is not the case that p"
- Notation: ¬p, ~p, p̄
 - Read as "not p"
- Truth value
 - Opposite of the truth value of p
- Example:
 - p: you are a student
 - ¬p: You are not a student

Chapter 1.1 & 1.2 14 Chapter 1.1 & 1.2 16

Proposition Logic

Conjunction Operator (AND)

- Definition
 - Let **p** and **q** be propositions
 - Conjunction of p and q is "p and q"
 - Notation: p ∧ q
 - ∧ points up like an "A", which means "∧ND"
- Truth value
 - True when both p and q are true
 - False otherwise
- Example:
 - p: Peter likes to play, q: Peter likes to read
 - p ∧ q : Peter likes to play and Peter likes to read

Chapter 1.1 & 1.2 17

Proposition Logic

Disjunction Operator (OR)

- Definition
 - Let p and q be propositions
 - Disjunction of p and q is "p or q"
 - Notation: p ∨ q
 - ▼ y points up like an "r", means "Oy"
- Truth value
 - False when both p and q are false
 - True otherwise
- Example:
 - p: Peter likes to play, q: Peter likes to read
 - p ∨ q : Peter likes to play or Peter likes to read

Proposition Logic

Disjunction Operator (OR)

- In English, OR has more than one meanings
- Example:
 - Jackie is a singer OR Jackie is an actor
 - Either one or both (inclusive)
 - Disjunction operation (OR, ∨)
 - Jackie is a man OR Jackie is a woman
 - Either one but no both (exclusive)
 - Exclusive OR operation (⊕)

Chapter 1.1 & 1.2

Proposition Logic

Exclusive OR Operator (XOR)

- Definition
 - Let p and q be propositions
 - Notation: $p \oplus q$, $p \neq q$, p + q
- Truth value
 - True when exactly one of p and q is true
 - False otherwise
- Example:
 - p: You can have a tea, q: You can have a coffee
 - p ⊕ q : You can have a tea or a coffee, but not both (exclusive or)

Chapter 1.1 & 1.2 18 Chapter 1.1 & 1.2 20

[☉] Small Exercise ^{[☉]}

Given

p: "Today is Friday"

q: "It is raining today"

- What is...?
 - ¬p

Today is not Friday

Which is correct? Why?

Tomorrow is Wednesday 🗶

Yesterday is Friday X
Today is not Monday X

They provide more information than "¬p"

■*p* ∧ *q*

Today is Friday and it is raining today

■*p* ∨ *q*

Today is Friday or it is raining today

■*p* ⊕ *q*

Either today is Friday or it is raining today, but not both

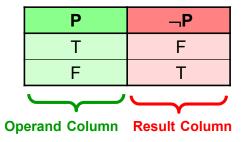
Chapter 1.1 & 1.2

21

Proposition Logic

Truth Table

- Truth Table displays the relationships between the truth values of propositions
- Example:
 - Truth Table of Negation Operation



Chapter 1.1 & 1.2 23

© Small Exercise ©

Given

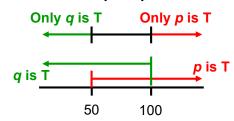
$$p$$
: "x > 50" q : "x < 100"

- What is...?
 - •¬*p*x ≤ 50

 - •p ∨ q x can be any number

p ⊕ qx ≥ 100 or x ≤ 50

Both q and p is T



Proposition Logic

Truth Table

			NOT	AND	OR	XOR
	р	q	٦р	p ∧ q	p v q	p ⊕ q
ĺ	Т	Т	F	Т	Т	F
	Т	F	F	F	Т	Т
	F	Т	Т	F	Т	Т
	F	F	Т	F	F	F

Proposition Logic

Conditional Statement (imply)

- Definition
 - Let **p** and **q** be propositions
 - Conditional statement is "if p, then q"
 - Notation: $p \rightarrow q$
 - p is called the *hypothesis* (or antecedent or premise)
 - q is called the *conclusion* (or consequence)
- Truth value
 - False when p is true and q is false
 - True otherwise
- Example
 - p: you work hard, q: you will pass this subject
 - $p \rightarrow q$: If you work hard, then you will pass this subject

р	q	$p \to q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	T

Chapter 1.1 & 1.2

25

Chapter 1.1 & 1.2

27

Proposition Logic

Conditional Statement (imply)

- Example:
 - p: "You give me twenty dollars"
 - q: "We are the best friends"
 - What is $p \rightarrow q$?
 - If you give me twenty dollars, then we are the best friends
 - Assume $p \rightarrow q$ is true, what does "you do not give me twenty dollars" $(\neg p)$ mean?
 - Does it mean "We are not the best friend" $(\neg p \rightarrow \neg q)$?

Proposition Logic

Conditional Statement (imply)

- **Example:** $p \rightarrow q$ and its Contrapositive are equivalent
 - Given $p \rightarrow q$ Converse and Inverse are equivalent "If it rains, the floor is wet"
 - Situation 1 $(\neg p \rightarrow \neg q)$ Inverse If it does not rain, the floor is not wet
 - Situation 2 $(q \rightarrow p)$ Converse

 If the floor is wet, it rains
 - Situation 3 ($\neg q \rightarrow \neg p$) Contrapositive If the floor is not wet, it does not rain

Proposition Logic: Conditional Statement

Necessary Condition

- To say that p is a necessary condition for q, it is impossible to have q without p
 - Example
 - Breathing is necessary condition for human life
 - You cannot find a non-breathing human who is alive
 - Taking a flight is not necessary condition to go to Beijing
 - You can go to Beijing by train, bus...

Proposition Logic: Conditional Statement

Sufficient Condition

 To say that p is a sufficient condition for q, the presence of p guarantees the presence of q

- Example
 - Being divisible by 4 is sufficient for being an even number
 - Working hard is not sufficient for having a good examination result

Chapter 1.1 & 1.2 29

Chapter 1.1 & 1

Proposition Logic

Conditional Statement (imply)

- Remark:
 - No causality is implied in P → Q
 - P may not cause Q
 - For example:
 - If I have more money than Bill Gates, then a rabbit lives on the moon

Proposition Logic: Conditional Statement

Necessary / Sufficient Condition

- Relation between conditional statement and necessary / sufficient condition
 - Necessary ConditionSufficient Condition
 - E.g. Breathing is necessary condition for human life

Р	Q	P is necessary condition of Q
Т	Т	Т
Т	F	Т
F	Т	F
F	F	Т

 E.g. Being divisible by 4 is sufficient for being an even number

Р	Q	P is sufficient
		condition of Q
Т	Τ	Т
Т	F	F
F	Т	Т
F	F	Т

р	q	$p \to q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	T

- p → q is equivalent to:
 - p is sufficient condition of q
 - q is necessary condition of p

Proposition Logic

Conditional Statement (imply)

- Other equivalent forms for P → Q:
 - P is a sufficient condition for Q
 - Q is a necessary condition for P
 - P implies Q
 - If P, then Q
 - If P, Q
 - Q if P
 - Q whenever P
 - P only if Q

Chapter 1.1 & 1.2 31

P cannot be true when Q is not true

Q is necessary condition for P

Chapter 1.1 & 1.2 30 Chapter 1.1 & 1.2

Proposition Logic

Conditional Statement (imply)

- Example:
 - A mother tells her child that "If you finish your homework, then you can eat the ice-cream"
 - What does it mean?
 - Case 1 $(p \rightarrow q)$
 - Homework is finished, you can eat the ice-cream
 - Homework is not finished, you can/cannot eat the ice-cream
 - Case 2
 - Homework is finished, you can eat the ice-cream
 - Homework is not finished, you cannot eat the ice-cream

Proposition Logic

Biconditional Statement (equivalent)

- Example:
 - p: "You take the flight"
 - q: "you buy a ticket"
 - What is $p \leftrightarrow q$?
 - You take the flight if and only if you buy a ticket
 - No ticket, no flight
 - No flight, no ticket

Chapter 1.1 & 1.2

3

Chapter 1.1 & 1.2 35

Proposition Logic

Biconditional Statement (equivalent)

- Definition
 - Let p and q be propositions
 - Biconditional statement is "p if and only if q" (iff)
 - Notation: $p \leftrightarrow q$, p = q, $p \equiv q$
 - Also called bi-implications, equivalence
 - Equivalent to $(p \rightarrow q) \land (q \rightarrow p)$
- Truth value
 - True when p and q have the same truth values
 - False otherwise

 p
 q
 p ↔ q

 T
 T
 T

 T
 F
 F

 F
 T
 F

 F
 F
 T

Proposition Logic: Conditional Statement

Necessary / Sufficient Condition

p is necessary but not sufficient for q

$$q \rightarrow p$$

p is sufficient but not necessary for q

$$p \rightarrow q$$

p is both necessary and sufficient for q

$$q \rightarrow p \land p \rightarrow q$$

$$p \leftrightarrow q$$

• g is also both necessary and sufficient for p

Proposition Logic

- Remarks:
 - In ordinary speech, words like "or" and "if-then" may have multiple meanings
 - In this technical subject, we assume that
 - "or" means inclusive or (v)
 - "if-then" means implication (→)

Proposition Logic

Summary

р	q	٦р	p∧q	p v q	p ⊕ q	$p \to q$	$p \leftrightarrow q$
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	F
F	F	Т	F	F	F	Т	Т

Chapter 1.1 & 1.2 37 Chapter 1.1 & 1.2 3

Proposition Logic

Summary

Formal Name	<u>Nickname</u>	Symbol
Negation Operator	NOT	٦
Conjunction Operator	AND	^
Disjunction Operator	OR	V
Exclusive-OR Operator	XOR	\oplus
Conditional Statement	Imply	\rightarrow
Biconditional Statement	Equivalent	\leftrightarrow

Compound Proposition

- Compound Propositions are formed from existing propositions using proposition logical operators
 - Example: Beijing is the capital of China and 1+1=2
- How can we determine the truth values of the complicated compound propositions involving any number of propositional variables?
 - Example:
 - What is the truth value for every situations?

$$p \rightarrow \neg q \leftrightarrow s \land q \oplus p$$

Chapter 1.1 & 1.2 38 Chapter 1.1 & 1.2 40

Compound Proposition

Precedence of Logical Operator

Precedence	Operator					
1	٦	NOT				
2	^	AND				
3	∨ ⊕	OR XOR				
4	\rightarrow	Imply				
5	\leftrightarrow	Equivalent				

• Example:

Chapter 1.1 & 1.2

Chapter 1.1 & 1.2 43

Compound Proposition

Example:

1.
$$p \rightarrow \neg q \leftrightarrow s \land q \oplus p$$

2.
$$p \rightarrow (\neg q) \leftrightarrow s \land q \oplus p$$

3.
$$p \rightarrow (\neg q) \leftrightarrow (s \land q) \oplus p$$

4.
$$p \rightarrow (\neg q) \leftrightarrow ((s \land q) \oplus p)$$

5.
$$(p \rightarrow (\neg q)) \leftrightarrow ((s \land q) \oplus p)$$

Precedence	Operator
1	Г
2	^
3	∨ ⊕
4	\rightarrow
5	\leftrightarrow

Therefore,

$$p \to \neg q \leftrightarrow s \land q \oplus p$$
 is equal to

$$(p \rightarrow (\neg q)) \leftrightarrow ((s \land q) \oplus p)$$

Compound Proposition

 Truth tables can be used to determine the truth values of the complicated compound propositions

• Algorithm:

- 1. Write down all the combinations of the compositional variables
- Find the truth value of each compound expression that occurs in the compound proposition according to the operator precedence

Compound Proposition

			\frown		\frown	
Example:	(p	$) \rightarrow 7$	q	\longleftrightarrow	S	∧ q) ⊕ p
		'		•	V	

р	q	S

1	Г
2	٨
3	∨ ⊕
4	\rightarrow
5	\leftrightarrow

Compound Proposition

■ Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

1	٦
2	٨
3	∨ ⊕
4	\rightarrow
5	\leftrightarrow

р	q	S
Т	Т	Т
Т	Т	F
Т	F	Т
Т	F	F
F	Т	Т
F	Т	F
F	F	Т
F	F	F

Chapter 1.1 & 1.2

Compound Proposition

• Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

1	Г			
2	^			
3	∨ ⊕			
4	\rightarrow			
5	\leftrightarrow			

р	q	S	¬q	s ^ q
Т	Т	Т	F	Т
Т	Т	F	F	F
Т	F	Т	Т	F
Т	F	F	Т	F
F	Т	Т	F	Т
F	Т	F	F	F
F	F	Т	Т	F
F	F	F	Т	F

Chapter 1.1 & 1.2

Compound Proposition

■ Example: $(p \rightarrow (\neg q)) \leftrightarrow (s \land q) \oplus p$

1	7
2	^
3	> ⊕
4	\rightarrow
5	\leftrightarrow

Compound Proposition

■ Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

1	7		
2	٨		
3	∨ ⊕		
4	\rightarrow		
5	\leftrightarrow		

р	q	s	¬q	s ^ q	(s ∧ q) ⊕ p
Т	Т	Т	F	Т	F
Т	Т	F	F	F	T
Т	F	Т	Т	F	Т
Т	F	F	Т	F	Т
F	Т	Т	F	Т	Т
F	Т	F	F	F	F
F	F	Т	Т	F	F
F	F	F	Т	F	F

Chapter 1.1 & 1.2 46 Chapter 1.1 & 1.2

Compound Proposition

■ Example $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

р	q	S	¬q	s ^ q	(s ∧ q) ⊕ p	p→¬q
Т	Т	Т	F	T	F	F
Т	Т	F	F	F	Т	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	Т	Т
F	Т	F	F	F	F	Т
F	F	Т	Т	F	F	Т
F	F	F	Т	F	F	Т

Chapter 1.1 & 1.2

49

∨ ⊕

3

☺ Small Exercise ☺

- Write down the truth table for the following compound statement:
- $p \lor r \land q \leftrightarrow p \oplus \neg r$

р	q	٦р	p \land q	p v q	p ⊕ q	$p \to q$	p ↔ q
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	F
F	F	Т	F	F	F	Т	Т

1	Г
2	^
3	∨ ⊕
4	\rightarrow
5	\leftrightarrow

Chapter 1.1 & 1.2 51

Compound Proposition

Example (p	$\rightarrow \neg a) \leftrightarrow$	$(s \wedge a)$	⊕ n

р	q	s	¬q	s ^ q	(s ∧ q) ⊕ p	p→¬q	$(p \to \neg q) \leftrightarrow (s \land q) \oplus p$
Т	Т	Т	F	Т	F	F	Т
Т	Т	F	F	F	T	F	F
Т	F	Т	Т	F	Т	Т	Т
Т	F	F	Т	F	Т	Т	T
F	Т	Т	F	Т	T	Т	Т
F	Т	F	F	F	F	Т	F
F	F	Т	Т	F	F	Т	F
F	H	F	Т	F	F	Т	F

☺ Small Exercise ☺

1	7		
2	^		
3	∨ ⊕		
4	\rightarrow		
5	\leftrightarrow		

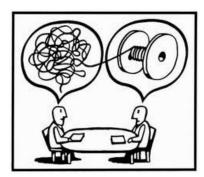
- $p \land l \lor d \leftrightarrow p \oplus \neg l$
- $(p \lor (r \land q)) \leftrightarrow (p \oplus (\neg r))$

р	q	r	٦r	r∧q	p ∨ (r ∧ q)	p ⊕ (¬ r)	$ \begin{array}{c} (p \vee (r \wedge q)) \leftrightarrow \\ (p \oplus (\neg r)) \end{array} $
Т	Т	Т	F	Т	Т	Т	Т
Т	Т	F	Т	F	Т	F	F
Т	F	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	Т	Т	F	F
F	Т	F	Т	F	F	Т	F
F	F	Т	F	F	F	F	Т
F	F	F	Т	F	F	Т	F

Chapter 1.1 & 1.2 50 Chapter 1.1 & 1.2 52

Translating English Sentences

- Human language is often ambiguous
- Translating human language into compound propositions (logical expression) removes the ambiguity



Chapter 1.1 & 1.2

Translating English Sentences

• Algorithm:

Chapter 1.1 & 1.2

- 1. Remove the connective operators
- 2. Let a variable for each complete concept
- 3. Use the operators to connect the variables
- 4. Adding brackets in suitable positions will be helpful
 - p: "You can access the Internet from campus"
 - q: "You are a computer science major"
- Example: s: "You are a freshman"
 - You can access the Internet from campus only if you are a computer science major or you are **not** a freshman $p \rightarrow (q \lor \neg s)$

Applications

System Specifications

- Specifications are the essential part of the system and software engineering
- Specifications should be consistent, otherwise, no way to develop a system that satisfies all specifications
 - Consistence means all specifications can be true

Applications

System Specifications

- Example:
 - There are three specifications for a particular system, are they **consistent**?
 - "The diagnostic message is stored in the buffer or it is retransmitted."
 - "The diagnostic message is not stored in the buffer."
 - "If the diagnostic message is stored in the buffer, then it is retransmitted."

Chapter 1.1 & 1.2 Chapter 1.1 & 1.2

Applications

System Specifi 3. Use the operators to connect the variables 4. Adding brackets in suitable positions will be helpful

Remove the connective operators

2. Let a variable for each complete concept

"The diagnostic message is stored in the buffer or it is retransmitted."

"The diagnostic message is not stored in the buffer."

¬P

"If the diagnostic message is stored in the buffer, then it is retransmitted."

 $P \rightarrow Q$

P: The diagnostic message is stored in the buffer

- Q: The diagnostic message is retransmitted
- These specifications are consistent

Р	Q	P∨Q	¬Р	P→Q	(P∨Q) ∧ (¬P) ∧ (P→Q)
Т	Т	Т	F	Т	F
Т	F	Т	F	F	F
F	Т	Т	Т	Т	Т
F	F	F	Т	Т	F

Chapter 1.1 & 1.2

Applications

Logic and Bit Operations

- Information stored in a computer is represented by bits
 - E.g. A = 0100 0001
- Bit = Binary Digit, i.e. 0 or 1 (F or T)
- Logic connectives can be used as bit operation
 - Bitwise OR (∨)
 - the OR of the corresponding bits in the two strings
 - Bitwise AND (∧)
 - the AND of the corresponding bits in the two strings
 - Bitwise XOR (⊕)
 - the XOR of the corresponding bits in the two strings

Applications

Logic and Bit Operations

Example:

1011 0110

B 0001 1101

Bit-wise OR 1011 1111

Bit-wise AND 0001 0100

Bit-wise XOR 1010 1011

Chapter 1.1 & 1.2

Applications

Logic Puzzles

- Puzzles that can be solved using logical reasoning are known as logic puzzles
- Can be solved by using rules of logic
- Example:
 - There are two kinds of people on an island
 - Batman: Always tell the truth
 - Joker: Always lie
 - One day, you encounter two peoples A and B.
 - A savs "B is a Batman"
 - B says "The two of us are opposite types"
 - What are A and B?

Chapter 1.1 & 1.2 Chapter 1.1 & 1.2

Applications

Logic Puzzles

Batma

Batman: Always tell the truth

Joker: Always lie

▶ • A says "B is a Batman"

B says "The two of us are opposite types"

Α	В	Р	Q
*	*	Т	F
*		F	F
3	*	F	Т
3		Т	Т

Chapter 1.1 & 1.2 6

Types of Proposition

- Tautology
 - A compound proposition which is always true
 - Example: P ∨ ¬P

·	
Contradiction	

A compound proposition which is always false

Example: P ∧ ¬P

Р	٦P	P∧¬P
Т	F	F
F	Т	F

F

 $P \vee \neg P$

Contingency

 A compound proposition which is neither a tautology nor a contradiction

Example: P ⊕ (P ∧ ¬P)

Р	P∧¬P	P ⊕ (P ∨ ¬P)
Т	F	Т
F	F	F

Types of Proposition

Example

• Are they Tautology, Contradiction or Contingency?

■ $P \rightarrow P$ Tautology

■ P ⊕ P Contradiction

■ $P \leftrightarrow P$ Tautology

P → Q Contingency

 $\blacksquare \neg P \lor Q$ Contingency

 $\blacksquare \neg (P \rightarrow Q) \land Q$ Contradiction

Chapter 1.1 & 1.2 63

Logically Equivalence

- An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value
- We would like to discuss about the equivalences of arguments

Chapter 1.1 & 1.2 62 Chapter 1.1 & 1.2 64

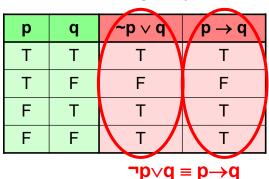
Logically Equivalence

- Definition
 Two propositions P and Q are logically equivalent if P ↔ Q is a tautology
- Notation: $P \Leftrightarrow Q$ or $P \equiv Q$

Chapter 1.1 & 1.2 65 Chapter 1.1 & 1.2 6

Logically Equivalence

- Truth Table can be used to test if compositions are logically equivalent
- Example: if ¬p ∨ q and p → q are logically equivalent?



Logically Equivalence

Example: Show p∨(q∧r) = (p∨q)∧(p∨r)

р	q	r	q∧r	b (d/t)	p∨q	p∨r	(p∨q)∧(p∨r)
Т	Т	Т	Т	/ T	Т	Т	T \
Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

Logically Equivalence

- Characteristic of Truth Table
 - Assume n is the number of variables,
 Raw of tables = 2ⁿ
 - E.g. 20 variables, 2²⁰ = 1048576
 - Not efficient
- Besides the Truth Table, we will introduce
 - a series of logical equivalences

р	q	S
Т	Т	Т
Т	Т	F
Т	F	Т
Т	F	F
F	Т	Т
F	Т	F
F	F	Т
F	F	F

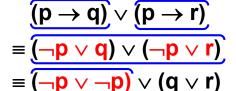
p T F

р	q	s	Т
Т	Т	T	Т
T	Т	Т	F
T	Т	F	T
T	Т	F	F
Т	F	Т	Т
T	F	T	F
T	F	F	T
Т	F	F	F
F	Т	Т	Т
F	Т	T	F
F	Т	F	T
F	Т	F	F
F	F	T	T
F	F	T	F
F	F	F	T
F	F	F	F

Chapter 1.1 & 1.2 66 Chapter 1.1 & 1.2 68

Logically Equivalence

- Example:
 - Show $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$



Logical Equivalences

$$P \rightarrow Q \equiv \neg P \lor Q$$

$$P \vee P \equiv P$$

$$P\lor(Q\lor R)\equiv (P\lor Q)\lor R$$

$\equiv \neg \mathbf{p} \vee (\mathbf{q} \vee \mathbf{r})$	
$\equiv p \rightarrow (q \lor r)$	

р	р	r	q∧r	p∨(q∧r)	p∨q	p∨r	(p∨q)∧(p∨r)
Т	Т	T	Т	T	Т	T	T
Т	Т	F	F	Т	Т	Т	T
Т	F	T	F	Т	Т	Т	T
Т	F	F	F	Т	Т	Т	T
F	Т	Т	Т	Т	Т	Т	T
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

Chapter 1.1 & 1.2

Important Equivalences

Idempotent Laws

$$p \vee p \equiv p$$

$$p \wedge p \equiv p$$

р	p v p	
Т	Т	
F	F	

р	p∧p	
Т	Т	
F	F	

Double Negation Law

$$\neg(\neg p) \equiv p$$

р	¬р	¬(¬р)
Т	F	Т
F	Τ	F

Important Equivalences

Identify Laws

$$p \wedge T \equiv p$$

$$p \vee F \equiv p$$

р	T	p∧T
Т	Т	Т
F	Т	F

р	F	p∨F
Т	F	Т
F	F	F

Domination Laws

$$p \vee T \equiv T$$

$$p \wedge F \equiv F$$

р	Т	p∨T
Т	Т	Т
F	Т	Т

р	F	p∧F
Т	F	F
F	F	F

Important Equivalences

Negation Laws

Chapter 1.1 & 1.2

$$p \,\vee\, \neg p \equiv \, T$$

$$p \land \neg p \equiv F$$

р	τр	p ∨ ¬p	
Т	F	Т	
H	H	Т	

р	٦р	p ∧ ¬p
Т	H	F
F	Т	F

Important Equivalences

Commutative Laws

$$p \vee q \equiv q \vee p$$

$$p \wedge q \equiv q \wedge p$$

р	q	q∨p	q∨p
Т	Τ	T	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

р	q	q∧p	q∧p
Т	Τ	Т	Т
Т	H	F	F
F	Т	F	F
F	F	F	F

Chapter 1.1 & 1.2

Important Equivalences

Distributive Laws

$$(p \lor (q \lor r) \equiv (p \lor q) \land (p \lor r)$$
$$(p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

$$(p \land)(q \lor r) \equiv (p \land q) \lor (p \land r)$$

р	q	r	q∧r	p ∨ (q∧r)	p∨q	p∨r	(p∨q) ∧ (p∨r)
Т	Т	Т	T	T	T	Т	T
Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

	р	q	r	q∨r	p ^ (q∨r)	p∧q	p∧r	(p∧q) ∨ (p∧r)
I	Τ	Т	_	Т	Т	Т	Т	Т
ı	Т	Т	F	T	Т	T	F	T
I	Т	F	Т	Т	Т	F	Т	T
I	Т	F	F	F	F	F	F	F
I	F	Т	Т	Т	F	F	F	F
I	F	Т	F	Т	F	F	F	F
I	F	F	Т	Т	F	F	F	F
	F	F	F	F	F	F	F	F

Chapter 1.1 & 1.2

Important Equivalences

Associative Laws

$$p \vee (q \vee r) \equiv (p \vee q) \vee r$$

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

р	q	r	q∨r	p ∨ (q∨r)	p∨q	(p∨q) ∨ r
Т	Т	Т	T	T	T	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	Т	Т	F	Т
F	F	F	F	F	F	F

р	q	r	q∧r	p ∧ (q∧r)	p∧q	(p∧q) ∧ r
Т	Т	Τ	T	Т	Т	Т
Т	Т	F	F	F	Т	F
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	Т	Т	F	F	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

Important Equivalences

How about

•
$$p \vee (p \wedge q)$$
?

•
$$(p \lor p) \land (p \lor q)$$

•
$$(p \wedge p) \vee (p \wedge q)$$

Distributive Laws

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Chapter 1.1 & 1.2 Chapter 1.1 & 1.2

Important Equivalences

Absorption Laws

$$p \vee (p \wedge q) \equiv p$$

$$p \wedge (p \vee q) \equiv p$$

р	q	p ^ q	p ∨ (p ∧ q)
Т	Т	Т	Т
Т	H	F	Т
F	Т	F	F
F	F	F	F

р	q	p v q	p ∧ (p ∨ q)
Т	Т	T	Т
Т	F	Т	Т
F	Т	Т	F
F	F	F	F

Chapter 1.1 & 1.2 Chapter 1.1 & 1.2 79

Important Equivalences

De Morgan's Laws

$$p \land q \equiv p \land q$$

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

р	q	p∨q	¬(p∨q)	¬р	¬q	pr ∧ qr
Т	Т	T	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	T	F	Т	F	F
F	F	F	Т	Т	Т	Т

р	q	p∧q	¬(p∧q)	P	ŗ	pr ∨ qr
Т	Т	T	F	F	F	F
Т	F	F	F	F	Т	F
F	Т	F	F	Т	F	F
F	F	F	T	Т	Т	T

Important Equivale Recall, De Morgan's Laws

 $pr \wedge qr \equiv (p \vee q)r$

De Morgan's Laws Extension

$$\blacksquare \neg (p_1 \lor p_2 \lor ... \lor p_n)$$
?

• Assume
$$\mathbf{q} = \mathbf{p}_2 \vee ... \vee \mathbf{p}_n$$

 $\neg (\mathbf{p}_1 \vee \mathbf{p}_2 \vee ... \vee \mathbf{p}_n) = \neg (\mathbf{p}_1 \vee \mathbf{q})$

According to De Morgan's Law

$$\neg(p_1 \lor \mathbf{q}) = \neg p_1 \land \neg \mathbf{q} = \neg p_1 \land \neg(p_2 \lor \dots \lor p_n)$$

Important Equivale Recall, De Morgan's Laws

 $\neg(p \lor q) \equiv \neg p \land \neg q$

• Assume $\mathbf{s} = \mathbf{p}_3 \vee ... \vee \mathbf{p}_n$ $\neg(p_2 \lor p_3 \lor ... \lor p_n) = \neg(p_2 \lor s)$

According to De Morgan's Law

$$\neg(\mathsf{p}_2 \vee \mathbf{s}) = \neg\mathsf{p}_1 \wedge \neg\mathbf{s} = \neg\mathsf{p}_2 \wedge \neg(\mathsf{p}_3 \vee ... \vee \mathsf{p}_n)$$

Therefore,

$$\neg(p_1 \lor p_2 \lor \dots \lor p_n) = \neg p_1 \land \neg p_2 \land \dots \land \neg p_n$$

Important Equivalences

- De Morgan's Laws Extension
 - Therefore,

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

$$\neg (p_1 \lor p_2 \lor \dots \lor p_n) = \neg p_1 \land \neg p_2 \land \dots \land \neg p_n$$

Similarly,

$$p \land \forall p \lor d = (p \lor q) \land q$$

$$\neg(p_1 \land p_2 \land \dots \land p_n) = \neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n$$

Chapter 1.1 & 1.2

Identify Laws	$ p \wedge T \equiv p $ $ p \vee F \equiv p $
Domination Laws	$p \lor T \equiv T$ $p \land F \equiv F$
Idempotent Laws	$p \lor p \equiv p$ $p \land p \equiv p$
Negation Laws	$ p \lor \neg p \equiv T $ $ p \land \neg p \equiv F $
Double Negation Law	¬ (¬p) = p
Commutative Laws	$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$
Associative Laws	$ p \lor (q \lor r) \equiv (p \lor q) \lor r $ $ p \land (q \land r) \equiv (p \land q) \land r $
Distributive Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Absorption Laws	$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$
De Morgan's Laws	

Some Important Equivalences

Important equivalences about Implication

$$P \to Q \equiv \neg P \lor Q$$

You only need to memorize this

$$\blacksquare P \to Q \equiv \neg Q \to \neg P$$

$$P \lor Q \equiv \neg P \to Q$$

$$P \wedge Q \equiv \neg (P \rightarrow \neg Q)$$

$$\blacksquare \neg (P \rightarrow Q) \equiv P \land \neg Q$$

$$(P \rightarrow Q) \land (P \rightarrow R) \equiv P \rightarrow (Q \land R)$$

$$(P \rightarrow R) \land (Q \rightarrow R) \equiv (P \lor Q) \rightarrow R$$

$$(P \rightarrow Q) \lor (P \rightarrow R) \equiv P \rightarrow (Q \lor R)$$

$$\bullet (P \rightarrow R) \lor (Q \rightarrow R) \equiv (P \land Q) \rightarrow R$$

Chapter 1.1 & 1.2

$$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$$
 $P \lor Q \equiv \neg P \rightarrow Q$

$$\mathbf{Q} = \neg \mathbf{Q} \rightarrow \neg \mathbf{F}$$
 $\mathbf{F} \vee \mathbf{Q} = \neg \mathbf{F} \rightarrow \mathbf{Q}$

Let
$$P = \neg S$$
 and $Q = \neg T$
 $P \rightarrow Q$
 $\equiv \neg P \lor Q$ **
 $\equiv \neg (\neg S) \lor \neg T$ Substitutio

$$\equiv S \vee \neg T \qquad \textit{Double Negation Law}$$

$$\equiv T \rightarrow S$$
 **

$$\equiv \neg Q \to \neg P \quad \textit{Substitution}$$

Let
$$P = \neg S$$

 $P \lor Q$
 $\equiv \neg S \lor Q$ Substitution

$$\equiv S \rightarrow Q$$
 **

$$\equiv \neg P \rightarrow Q$$
 Substitution

$$\neg(P \to Q) \equiv P \land \neg Q \qquad \qquad P \land Q \equiv \neg(P \to \neg Q)$$

$$\neg(\mathsf{P}\to\mathsf{Q})$$

$$\equiv \neg (\neg P \lor Q)$$

$$\equiv P \land \neg Q$$
 De Morgan's Laws $\equiv \neg (P \rightarrow \neg Q)$ **

$$P \wedge Q \equiv \neg (P \rightarrow \neg Q)$$

$$P \wedge Q$$

$$\equiv \neg (\neg P \lor Q) \quad ** \quad \equiv \neg (\neg P \lor \neg Q) \quad \textit{De Morgan's Laws}$$

$$\equiv \neg (P \rightarrow \neg Q)$$
 **

**
$$P \rightarrow Q \equiv \neg P \lor Q$$

$$(P \rightarrow Q) \land (P \rightarrow R) \equiv P \rightarrow (Q \land R)$$

$$(P \rightarrow Q) \land (P \rightarrow R)$$

$$\equiv (\neg P \lor Q) \land (\neg P \lor R) \qquad **$$

$$\equiv \neg P \lor (Q \land R) \quad \textit{Distributive Laws}$$

$$\equiv P \rightarrow (Q \land R) \qquad **$$

$$(P \rightarrow Q) \lor (P \rightarrow R) \equiv P \rightarrow (Q \lor R)$$

$$(P \rightarrow Q) \lor (P \rightarrow R) \qquad **$$

$$\equiv (\neg P \lor Q) \lor (\neg P \lor R) \qquad **$$

$$\equiv \neg P \lor \neg P \lor (Q \lor R) \quad \textit{Associative Laws}$$

$$\equiv \neg P \lor (Q \lor R) \quad \textit{Idempotent Laws}$$

$$\equiv P \rightarrow (Q \lor R) \qquad **$$

$$(P \rightarrow R) \land (Q \rightarrow R) \equiv (P \lor Q) \rightarrow P$$

$$(P \rightarrow R) \land (Q \rightarrow R)$$

$$\equiv (\neg P \lor R) \land (\neg Q \lor R) \quad **$$

$$\equiv (\neg P \land \neg Q) \lor R$$
 Distributive Laws

$$\equiv \neg (P \lor Q) \lor R$$
 De Morgan'sLaws

$$\equiv (P \lor Q) \to R \quad **$$

$$(P \rightarrow R) \lor (Q \rightarrow R) \equiv (P \land Q) \rightarrow P$$

$$(P \rightarrow R) \lor (Q \rightarrow R)$$

$$\equiv (\neg P \lor R) \lor (\neg Q \lor R) \quad **$$

$$\equiv (\neg P \lor \neg Q) \lor R \lor R$$
 Associative Laws

$$\equiv (\neg P \lor \neg Q) \lor R \quad \textit{Idempotent Laws}$$

$$\equiv \neg (P \land Q) \lor R$$
 De Morgan's Laws

$$\equiv (P \land Q) \rightarrow R \quad **$$

Some Important Equivalences

$$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

$$P \leftrightarrow Q$$

$$P \leftrightarrow Q$$

$$= (P \rightarrow Q)$$

$$= (\neg P \lor Q)$$

**
$$P \rightarrow Q \equiv \neg P \lor Q$$

$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$
 $\equiv (\neg P \lor Q) \land (\neg Q \lor P)$

$$\equiv (\neg P \lor Q) \land (\neg Q \lor P) \qquad ##$$

$$\equiv ((\neg P \lor Q) \land \neg Q) \lor ((\neg P \lor Q) \land P)$$
 Distributive Laws

$$\equiv ((\neg P \land \neg Q) \lor (Q \land \neg Q)) \lor ((\neg P \land P) \lor (Q \land P)) \ \ \, \textit{Distributive Laws}$$

$$\equiv ((\neg P \land \neg Q) \lor F) \lor (F \lor (Q \land P))$$
 Negation Laws

$$\equiv (\neg P \land \neg Q) \lor (Q \land P)$$
 Identify Laws

Chapter 1.1 & 1.2

Some Important Equivalences

Important equivalences about if and only if:

$$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$$

You only need to memorize this

$$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

$$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$$

$$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$$
$$\equiv (\neg P \lor Q) \land (\neg Q \lor P)$$

Some Important Equivalences

** $P \rightarrow Q \equiv \neg P \lor Q$

$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$

 $\equiv (\neg P \lor Q) \land (\neg Q \lor P)$

$$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$$

$$P \leftrightarrow Q$$

$$\equiv (\neg P \lor Q) \land (\neg Q \lor P) \quad ##$$

$$\equiv (S \vee \neg T) \wedge (T \vee \neg S) \qquad \textit{Substitution}$$

$$\equiv S \leftrightarrow T$$
 ##

$$\equiv \neg P \leftrightarrow \neg Q$$
 Substitution

** $P \rightarrow Q \equiv \neg P \lor G$

** $P \rightarrow Q \equiv \neg P \lor Q$

Chapter 1.1 & 1.2

Some Important Equivalences

$$\neg(P \leftrightarrow Q) \equiv P \leftrightarrow \neg Q$$

$$\neg(P \leftrightarrow Q)$$

$$\equiv \neg((\neg P \lor Q) \land (\neg Q \lor P))$$

$$\equiv \neg((\neg P \lor Q) \land (\neg Q \lor P))$$

$$\equiv \neg(\neg P \lor Q) \lor \neg(\neg Q \lor P)$$

$$\equiv (\neg P \lor Q) \lor \neg(\neg Q \lor P)$$

$$De \ Morgan's \ Laws$$

$$\equiv (P \land \neg Q) \lor (Q \land \neg P)$$

$$De \ Morgan's \ Laws$$

$$\equiv ((P \land \neg Q) \lor Q) \land ((P \land \neg Q) \lor \neg P)$$

$$Distributive \ Laws$$

$$\equiv ((P \lor Q) \land (\neg Q \lor Q)) \land ((P \lor \neg P) \land (\neg Q \lor \neg P)) Distributive \ Laws$$

$$\equiv (P \lor Q) \land T \land T \land (\neg Q \lor \neg P)$$

$$Negation \ Laws$$

$$\equiv (P \lor Q) \land (\neg Q \lor \neg P)$$

$$Identify \ Laws$$

$$\equiv P \leftrightarrow \neg Q$$
##

Chapter 1.1 & 1.2 8