Discrete Mathematic

Chapter 1: Logic and Proof 1.1 Propositional Logic 1.2 Propositional Equivalences

Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Agenda

- Ch1.1 Propositional Logic
 - Proposition
 - Propositional Operator
 - Compound Proposition
 - Applications
- Ch1.2 Propositional Equivalences
 - Logical Equivalences
 - Using De Morgan's Laws
 - Constructing New Logical Equivalences

Warm Up...

 John is a cop. John knows first aid. Therefore, all cops know first aid

Chapter 1.1 & 1.2

Warm Up...

 Human walks by two legs. Human is mammal. Mammal walks by two legs.

Warm Up...

The clock alarm of my iphone does not work today. The clock alarm of iphone does not work on 1-1-2011. So, today is 1-1-2011

Chapter 1.1 & 1.2

Warm Up...

 Some students work hard to study. Some students fail in examination. So, some work hard students fail in examination.

Small Quiz

- Next few pages contain 4 questions
- Write down the answer of each question on a paper
- Remember
 - No Discussion
 - Do not modify answers you written down

Small Quiz: Question 1

- According to the law, only a person who is elder than 21-year-old can have alcoholic drink
- You are a police. Which person(s) you need to check?

Drink Beer 23-year-old 19-year-old

Small Quiz: Question 2

- According to a policy of a company, if someone surf the Internet longer than 2 hours, he/she has to earn more than 300k
- You are the boss of this company. Which staff(s) you need to check?

9

1h Surfing

3h Surfing

Earned 200k Earned 400k

Chapter 1.1 & 1.2

Small Quiz: Question 3

- A company publishes a desk Each card has two sides: a character and a number
- If one side of a card is a vowel, the number on the other side should be even number
- You are a QC staff. Which card(s) you need to check?

Small Quiz: Question 4

- A company publishes another desk: each card has two sides: a shape and a color
- If one side of a card is a circle, the color on the other side should be yellow
- You are a QC staff. Which card(s) you need to check?

Chapter 1.1 & 1.2

11

Small Game: Answer

- Q1: Only a person who is elder than 21-year-old can have alcoholic drink
- Q2: If someone surf the Internet longer than 2 hours, he/she has to earn more than 300k
- Q3: If one side of a card is a vowel, the number on the other side is even number
- Q4: If one side of a card is a circle, the color on the other side is yellow

Introduction

- In this chapter, we will explain how to
 - make up a correct mathematical argument
 - prove the arguments

Chapter 1.1 & 1.2

Propositions

- Proposition (also called statement) is a declarative sentence (declares a fact) that is either true or false, but not both
- Truth value of a proposition is either True/False (T/F) to indicate its correctness
- Example:

 - I hour has 50 minutes False
 - 1 + 1 = 3 False
 - x + 2 = 4
 Can be either true or false
 Can be turned into proposition when x is defined

Propositions

- Proposition Variable is letters denote propositions
 - Conventional letters are p,q,r,s,.....P,Q ,.....
 - Example: *r* : Peter is a boy
- Proposition Logic is the area of logic that deals with propositions
- Logic Operators
 - NOTAND

 - XOR

- If... then (Conditional Statement)
- If and Only If (Biconditional Statement)

15

Proposition Logic Negation Operator (Not)

Definition

Chapter 1.1 & 1.2

- Let p be a proposition
- Negation of *p* is the statement "It is not the case that *p*"
- Notation: ¬p, ~p, p
 - Read as "not p"
- Truth value
 - Opposite of the truth value of p
- Example:
 - p: you are a student
 - ¬p: You are not a student

Proposition Logic Conjunction Operator (AND)

- Definition
 - Let *p* and *q* be propositions
 - Conjunction of p and q is "p and q"
 - Notation: *p* ∧ *q*
 - ^ points up like an "A", which means "^ND"
- Truth value
 - True when both p and q are true
 - False otherwise
- Example:
 - p: Peter likes to play, q: Peter likes to read
 - p ^ q : Peter likes to play and Peter likes to read

Chapter 1.1 & 1.2

Proposition Logic Disjunction Operator (OR)

- Definition
 - Let p and q be propositions
 - Disjunction of p and q is "p or q"
 - Notation: *p* ∨ *q*
 - \lor points up like an "r", means "O \lor "
- Truth value
 - False when both p and q are false
 - True otherwise
- Example:
 - p: Peter likes to play, q: Peter likes to read
 - *p* ∨ *q* : Peter likes to play or Peter likes to read

Proposition Logic Disjunction Operator (OR)

- In English, OR has more than one meanings
- Example:
 - Jackie is a singer OR Jackie is an actor
 - Either one or both (*inclusive*)
 - Disjunction operation (OR, v)
 - Jackie is a man OR Jackie is a woman
 - Either one but no both (exclusive)
 - Exclusive OR operation (⊕)

Chapter 1.1 & 1.2

Proposition Logic Exclusive OR Operator (XOR)

- Definition
 - Let p and q be propositions
 - Notation: $p \oplus q$, $p \neq q$, p + q
- Truth value
 - True when exactly one of p and q is true
 - False otherwise
- Example:
 - p: You can have a tea, q: You can have a coffee
 - *p* ⊕ *q* : You can have a tea or a coffee, but not both (exclusive or)

Small Exercise

Given

- What is...?
 - ¬p

Today is not Friday

Which is correct? Why? Tomorrow is Wednesday Yesterday is Friday 🗶 Today is not Monday 👱

They provide more information than "qr

p: "Today is Friday" *q*: "It is raining today"

 $\mathbf{P} \wedge q$

Today is Friday and it is raining today

 $\bullet p \lor q$

Today is Friday or it is raining today

■*p* ⊕ *q*

Either today is Friday or it is raining today, but not both

Chapter 1.1 & 1.2

21

☺ Small Exercise ☺

Proposition Logic Truth Table

- Truth Table displays the relationships between the truth values of propositions
- Example:
 - Truth Table of Negation Operation

Chapter 1.1 & 1.2

23

Proposition Logic Truth Table

		NOT	AND	OR	XOR
р	q	ър	p∧q	p ∨ q	p⊕q
Т	Т	F	Т	Т	F
Т	F	F	F	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	F	F	F

Proposition Logic Conditional Statement (imply)

- Definition
 - Let *p* and *q* be propositions
 - Conditional statement is "if *p*, then *q*"
 - Notation: $p \rightarrow q$
 - *p* is called the *hypothesis* (or antecedent or premise)
 - *q* is called the *conclusion* (or consequence)
- Truth value
 - False when p is true and q is false
 - True otherwise

р	q	$\mathbf{p} \rightarrow \mathbf{q}$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Example
 - *p*: you work hard, *q*: you will pass this subject
 - $p \rightarrow q$: If you work hard, then you will pass this subject

Chapter 1.1 & 1.2

Proposition Logic Conditional Statement (imply)

- Example:
 - *p*: "You give me twenty dollars"
 - q: "We are the best friends"
 - What is $p \rightarrow q$?
 - If you give me twenty dollars, then we are the best friends
 - Assume p → q is true, what does "you do not give me twenty dollars" (¬p) mean?
 - Does it mean "We are not the best friend" $(\neg p \rightarrow \neg q)$?

Proposition Logic Conditional Statement (imply)

- Example:
- $p \rightarrow q$ and its Contrapositive are *equivalent*
- Given $p \rightarrow q$ Converse and Inverse are equivalent "If it rains, the floor is wet"
- Situation 1 $(\neg p \rightarrow \neg q)$ Inverse If it does not rain, the floor is not wet
- Situation 2 $(q \rightarrow p)$ Converse If the floor is wet, it rains
- Situation 3 ($\neg q \rightarrow \neg p$) Contrapositive If the floor is not wet, it does not rain

Chapter 1.1 & 1.2

Proposition Logic: Conditional Statement Necessary Condition

- To say that p is a *necessary* condition for q, it is impossible to have q without p
 - Example
 - Breathing is necessary condition for human life
 - You cannot find a non-breathing human who is alive
 - Taking a flight is not necessary condition to go to Beijing
 - You can go to Beijing by train, bus...

Proposition Logic: Conditional Statement Sufficient Condition

- To say that p is a *sufficient* condition for q, the presence of p guarantees the presence of q
 - Example
 - Being divisible by 4 is sufficient for being an even number
 - Working hard is not sufficient for having a good examination result

29

Chapter 1.1 & 1.2

Proposition Logic: Conditional Statement Necessary / Sufficient Condition

- Relation between conditional statement and necessary / sufficient condition
 - Necessary Condition
 Sufficient Condition
 - E.g. Breathing is necessary condition for human life

Р	Q	P is necessary condition of Q
Т	Т	Т
Т	F	Т
F	Т	F
F	F	Т

р	q	$\mathbf{p} \rightarrow \mathbf{q}$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

 E.g. Being divisible by 4 is sufficient for being an even number

Ρ	Q	P is sufficient condition of Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- $p \rightarrow q$ is equivalent to:
 - p is sufficient condition of q
 - q is necessary condition of p

Proposition Logic Conditional Statement (imply)

- Other equivalent forms for $P \rightarrow Q$:
 - P is a sufficient condition for Q
 - Q is a necessary condition for P
 - P implies Q
 - If P, then Q
 - If P, Q
 - Q if P
 - Q whenever P
 - P only if Q

P cannot be true when Q is not true Q is necessary condition for P

```
Chapter 1.1 & 1.2
```

Proposition Logic Conditional Statement (imply)

- Remark:
 - No causality is implied in $P \rightarrow Q$
 - P may not cause Q
 - For example:
 - If I have more money than Bill Gates, then a rabbit lives on the moon

Proposition Logic Conditional Statement (imply)

- Example:
 - A mother tells her child that "If you finish your homework, then you can eat the ice-cream"

Proposition Logic Biconditional Statement (equivalent)

- Definition
 - Let *p* and *q* be propositions
 - Biconditional statement is "p if and only if q" (iff)
 - Notation: $p \leftrightarrow q$, p = q, $p \equiv q$
 - Also called bi-implications, equivalence
 - Equivalent to $(p \rightarrow q) \land (q \rightarrow p)$
- Truth value
 - True when p and q have the same truth values
 - False otherwise

р	q	p↔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Proposition Logic Biconditional Statement (equivalent)

- Example:
 - p: "You take the flight"
 - q: "you buy a ticket"
 - What is $p \leftrightarrow q$?
 - You take the flight if and only if you buy a ticket
 - No ticket, no flight
 - No flight, no ticket

Chapter 1.1 & 1.2

Proposition Logic: Conditional Statement Necessary / Sufficient Condition

p is necessary but not sufficient for q

 $q \rightarrow p$

p is sufficient but not necessary for q

$p \rightarrow q$

p is both necessary and sufficient for q

$q \rightarrow p \land p \rightarrow q$ $p \leftrightarrow q$

q is also both necessary and sufficient for p

Proposition Logic

- Remarks:
 - In ordinary speech, words like "or" and "if-then" may have multiple meanings
 - In this technical subject, we assume that
 - "or" means inclusive or (v)
 - "if-then" means implication (\rightarrow)

37

Proposition Logic

Summary

Formal Name	Nickname	<u>Symbol</u>
Negation Operator	NOT	٦
Conjunction Operator	AND	^
Disjunction Operator	OR	\vee
Exclusive-OR Operator	XOR	\oplus
Conditional Statement	Imply	\rightarrow
Biconditional Statement	Equivalent	\leftrightarrow

Proposition Logic

Summary

р	q	ър	p ^ q	p ∨ q	p⊕q	p ightarrow q	$p\leftrightarrowq$
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	F
F	F	Т	F	F	F	Т	Т

Chapter 1.1 & 1.2

Compound Proposition

- Compound Propositions are formed from existing propositions using proposition logical operators
 - Example: Beijing is the capital of China and 1+1=2
- How can we determine the truth values of the complicated compound propositions involving any number of propositional variables?
 - Example:
 - What is the truth value for every situations?

 $\mathsf{p} \to \neg \mathsf{q} \leftrightarrow \mathsf{s} \land \mathsf{q} \oplus \mathsf{p}$

Precedence of Logical Operator

Precedence	Operator	
1	7	NOT
2	Λ	AND
3	\vee \oplus	OR XOR
4	\rightarrow	Imply
5	\leftrightarrow	Equivalent

Example:

•
$$p \lor q \land r$$

• $p \lor (q \land r)$
• $(p \lor q) \land r$
• $(p \lor q) \land r$
• $r \land f$
• $(a \leftrightarrow f) \rightarrow b$
• $(a \leftrightarrow f) \rightarrow b$
• $a \leftrightarrow (f \rightarrow b)$

Chapter 1.1 & 1.2

41

Compound Proposition

Example	
---------	--

1.
$$p \rightarrow \neg q \leftrightarrow s \land q \oplus p$$

2.
$$p \rightarrow (\neg q) \leftrightarrow s \land q \oplus p$$

- 3. $p \rightarrow (\neg q) \leftrightarrow (s \land q) \oplus p$
- 4. $p \rightarrow (\neg q) \leftrightarrow ((s \land q) \oplus p)$
- 5. $(p \rightarrow (\neg q)) \leftrightarrow ((s \land q) \oplus p)$

Precedence	Operator
1	7
2	^
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

• Therefore, $p \rightarrow \neg q \leftrightarrow s \land q \oplus p$ is equal to $(p \rightarrow (\neg q)) \leftrightarrow ((s \land q) \oplus p)$

 Truth tables can be used to determine the truth values of the complicated compound propositions

Algorithm:

- 1. Write down all the combinations of the compositional variables
- 2. Find the truth value of each compound expression that occurs in the compound proposition according to the operator precedence

Chapter 1.1 & 1.2

Compound Proposition

• Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

1	٦
2	^
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

• Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

1	٦
2	^
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

Chapter 1.1 & 1.2

Compound Proposition

• Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

1	٦		
2	^		
3	$\vee \oplus$		
4	\rightarrow		
5	\leftrightarrow		

1	7		
2	^		
3	$\vee \oplus$		
4	\rightarrow		
5	\leftrightarrow		

Compound Proposition

• Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

р	q	S	٦q	s ∧ q	(s ∧ q) ⊕ p
Т	Т	Т	F	Т	F
Т	Т	F	F	F	Т
Т	F	Т	Т	F	Т
Т	F	F	Т	F	Т
F	Т	Т	F	Т	Т
F	Т	F	F	F	F
F	F	Т	Т	F	F
F	F	F	Т	F	F

1	٦			
2	~			
3	$\vee \oplus$			
4	\rightarrow			
5	\leftrightarrow			

• Example $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

р	q	S	P٦	s ∧ q	(s ∧ q) ⊕ p	p → ¬q
Т	Т	Т	F	Т	F	F
Т	Т	F	F	F	Т	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	Т	Т
F	Т	F	F	F	F	Т
F	F	Т	Т	F	F	Т
F	F	F	Т	F	F	Т

1	٦			
2	^			
3	$\vee \oplus$			
4	\rightarrow			
5	\leftrightarrow			

49

Compound Propositio

■ Example: $(p \rightarrow \neg q) \leftrightarrow (s \land q) \oplus p$

→ רק	(p (s	→ ק) ∧ q) ⊕	↔ p
)		5	\leftrightarrow
		4	\rightarrow
		3	∨ ⊕
tioi	1	2	^
		1	7

р	q	S	P [–]	s∧q	(s ∧ q) ⊕ p	p → ¬q	(s ∧ q) ⊕ p
Т	Т	Т	F	Т	F	F	Т
Т	Т	F	F	F	Т	F	F
Т	F	Т	Т	F	Т	Т	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т
F	Т	F	F	F	F	Т	F
F	F	Т	Т	F	F	Т	F
F	F	F	Т	F	F	Т	F

Chapter 1.1 & 1.2

Small Exercise

• $p \lor r \land q \leftrightarrow p \oplus \neg r$

Write down the truth table for the following compound statement:

р	q	ъ	p∧q	p ∨ q	p⊕q	$\mathbf{p} \rightarrow \mathbf{q}$	p ↔ q
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	F
F	F	Т	F	F	F	Т	Т

1	٦			
2	^			
3	$\vee \oplus$			
4	\rightarrow			
5	\leftrightarrow			

Chapter 1.1 & 1.2

☺ Small Exercise ☺

• $p \lor r \land q \leftrightarrow p \oplus \neg r$

•
$$(p \lor (r \land q)) \leftrightarrow (p \oplus (\neg r))$$

р	q	r	٦r	r∧q	p ∨ (r ∧ q)	p ⊕ (¬ r)	$(p \lor (r \land q)) \leftrightarrow (p \oplus (\neg r))$
Т	Т	Т	F	Т	Т	Т	Т
Т	Т	F	Т	F	Т	F	F
Т	F	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	Т	Т	F	F
F	Т	F	Т	F	F	Т	F
F	F	Т	F	F	F	F	Т
F	F	F	Т	F	F	Т	F

 $\begin{array}{c|c}
1 & \neg \\
2 & \land \\
3 & \lor \oplus \\
4 & \rightarrow \\
5 & \leftrightarrow \\
\end{array}$

Translating English Sentences

- Human language is often ambiguous
- Translating human language into compound propositions (logical expression) removes the ambiguity

Chapter 1.1 & 1.2

Translating English Sentences

Algorithm:

- 1. Remove the connective operators
- 2. Let a variable for each complete concept
- 3. Use the operators to connect the variables
- 4. Adding brackets in suitable positions will be helpful
 - p: "You can access the Internet from campus"
 - q: "You are a computer science major"
- Example:
 - s: "You are a freshman"
 - You can access the Internet from campus only if you are a computer science major or you are not a freshman
 p→(q ∨¬s)

Applications System Specifications

- Specifications are the essential part of the system and software engineering
- Specifications should be consistent, otherwise, no way to develop a system that satisfies all specifications
 - Consistence means all specifications can be true

Applications System Specifications

- Example:
 - There are three specifications for a particular system, are they consistent?
 - "The diagnostic message is stored in the buffer or it is retransmitted."
 - "The diagnostic message is not stored in the buffer."
 - If the diagnostic message is stored in the buffer, then it is retransmitted.

Applications System Specifi 3. Use the operators to connect the variables 4. Adding brackets in suitable positions will be helpful

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."
- P: The diagnostic message is stored in the buffer
- Q: The diagnostic message is retransmitted
- These specifications are consistent

Chapter 1.1 & 1.2

57

Applications Logic and Bit Operations

- Information stored in a computer is represented by bits
 - E.g. A = 0100 0001
- Bit = Binary Digit, i.e. 0 or 1 (F or T)
- Logic connectives can be used as bit operation
 - Bitwise OR (∨)
 - the OR of the corresponding bits in the two strings
 - Bitwise AND (^)
 - the AND of the corresponding bits in the two strings
 - Bitwise XOR (⊕)
 - the XOR of the corresponding bits in the two strings

 $\mathbf{P} \vee \mathbf{Q}$ ¬P

P→Q

1. Remove the connective operators 2. Let a variable for each complete concept

Applications Logic and Bit Operations

Example:

1011 0110
0001 1101
1011 1111
0001 0100
1010 1011

Chapter 1.1 & 1.2

Applications Logic Puzzles

- Puzzles that can be solved using logical reasoning are known as logic puzzles
- Can be solved by using rules of logic
- Example:
 - There are two kinds of people on an island
 - Batman: Always tell the truth
 - Joker: Always lie
 - One day, you encounter two peoples A and B.
 - A says "B is a Batman"
 - B says "The two of us are opposite types"
 - What are A and B?

Applications Logic Puzzles

- **Batman**: Always tell the truth
 - Joker: Always lie
- A says "B is a Batman"
- B says "The two of us are opposite types"

Chapter	1.1	&	1.2

Types of Proposition

- Tautology
 - A compound proposition which is always true
 - Example: P \vee \cap P

Contradiction

- A compound proposition which is always false
- Example: P ^ ¬P

Со	nti	ng	en	су
				-

Т

F

• Example: $P \oplus (P \land \neg P)$

Т

F

Р	٦P	P∧¬P
Т	F	F
F	Т	F

F

F

Α	В	Р	Q
	ŧ	Т	F
(++)		F	F
3		F	Т
3	$\mathbf{\tilde{\mathbf{x}}}$	Т	Т

Types of Proposition **Example**

- Are they Tautology, Contradiction or Contingency?
 - $P \rightarrow P$ Tautology
 - $P \oplus P$ Contradiction
 - $P \leftrightarrow P$ Tautology
 - $P \rightarrow Q$ Contingency
 - $\neg P \lor Q$ Contingency
 - $\neg(P \rightarrow Q) \land Q$ Contradiction

Chapter 1.1 & 1.2

Logically Equivalence

- An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value
- We would like to discuss about the equivalences of arguments

Logically Equivalence

Definition

Two propositions P and Q are logically equivalent if $P \leftrightarrow Q$ is a tautology

• Notation: $P \Leftrightarrow Q$ or $P \equiv Q$

Logically Equivalence

- Truth Table can be used to test if compositions are logically equivalent
- Example:
 - if $\neg p \lor q$ and $p \rightarrow q$ are logically equivalent?

Logically Equivalence

• Example:

Show $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

р	q	r	q∧r	py (q∧r)	p∨q	p∨r	(p∨q)∧(p∨r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

Chapter 1.1 & 1.2

67

s

Т

F

Т

F

Т

F

Т

F

q

Т

Т

F

F

Т

Т

F

F

<u>р</u> Т

Т

т

Т

F

F

F

F

Т

F

Logically Equivalence

Characteristic of Truth Table

- Assume *n* is the number of variables, Raw of tables = 2ⁿ
 - E.g. 20 variables, 2²⁰ = 1048576
- Not efficient

р	q
Т	Т
Т	F
F	Т
F	F

- s q Т Т Т Т F Т Т Т Т т F Т Т т F F Т F Т Т F т F Т Т F F Т F Т F F F Т Т Т F F Т Т F Т F Т F F F Т F Т Т F F F Т F F Т F F F F F F
- Besides the Truth Table, we will introduce

a series of logical equivalences

Logically Equivalence

Example:

• Show $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$

Important Equivalences

Identify Laws

$$p \wedge T \equiv p$$
$$p \vee F \equiv p$$

р	Т	$\mathbf{p} \wedge \mathbf{T}$
Т	Т	Т
F	Т	F

р	F	p∨F
Т	F	Т
F	F	F

Domination Laws

р	\vee	Т	≡	Т
р	\wedge	F	≡	F

р	Т	$\mathbf{p} \lor \mathbf{T}$
Т	Т	Т
F	Т	Т

р	F	p∧F
Т	F	F
F	F	F

Idempotent Laws

- $p \lor p \equiv p$
- $p \land p \equiv p$

р	p∨p
Т	Т
F	F

р	p∧p
Т	Т
F	F

Double Negation Law

$$\neg(\neg p) \equiv p$$

р	٦р	(קר)ר
Т	F	Т
F	Т	F

Chapter 1.1 & 1.2

Important Equivalences

Negation Laws

$$p \lor \neg p \equiv T$$

$$p \land \neg p \equiv F$$

р	٦р	p ר ע
Т	F	Т
F	Т	Т

р	٦р	p ^ קר
Т	F	F
F	Т	F

Commutative Laws

 $\mathbf{p} \wedge \mathbf{q} \equiv \mathbf{q} \wedge \mathbf{p}$

р	q	q∨p	q∨p
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

р	q	q∧p	q∧p
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	F	F

Chapter 1.1 & 1.2

73

Important Equivalences

Associative Laws

 $p \lor (q \lor r) \equiv (p \lor q) \lor r$ $p \land (q \land r) \equiv (p \land q) \land r$

р	q	r	q∨r	p ∨ (q∨r)	p∨q	(p∨q) ∨ r
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	Т	Т	F	Т
F	F	F	F	F	F	F

р	q	r	q ∧ r	p ∧ (q∧r)	p ^ d	(p∧q) ∧ r
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	Т	Т	F	F	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

Chapter 1.1 & 1.2

р	q	r	q∧r	p ∨ (q∧r)	p∨q	p∨r	(p∨q) ∧ (p∨r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	F	Т	F
F	F	F	F	F	F	F	F

р	q	r	q∨r	p ∧ (q∨r)	p∧q	p∧r	(p∧q) ∨ (p∧r)
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F
							75

Chapter 1.1 & 1.2

Important Equivalences

How about

p ∧ (p ∨ q) ?
(p ∧ p) ∨ (p ∧ q)
p ∨ (p ∧ q)

Absor	ption	Laws

 $\mathbf{b} \wedge (\mathbf{b} \vee \mathbf{d}) \equiv \mathbf{b}$

р	q	p ^ q	p ∨ (p ∧ q)
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	F
F	F	F	F

р	q	p ∨ q	p ∧ (p ∨ q)
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	F
F	F	F	F

Chapter 1.1 & 1.2

77

Important Equivalences

De Morgan's Laws

 $p \lor q = p \lor q = (p \lor q)^{-1}$ $p \lor q = p \lor q$

р	q	p ∨ q	(p∨q)ר	٦р	٦q	p ר ∧ קר
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

р	q	p ^ q	(p∧q)ר	٦р	٦q	ף ר ∨ קר
Т	Т	Т	F	F	F	F
Т	F	F	F	F	Т	F
F	Т	F	F	Т	F	F
F	F	F	Т	Т	Т	Т

Important Equivale Recall, De Morgan's Laws

 $p \land q \land q = (p \lor q) \land q$

De Morgan's Laws Extension

- $\bullet \neg (\mathbf{p}_1 \lor \mathbf{p}_2 \lor \ldots \lor \mathbf{p}_n) ?$
 - Assume $\mathbf{q} = \mathbf{p}_2 \vee ... \vee \mathbf{p}_n$ $\neg(\mathbf{p}_1 \lor \mathbf{p}_2 \lor \ldots \lor \mathbf{p}_n) = \neg(\mathbf{p}_1 \lor \mathbf{q})$
 - According to De Morgan's Law

$$\neg(\mathbf{p}_{1} \lor \mathbf{q}) = \neg \mathbf{p}_{1} \land \neg \mathbf{q} = \neg \mathbf{p}_{1} \land \neg(\mathbf{p}_{2} \lor ... \lor \mathbf{p}_{n})$$

Chapter 1.1 & 1.2

De Morgan's Laws Extension

Therefore,

$$\neg (\mathbf{p} \lor \mathbf{q}) \equiv \neg \mathbf{p} \land \neg \mathbf{q}$$
$$\neg (\mathbf{p}_1 \lor \mathbf{p}_2 \lor \ldots \lor \mathbf{p}_n) = \neg \mathbf{p}_1 \land \neg \mathbf{p}_2 \land \ldots \land \neg \mathbf{p}_n$$

Similarly,

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p_1 \land p_2 \land \dots \land p_n) = \neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n$$

Chapter 1.1 & 1.2

Identify Laws	$ \begin{array}{l} p \wedge T \equiv p \\ p \vee F \equiv p \end{array} $
Domination Laws	
Idempotent Laws	$p \lor p \equiv p$ $p \land p \equiv p$
Negation Laws	$p \lor \neg p \equiv T$ $p \land \neg p \equiv F$
Double Negation Law	ר) = p(¬p) = p
Commutative Laws	$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$
Associative Laws	$p \lor (q \lor r) \equiv (p \lor q) \lor r$ $p \land (q \land r) \equiv (p \land q) \land r$
Distributive Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Absorption Laws	$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$
De Morgan's Laws	$p \lor q$ ≡ $q = p \land q$ $p \lor q$ = $(p \land q)$ = $q = q$

Some Important Equivalences

- Important equivalences about Implication
 - $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \lor \mathbf{Q}$ You only need to memorize this
 - $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
 - $\mathsf{P} \lor \mathsf{Q} \equiv \neg \mathsf{P} \to \mathsf{Q}$
 - $\mathsf{P} \land \mathsf{Q} \equiv \neg(\mathsf{P} \rightarrow \neg\mathsf{Q})$
 - $\neg(\mathsf{P} \to \mathsf{Q}) \equiv \mathsf{P} \land \neg\mathsf{Q}$
 - $(P \rightarrow Q) \land (P \rightarrow R) \equiv P \rightarrow (Q \land R)$
 - $(P \rightarrow R) \land (Q \rightarrow R) \equiv (P \lor Q) \rightarrow R$
 - $(P \rightarrow Q) \lor (P \rightarrow R) \equiv P \rightarrow (Q \lor R)$
 - $(P \rightarrow R) \lor (Q \rightarrow R) \equiv (P \land Q) \rightarrow R$

Chapter 1.1 & 1.2

$\mathsf{P}\to\mathsf{Q}\equiv\neg\mathsf{Q}\to\neg\mathsf{P}$

Let $P = \neg S$ and $Q = \neg T$ $P \rightarrow Q$ $\equiv \neg P \lor Q$ ** $\equiv \neg (\neg S) \lor \neg T$ Substitution $\equiv S \lor \neg T$ Double Negation Law $\equiv T \rightarrow S$ ** $\equiv \neg Q \rightarrow \neg P$ Substitution

$\mathbf{P} \lor \mathbf{Q} \equiv \neg \mathbf{P} \to \mathbf{Q}$

Let
$$P = \neg S$$

 $P \lor Q$
 $\equiv \neg S \lor Q$ Substitution
 $\equiv S \rightarrow Q$ **
 $\equiv \neg P \rightarrow Q$ Substitution

$$\neg (\mathbf{P} \rightarrow \mathbf{Q}) \equiv \mathbf{P} \land \neg \mathbf{Q}$$
$$\neg (\mathbf{P} \rightarrow \mathbf{Q})$$
$$\equiv \neg (\neg \mathbf{P} \lor \mathbf{Q}) \quad ^{**}$$
$$\equiv \mathbf{P} \land \neg \mathbf{Q} \qquad De Morgan's Laws$$

 $P \land Q \equiv \neg (P \rightarrow \neg Q)$ $P \land Q$ $\equiv \neg (\neg P \lor \neg Q) \quad De Morgan's Laws$ $\equiv \neg (P \rightarrow \neg Q) \quad **$

$$(\mathsf{P}{\rightarrow}\mathsf{Q}){\wedge}(\mathsf{P}{\rightarrow}\mathsf{R})\equiv\mathsf{P}{\rightarrow}(\mathsf{Q}{\wedge}\mathsf{R})$$

$$(P \rightarrow Q) \land (P \rightarrow R)$$

= $(\neg P \lor Q) \land (\neg P \lor R)$ **
= $\neg P \lor (Q \land R)$ Distributive Laws
= $P \rightarrow (Q \land R)$ **

$(\mathsf{P} \rightarrow \mathsf{Q}) \lor (\mathsf{P} \rightarrow \mathsf{R}) \equiv \mathsf{P} \rightarrow (\mathsf{Q} \lor \mathsf{R})$

$$(P \rightarrow Q) \lor (P \rightarrow R)$$

= $(\neg P \lor Q) \lor (\neg P \lor R) **$
= $\neg P \lor \neg P \lor (Q \lor R)$ Associative Laws
= $\neg P \lor (Q \lor R)$ Idempotent Laws
= $P \rightarrow (Q \lor R) **$

** $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \lor \mathbf{Q}$

 $(\mathsf{P} \rightarrow \mathsf{R}) \land (\mathsf{Q} \rightarrow \mathsf{R}) \equiv (\mathsf{P} \lor \mathsf{Q}) \rightarrow \mathsf{P}$

 $(P \rightarrow R) \land (Q \rightarrow R)$ $\equiv (\neg P \lor R) \land (\neg Q \lor R) **$ $\equiv (\neg P \land \neg Q) \lor R \quad Distributive \ Laws$ $\equiv \neg (P \lor Q) \lor R \quad De \ Morgan's \ Laws$ $\equiv (P \lor Q) \rightarrow R **$

$(\mathsf{P} \rightarrow \mathsf{R}) \lor (\mathsf{Q} \rightarrow \mathsf{R}) \equiv (\mathsf{P} \land \mathsf{Q}) \rightarrow \mathsf{P}$

 $(P \rightarrow R) \lor (Q \rightarrow R)$ $\equiv (\neg P \lor R) \lor (\neg Q \lor R) **$ $\equiv (\neg P \lor \neg Q) \lor R \lor R \text{ Associative Laws}$ $\equiv (\neg P \lor \neg Q) \lor R \text{ Idempotent Laws}$ $\equiv \neg (P \land Q) \lor R \text{ De Morgan's Laws}$ $\equiv (P \land Q) \rightarrow R **$

You only need to memorize this

85

Some Important Equivalences

- Important equivalences about if and only if:
 - $\mathsf{P} \leftrightarrow \mathsf{Q} \equiv (\mathsf{P} \rightarrow \mathsf{Q}) \land (\mathsf{Q} \rightarrow \mathsf{P})$
 - $P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$
 - $P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$
 - $\blacksquare \neg (\mathsf{P} \leftrightarrow \mathsf{Q}) \equiv \mathsf{P} \leftrightarrow \neg \mathsf{Q}$

 $\begin{array}{l} \mathsf{P} \leftrightarrow \mathsf{Q} \equiv (\mathsf{P} {\rightarrow} \mathsf{Q}) \land (\mathsf{Q} {\rightarrow} \mathsf{P}) \\ \equiv (\neg \mathsf{P} \lor \mathsf{Q}) \land (\neg \mathsf{Q} \lor \mathsf{P}) \end{array}$

Some Important Equivalences

Chapter 1.1 & 1.2

87

Some Important Equivalences

$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$	** $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \lor \mathbf{Q}$	
Let P=¬S and Q=¬T	$ \begin{array}{c c} \# & P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P) \\ & \equiv (\neg P \lor Q) \land (\neg Q \lor P) \end{array} \end{array} $	
$P \leftrightarrow Q$		
$\equiv (\neg P \lor Q) \land (\neg Q \lor P) ##$		
$\equiv (S \lor \neg T) \land (T \lor \neg S) \qquad \overset{Subs}{\overset{Sub}{\overset{Sub}{\overset{Subs}{\overset{Subs}{\overset{Subs}{\overset{Subs}{\overset{Subs}{\overset{Subs}{\overset{Subs}}{\overset{Subs}{\overset{Subs}}{\overset{Subs}{\overset{Subs}}{\overset{Subs}{\overset{Subs}}{\overset{Subs}{\overset{Subs}{\overset{Subs}}{\overset{Subs}{\overset{Sub}}{\overset{Subs}}{\overset{Subs}{\overset{Subs}}{\overset{Subs}{\overset{Subs}}{\overset{Subs}}{\overset{Subs}}{\overset{Subs}{\overset{Subs}}{\overset{Sub}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	stitution	
$\equiv S \leftrightarrow T $ ##		
$\equiv \neg P \leftrightarrow \neg Q \qquad Substitution$		

Some Important Equivalences

Chapter 1.1 & 1.2