Chapter 1: Logic and Proof
1.1

Propositional Logic
1.2

Propositional
Equivalences
Dr Patrick Chan
School of Computer Science and Engineering
South China University of Technology

Agenda

- Ch1.1 Propositional Logic
- Proposition
- Propositional Operator
- Compound Proposition
- Applications
- Ch1.2 Propositional Equivalences
- Logical Equivalences
- Using De Morgan's Laws
- Constructing New Logical Equivalences

Warm Up...

- John is a cop. John knows first aid. Therefore, all cops know first aid

Warm Up...

- Human walks by two legs. Human is mammal. Mammal walks by two legs.

Warm Up...

- The clock alarm of my iphone does not work today. The clock alarm of iphone does not work on 1-1-2011. So, today is 1-1-2011

Warm Up...

- Some students work hard to study. Some students fail in examination. So, some work hard students fail in examination.

Small Quiz

- Next few pages contain 4 questions
- Write down the answer of each question on a paper
- Remember
- No Discussion
- Do not modify answers you written down

Small Quiz: Question 1

- According to the law, only a person who is elder than 21-year-old can have alcoholic drink
- You are a police. Which person(s) you need to check?

Drink Tea

Drink Beer

23-year-old

19-year-old

Small Quiz: Question 2

- According to a policy of a company, if someone surf the Internet longer than 2 hours, he/she has to earn more than 300k
- You are the boss of this company. Which staff(s) you need to check?

1h Surfing

3h Surfing

Earned 200k Earned 400k

Small Quiz: Question 3

- A company publishes a desk

Each card has two sides: a character and a number

- If one side of a card is a vowel, the number on the other side should be even number
- You are a QC staff. Which card(s) you need to check?

Small Quiz: Question 4

- A company publishes another desk: each card has two sides: a shape and a color
- If one side of a card is a circle, the color on the other side should be yellow
- You are a QC staff. Which card(s) you need to check?

Small Game: Answer

Q1: Only a person who is elder than 21-year-old can have alcoholic drink

Q2: If someone surf the Internet longer than 2 hours, he/she has to earn more than 300 k

Q3: If one side of a card is a vowel, the number on the other side is even number

Q4: If one side of a card is a circle, the color on the other side is yellow

Introduction

- In this chapter, we will explain how to
- make up a correct mathematical argument
- prove the arguments

Propositions

- Proposition (also called statement) is a declarative sentence (declares a fact) that is either true or false, but not both
- Truth value of a proposition is either True/False (T/F) to indicate its correctness
- Example:
- Keep quite \boldsymbol{x} Not declarative
- 1 hour has 50 minutes

False

- 1 + 1 = 3

False

- $x+2=4 \quad<\quad$ Can be either true or false

Can be turned into proposition when x is defined

Propositions

- Proposition Variable is letters denote propositions
- Conventional letters are $p, q, r, s, \ldots \ldots . P, Q, \ldots \ldots$
- Example: r : Peter is a boy
- Proposition Logic is the area of logic that deals with propositions
- Logic Operators
- NOT
- AND
- OR
- XOR
- If... then
(Conditional Statement)
- If and Only If
(Biconditional Statement)

Proposition Logic

Negation Operator (Not)

- Definition
- Let \boldsymbol{p} be a proposition
- Negation of p is the statement "It is not the case that \boldsymbol{p} "
- Notation: $\neg \boldsymbol{p}, \sim \boldsymbol{p}, \overline{\boldsymbol{p}}$
- Read as "not p"
- Truth value
- Opposite of the truth value of p
- Example:
- p: you are a student
- $\neg \boldsymbol{p}$: You are not a student

Proposition Logic

Conjunction Operator (AND)

- Definition
- Let \boldsymbol{p} and \boldsymbol{q} be propositions
- Conjunction of p and q is " \boldsymbol{p} and \boldsymbol{q} "
- Notation: $\boldsymbol{p} \wedge \boldsymbol{q}$
- ^ points up like an "A", which means " \wedge ND"
- Truth value
- True when both \boldsymbol{p} and \boldsymbol{q} are true
- False otherwise
- Example:
- p: Peter likes to play, \boldsymbol{q} : Peter likes to read
- $\boldsymbol{p} \wedge \boldsymbol{q}$: Peter likes to play and Peter likes to read

Proposition Logic

Disjunction Operator (OR)

- Definition
- Let \boldsymbol{p} and \boldsymbol{q} be propositions
- Disjunction of p and q is " \boldsymbol{p} or \boldsymbol{q} "
- Notation: $\boldsymbol{p} \vee \boldsymbol{q}$
" v points up like an "r", means "Ov"
- Truth value
- False when both \boldsymbol{p} and \boldsymbol{q} are false
- True otherwise
- Example:
- p: Peter likes to play, \boldsymbol{q} : Peter likes to read
- $\boldsymbol{p} \vee \boldsymbol{q}$: Peter likes to play or Peter likes to read

Proposition Logic

Disjunction Operator (OR)

- In English, OR has more than one meanings
- Example:
- Jackie is a singer OR Jackie is an actor
- Either one or both (inclusive)
- Disjunction operation (OR, v)
- Jackie is a man OR Jackie is a woman
- Either one but no both (exclusive)
- Exclusive OR operation (\oplus)

Proposition Logic

Exclusive OR Operator (XOR)

- Definition
- Let \boldsymbol{p} and \boldsymbol{q} be propositions
- Notation: $\boldsymbol{p} \oplus \mathbf{q}, \mathbf{p} \neq \boldsymbol{q}, \mathbf{p}+\boldsymbol{q}$
- Truth value
- True when exactly one of \boldsymbol{p} and \boldsymbol{q} is true
- False otherwise
- Example:
- p : You can have a tea, q : You can have a coffee
- $\boldsymbol{p} \oplus \boldsymbol{q}$: You can have a tea or a coffee, but not both (exclusive or)

© Small Exercise ©

- Given
p: "Today is Friday"
q : "It is raining today"
- What is...?
- $7 p$

Today is not Friday
Which is correct? Why?
Tomorrow is Wednesday
Yesterday is Friday
Today is not Monday
They provide more information than " \neg "

$$
\bullet p \wedge q
$$

Today is Friday and it is raining today
$\quad p \vee q$
Today is Friday or it is raining today
$-p \oplus q$
Either today is Friday or it is raining today, but not both

© Small Exercise ;

- Given

$$
p: \text { "x > 50" } \quad q: \text { " } x<100 \text { " }
$$

- What is...?
- -p

$$
x \leq 50
$$

$p \wedge q$
$100>x>50$
$p \vee q$
x can be any number
$-p \oplus q$

$$
x \geq 100 \text { or } x \leq 50
$$

Both q and p is \mathbf{T}

Proposition Logic

Truth Table

- Truth Table displays the relationships between the truth values of propositions
- Example:
- Truth Table of Negation Operation

Proposition Logic

Truth Table

NOT AND OR XOR

\mathbf{p}	\mathbf{q}	$\neg \mathbf{p}$	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \oplus \mathbf{q}$
T	T	F	T	T	F
T	F	F	F	T	T
F	T	T	F	T	T
F	F	T	F	F	F

Proposition Logic

Conditional Statement (imply)

- Definition
- Let \boldsymbol{p} and \boldsymbol{q} be propositions
- Conditional statement is "if p, then q "
- Notation: $\boldsymbol{p} \rightarrow \boldsymbol{q}$
- \boldsymbol{p} is called the hypothesis (or antecedent or premise)
- \boldsymbol{q} is called the conclusion (or consequence)
- Truth value
- False when \boldsymbol{p} is true and \boldsymbol{q} is false
- True otherwise
- Example

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

- \boldsymbol{p} : you work hard, \boldsymbol{q} : you will pass this subject
- $\boldsymbol{p} \rightarrow \boldsymbol{q}$: If you work hard, then you will pass this subject

Proposition Logic

Conditional Statement (imply)

- Example:
- p: "You give me twenty dollars"
- q : "We are the best friends"
- What is $p \rightarrow q$?
- If you give me twenty dollars, then we are the best friends
- Assume $p \rightarrow q$ is true, what does "you do not give me twenty dollars" (\neg) mean?
- Does it mean "We are not the best friend" $(\neg p \rightarrow \neg q)$? $\mathbb{}$

Proposition Logic

Conditional Statement (imply)

- Example:
$p \rightarrow q$ and its Contrapositive are equivalent
- Given $p \rightarrow q \quad$ Converse and Inverse are equivalent "If it rains, the floor is wet"
- Situation $1(\neg p \rightarrow \neg q)$) Inverse If it does not rain, the floor is not wet
- Situation $2(q \rightarrow p)$ Converse If the floor is wet, it rains
- Situation $3(\neg q \rightarrow \neg p) \quad$ Contrapositive If the floor is not wet, it does not rain

Proposition Logic: Conditional Statement

Necessary Condition

- To say that p is a necessary condition for q, it is impossible to have q without p
- Example
- Breathing is necessary condition for human life
- You cannot find a non-breathing human who is alive
- Taking a flight is not necessary condition to go to Beijing
- You can go to Beijing by train, bus...

Proposition Logic: Conditional Statement

Sufficient Condition

- To say that p is a sufficient condition for q, the presence of p guarantees the presence of q
- Example
- Being divisible by 4 is sufficient for being an even number

- Working hard is not sufficient for having a good examination result

Proposition Logic: Conditional Statement

Necessary / Sufficient Condition

- Relation between conditional statement and necessary / sufficient condition
- Necessary Condition
- E.g. Breathing is necessary condition for human life

\mathbf{P}	\mathbf{Q}	\mathbf{P} is necessary condition of \mathbf{Q}
T	T	T
T	F	T
F	T	F
F	F	T

- Sufficient Condition
- E.g. Being divisible by 4 is sufficient for being an even number

\mathbf{P}	\mathbf{Q}	\mathbf{P} is sufficient condition of \mathbf{Q}
T	T	T
T	F	F
F	T	T
F	F	T

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

- $p \rightarrow q$ is equivalent to:
- p is sufficient condition of q
- q is necessary condition of p

Proposition Logic

Conditional Statement (imply)

- Other equivalent forms for $\mathbf{P} \rightarrow \mathbf{Q}$:
- P is a sufficient condition for Q
- Q is a necessary condition for P
- P implies Q
- If P, then Q
- If P, Q
- Q if P
- Q whenever P
- P only if Q
P cannot be true when Q is not true Q is necessary condition for P

Proposition Logic

Conditional Statement (imply)

- Remark:
- No causality is implied in $\mathrm{P} \rightarrow \mathrm{Q}$
- P may not cause Q
- For example:
- If I have more money than Bill Gates, then a rabbit lives on the moon

Proposition Logic

Conditional Statement (imply)

- Example:
- A mother tells her child that "If you finish your homework, then you can eat the ice-cream"
- What does it mean?
- Case 1 ($p \rightarrow q$)
- Homework is finished,

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

- Homework is not finished, you can/cannot eat the ice-cream
- Case 2
- Homework is finished, you can eat the ice-cream
- Homework is not finished, you cannot eat the ice-cream

Proposition Logic

Biconditional Statement (equivalent)

- Definition
- Let \boldsymbol{p} and \boldsymbol{q} be propositions
- Biconditional statement is " p if and only if q " (iff)
- Notation: $\boldsymbol{p} \leftrightarrow \boldsymbol{q}, \boldsymbol{p}=\boldsymbol{q}, \boldsymbol{p} \equiv \boldsymbol{q}$
- Also called bi-implications, equivalence
- Equivalent to $(\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \rightarrow \boldsymbol{p})$
- Truth value
- True when \boldsymbol{p} and \boldsymbol{q} have the same truth values
- False otherwise

\mathbf{p}	\mathbf{q}	$\mathbf{p} \leftrightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	F
F	F	T

Biconditional Statement (equivalent)

- Example:
- p : "You take the flight"
- q : "you buy a ticket"
- What is $p \leftrightarrow q$?
- You take the flight if and only if you buy a ticket
- No ticket, no flight
- No flight, no ticket

Proposition Logic: Conditional Statement

Necessary / Sufficient Condition

- p is necessary but not sufficient for q

$$
q \rightarrow p
$$

- p is sufficient but not necessary for q

$$
p \rightarrow q
$$

- p is both necessary and sufficient for q

$$
q \rightarrow p \wedge p \rightarrow q \quad p \leftrightarrow q
$$

- q is also both necessary and sufficient for p

Proposition Logic

- Remarks:
- In ordinary speech, words like "or" and "if-then" may have multiple meanings
- In this technical subject, we assume that
" "or" means inclusive or (v)
- "if-then" means implication (\rightarrow)

Proposition Logic

- Summary

Formal Name	Nickname	Symbol
Negation Operator	NOT	\neg
Conjunction Operator	AND	\wedge
Disjunction Operator	OR	\vee
Exclusive-OR Operator	XOR	\oplus
Conditional Statement	Imply	\rightarrow
Biconditional Statement	Equivalent	\leftrightarrow

Proposition Logic

- Summary

\mathbf{p}	\mathbf{q}	$\neg \mathbf{p}$	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \oplus \mathbf{q}$	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{p} \leftrightarrow \mathbf{q}$
T	T	F	T	T	F	T	T
T	F	F	F	T	T	F	F
F	T	T	F	T	T	T	F
F	F	T	F	F	F	T	T

Compound Proposition

- Compound Propositions are formed from existing propositions using proposition logical operators
- Example: Beijing is the capital of China and $1+1=2$
- How can we determine the truth values of the complicated compound propositions involving any number of propositional variables?
- Example:
- What is the truth value for every situations?

$$
\mathrm{p} \rightarrow \neg \mathrm{q} \leftrightarrow \mathrm{~s} \wedge \mathrm{q} \oplus \mathrm{p}
$$

Compound Proposition

- Precedence of Logical Operator

Precedence	Operator	
1	\neg	NOT
2	\wedge	AND
3	$\vee \oplus$	OR XOR
4	\leftrightarrow	Imply
5	\leftrightarrow	Equivalent

- Example:
- $p \vee q \wedge r$
- $\neg \mathrm{S} \wedge \mathrm{f}$
- $a \leftrightarrow f \rightarrow b$
- $p \vee(q \wedge r)$
- $(\neg s) \wedge f$
- $\neg(s \wedge f)$
- $(\neg s) \wedge f$
- $\neg(s \wedge f)$
- $(a \leftrightarrow f) \rightarrow b$
- $(p \vee q) \wedge r$
$\sqrt{ }$
- $a \leftrightarrow(f \rightarrow b)$

Compound Proposition

- Example:

1. $p \rightarrow \neg q \leftrightarrow s \wedge q \oplus p$
2. $p \rightarrow(\neg q) \leftrightarrow s \wedge q \oplus p$
3. $p \rightarrow(\neg q) \leftrightarrow(s \wedge q) \oplus p$
4. $p \rightarrow(\neg q) \leftrightarrow((s \wedge q) \oplus p)$
5. $(p \rightarrow(\neg q)) \leftrightarrow((s \wedge q) \oplus p)$

Precedence	Operator
1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

- Therefore,

$$
p \rightarrow \neg q \leftrightarrow s \wedge q \oplus p
$$

is equal to

$$
(p \rightarrow(\neg q)) \leftrightarrow((s \wedge q) \oplus p)
$$

Compound Proposition

- Truth tables can be used to determine the truth values of the complicated compound propositions
- Algorithm:

1. Write down all the combinations of the compositional variables
2. Find the truth value of each compound expression that occurs in the compound proposition according to the operator precedence

Compound Proposition
 - Example: ($\mathrm{p} \rightarrow \rightarrow(\mathrm{q}) \leftrightarrow(\mathrm{s} \wedge q) \oplus p$

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

\mathbf{p}	\mathbf{q}	\mathbf{s}

Compound Proposition

- Example: $(p \rightarrow \neg q) \leftrightarrow(s \wedge q) \oplus p$

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

\mathbf{p}	\mathbf{q}	\mathbf{s}
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

Compound Proposition

- Example: $(p \rightarrow \neg q) \leftrightarrow(s \wedge q) \oplus p$

\mathbf{p}	\mathbf{q}	\mathbf{s}	$\mathbf{q q}$
T	T	T	F
T	T	F	F
T	F	T	T
T	F	F	T
F	T	T	F
F	T	F	F
F	F	T	T
F	F	F	T

Compound Proposition

- Example: $(p \rightarrow \neg q) \leftrightarrow s \wedge q) \oplus p$

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

\mathbf{p}	\mathbf{q}	\mathbf{s}	$\mathbf{f q}$	$\mathbf{s} \wedge \mathbf{q}$
T	T	T	F	T
T	T	F	F	F
T	F	T	T	F
T	F	F	T	F
F	T	T	F	T
F	T	F	F	F
F	F	T	T	F
F	F	F	T	F

Compound Proposition

- Example: $(p \rightarrow \neg q) \leftrightarrow(s \wedge q) \oplus p$

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

\mathbf{p}	\mathbf{q}	\mathbf{s}	$\neg \mathbf{q}$	$\mathbf{s} \wedge \mathbf{q}$	$(\mathbf{s} \wedge \mathbf{q}) \oplus \mathbf{p}$
T	T	T	F	T	F
T	T	F	F	F	T
T	F	T	T	F	T
T	F	F	T	F	T
F	T	T	F	T	T
F	T	F	F	F	F
F	F	T	T	F	F
F	F	F	T	F	F

Compound Proposition

- Example $(p \rightarrow \neg q) \leftrightarrow(s \wedge q) \oplus p$

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

\mathbf{p}	\mathbf{q}	\mathbf{s}	fq	$\mathbf{s} \wedge \mathbf{q}$	$(\mathbf{s} \wedge \mathbf{q}) \oplus \mathbf{p}$	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T	F	T	F	F
T	T	F	F	F	T	F
T	F	T	T	F	T	T
T	F	F	T	F	T	T
F	T	T	F	T	T	T
F	T	F	F	F	F	T
F	F	T	T	F	F	T
F	F	F	T	F	F	T

Chapter 1.1 \& 1.2

Compound Proposition

- Example. $(p \rightarrow \neg q) \leftrightarrow(s \wedge q) \oplus p$

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

\mathbf{p}	\mathbf{q}	\mathbf{s}	$\mathbf{q q}$	$\mathbf{s} \wedge \mathbf{q}$	$(\mathbf{s} \wedge \mathbf{q}) \oplus \mathbf{p}$	$\mathbf{p} \rightarrow \mathbf{q q}$	$(\mathbf{p} \rightarrow \mathbf{q}) \leftrightarrow$ $(\mathbf{s} \wedge \mathbf{q}) \oplus \mathbf{p}$
T	T	T	F	T	F	F	T
T	T	F	F	F	T	F	F
T	F	T	T	F	T	T	T
T	F	F	T	F	T	T	T
F	T	T	F	T	T	T	T
F	T	F	F	F	F	T	F
F	F	T	T	F	F	T	F
F	F	F	T	F	F	T	F

© Small Exercise ${ }^{-}$

- Write down the truth table for the following compound statement:
- $p \vee r \wedge q \leftrightarrow p \oplus \neg r$

\mathbf{p}	\mathbf{q}	$\mathbf{q p}$	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \oplus \mathbf{q}$	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{p} \leftrightarrow \mathbf{q}$
T	T	F	T	T	F	T	T
T	F	F	F	T	T	F	F
F	T	T	F	T	T	T	F
F	F	T	F	F	F	T	T

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\oplus

© Small Exercise ©

$$
\begin{aligned}
& =p \vee r \wedge q \leftrightarrow p \oplus \neg r \\
& =(p \vee(r \wedge q)) \leftrightarrow(p \oplus(\neg r))
\end{aligned}
$$

1	\neg
2	\wedge
3	$\vee \oplus$
4	\rightarrow
5	\leftrightarrow

\mathbf{p}	\mathbf{q}	\mathbf{r}	\mathbf{q}	$\mathbf{r} \wedge \mathbf{q}$	$\mathbf{p} \vee$ $(\mathbf{r} \wedge \mathbf{q})$	$\mathbf{p} \oplus(\neg \mathbf{r})$	$(\mathbf{p} \vee(\mathbf{r} \wedge \mathbf{q})) \leftrightarrow$ $(\mathbf{p} \oplus(\neg \mathbf{r}))$
T	T	T	F	T	T	T	T
T	T	F	T	F	T	F	F
T	F	T	F	F	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	T	T	F	F
F	T	F	T	F	F	T	F
F	F	T	F	F	F	F	T
F	F	F	T	F	F	T	F

Translating English Sentences

- Human language is often ambiguous
- Translating human language into compound propositions (logical expression) removes the ambiguity

Translating English Sentences

- Algorithm:

1. Remove the connective operators
2. Let a variable for each complete concept
3. Use the operators to connect the variables
4. Adding brackets in suitable positions will be helpful
" p: "You can access the Internet from campus"

- Example. " q: "You are a computer science major" Example: " s:"You are a freshman"
- You can access the Internet from campus only if you are a computer science major or you are not a freshman

$$
p \rightarrow(q \vee \neg s)
$$

Applications

System Specifications

- Specifications are the essential part of the system and software engineering
- Specifications should be consistent, otherwise, no way to develop a system that satisfies all specifications
- Consistence means
all specifications can be true

Applications

System Specifications

- Example:
- There are three specifications for a particular system, are they consistent?
- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."

Applications
System Specifi

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."
- P: The diagnostic message is stored in the buffer
- \mathbf{Q} : The diagnostic message is retransmitted
- These specifications are consistent

\mathbf{P}	\mathbf{Q}	$\mathbf{P} \vee \mathbf{Q}$	$\neg \mathbf{P}$	$\mathbf{P} \rightarrow \mathbf{Q}$	$(\mathbf{P} \vee \mathbf{Q}) \wedge$ $(\neg \mathbf{P}) \wedge$ $(\mathbf{P} \rightarrow \mathbf{Q})$
T	T	T	F	T	F
T	F	T	F	F	F
F	T	T	T	T	T
F	F	F	T	T	F

Applications

Logic and Bit Operations

- Information stored in a computer is represented by bits
- E.g. A = 01000001
- Bit = Binary Digit, i.e. 0 or 1 (F or T)
- Logic connectives can be used as bit operation
- Bitwise OR (v)
- the OR of the corresponding bits in the two strings
- Bitwise AND (\wedge)
- the AND of the corresponding bits in the two strings

- Bitwise XOR (\oplus)

- the XOR of the corresponding bits in the two strings

Applications

Logic and Bit Operations

- Example:

A 10110110
 B 00011101

Bit-wise OR 10111111 Bit-wise AND 00010100 Bit-wise XOR 10101011

Applications

Logic Puzzles

- Puzzles that can be solved using logical reasoning are known as logic puzzles
- Can be solved by using rules of logic
- Example:
- There are two kinds of people on an island
" Batman: Always tell the truth
- Joker: Always lie

Applications

Logic Puzzles

Batman: Always tell the truth Joker: Always lie

P " A says " B is a Batman"
Q " B says "The two of us are opposite types"

A	B	P	Q
$\boldsymbol{\infty}$	$\boldsymbol{\infty}$	T	F
$\boldsymbol{\infty}$	F	F	
$\boldsymbol{\infty}$	m	F	T
$\boldsymbol{\infty}$	$\boldsymbol{\infty}$	T	T

Types of Proposition

- Tautology
- A compound proposition which is always true
- Example: $P \vee \neg P$
- Contradiction

P	$\neg \mathrm{P}$	$\mathrm{P} \vee \neg \mathrm{P}$
T	F	T
F	T	T

- A compound proposition which is always false
- Example: $\mathrm{P} \wedge \neg \mathrm{P}$
- Contingency

P	$\neg P$	$P \wedge \neg P$
T	F	F
F	T	F

- A compound proposition which is neither a tautology nor a contradiction
- Example: $\mathrm{P} \oplus(\mathrm{P} \wedge \neg \mathrm{P})$

P	$P \wedge \neg P$	$P \oplus(P \vee \neg P)$
T	F	T
F	F	F

Types of Proposition

Example

- Are they Tautology, Contradiction or Contingency?
$-\mathrm{P} \rightarrow \mathrm{P} \quad$ Tautology
- $\mathrm{P} \oplus \mathrm{P} \quad$ Contradiction
$-\mathrm{P} \leftrightarrow \mathrm{P} \quad$ Tautology
$-\mathrm{P} \rightarrow \mathrm{Q} \quad$ Contingency
- $\neg P \vee Q \quad$ Contingency
- $\neg(P \rightarrow Q) \wedge Q \quad$ Contradiction

Logically Equivalence

- An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value
- We would like to discuss about the equivalences of arguments

Logically Equivalence

- Definition

Two propositions P and Q are logically equivalent if $P \leftrightarrow Q$ is a tautology

- Notation: $\mathrm{P} \Leftrightarrow \mathrm{Q}$ or $\mathrm{P} \equiv \mathrm{Q}$

Logically Equivalence

- Truth Table can be used to test if compositions are logically equivalent
- Example:
if $\neg p \vee q$ and $p \rightarrow q$ are logically equivalent?

p	\mathbf{q}	$\sim \mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T
$\sim \mathbf{p} \vee \mathbf{q} \equiv p \rightarrow q$			

Logically Equivalence

- Example:

Show $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{q} \wedge \mathbf{r}$	$\mathbf{p} / \mathbf{q} \wedge \mathbf{r})$	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \vee \mathbf{r}$	$(\mathbf{p} \vee \mathbf{q) \wedge i p \vee \mathbf { r })}$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	
T	F	T	F	T	T	T	
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	T
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

Logically Equivalence

- Characteristic of Truth Table
- Assume n is the number of variables, Raw of tables $=2^{n}$
- E.g. 20 variables, $2^{20}=1048576$

\mathbf{p}	\mathbf{q}	\mathbf{s}
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

- Not efficient

\mathbf{p}	\mathbf{q}
T	T
T	F
F	T
F	F

- Besides the Truth Table, we will introduce
a series of logical equivalences

\mathbf{p}	\mathbf{q}	\mathbf{s}	\mathbf{T}
T	T	T	T
T	T	T	F
T	T	F	T
T	T	F	F
T	F	T	T
T	F	T	F
T	F	F	T
T	F	F	F
F	T	T	T
F	T	T	F
F	T	F	T
F	T	F	F
F	F	T	T
F	F	T	F
F	F	F	T
F	F	F	F

Logically Equivalence

- Example:
- Show $(p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r)$

$$
\begin{aligned}
& (p \rightarrow q) \vee(p \rightarrow r) \\
& \text { Logical Equivalences } \\
& \equiv(\neg p \vee q) \vee(\neg p \vee r) \\
& \mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q} \\
& \equiv(\neg p \vee \neg p) \vee(q \vee r) \\
& P \vee P \equiv P \\
& P \vee(Q \vee R) \equiv(P \vee Q) \vee R \\
& \equiv \neg p \vee(q \vee r) \\
& \equiv p \rightarrow(q \vee r)
\end{aligned}
$$

Important Equivalences

- Identify Laws

$$
\begin{aligned}
& p \wedge T \equiv p \\
& p \vee F \equiv p
\end{aligned}
$$

\mathbf{p}	\mathbf{T}	$\mathbf{p} \wedge \mathbf{T}$
T	T	T
F	T	F

\mathbf{p}	\mathbf{F}	$\mathbf{p} \vee \mathbf{F}$
T	F	T
F	F	F

- Domination Laws

$$
\begin{aligned}
& p \vee T \equiv T \\
& p \wedge F \equiv F
\end{aligned}
$$

\mathbf{p}	\mathbf{T}	$\mathbf{p} \vee \mathbf{T}$
T	T	T
F	T	T

\mathbf{p}	\mathbf{F}	$\mathbf{p} \wedge \mathbf{F}$
T	F	F
F	F	F

Important Equivalences

- Idempotent Laws

$$
\begin{aligned}
& p \vee p \equiv p \\
& p \wedge p \equiv p
\end{aligned}
$$

\mathbf{p}	$\mathbf{p} \vee \mathbf{p}$
T	T
F	F

\mathbf{p}	$\mathbf{p} \wedge \mathbf{p}$
T	T
F	F

- Double Negation Law

$$
7(-1)=0
$$

\mathbf{p}	$\neg \mathbf{p}$	$\neg(\neg \mathbf{p})$
T	F	T
F	T	F

Important Equivalences

- Negation Laws

$$
\begin{aligned}
& p \vee \neg p \equiv T \\
& p \wedge \neg p \equiv F
\end{aligned}
$$

\mathbf{p}	$\boldsymbol{\sim} \mathbf{p}$	$\mathbf{p} \vee \neg \mathbf{p}$
T	F	T
F	T	T

p	$\neg p$	$p \wedge \neg p$
T	F	F
F	T	F

Important Equivalences

- Commutative Laws

$$
\begin{aligned}
& p \vee q \equiv q \vee p \\
& p \wedge q \equiv q \wedge p
\end{aligned}
$$

\mathbf{p}	\mathbf{q}	$\mathbf{q} \vee \mathbf{p}$	$\mathbf{q} \vee \mathbf{p}$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	F

\mathbf{p}	\mathbf{q}	$\mathbf{q} \wedge \mathbf{p}$	$\mathbf{q} \wedge \mathbf{p}$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	F

Important Equivalences

- Associative Laws

$$
\begin{aligned}
& p \vee(q \vee r) \equiv(p \vee q) \vee r \\
& p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r
\end{aligned}
$$

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{q} \vee \mathbf{r}$	$\mathbf{p} \vee$ $(\mathbf{q} \vee \mathbf{r})$	$\mathbf{p} \vee \mathbf{q}$	$(\mathbf{p} \vee \mathbf{q})$ $\vee \mathbf{r}$
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	T	T	T
T	F	F	F	T	T	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	T	T	F	T
F	F	F	F	F	F	F

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{q} \wedge \mathbf{r}$	$\mathbf{p} \wedge$ $(\mathbf{q} \wedge \mathbf{r})$	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \wedge \mathbf{q})$ $\wedge \mathbf{r}$
T	T	T	T	T	T	T
T	T	F	F	F	T	F
T	F	T	F	F	F	F
T	F	F	F	F	F	F
F	T	T	T	F	F	F
F	T	F	F	F	F	F
F	F	T	F	F	F	F
F	F	F	F	F	F	F

Important Equivalences

- Distributive Laws

$$
\begin{aligned}
& p \vee(r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q) r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{q} \wedge \mathbf{r}$	$\mathbf{p} \vee$ $(\mathbf{q} \wedge \mathbf{r})$	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \vee \mathbf{r}$	$(\mathbf{p} \vee \mathbf{q})$ $\wedge(\mathbf{p} \vee \mathbf{r})$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{q} \vee \mathbf{r}$	$\mathbf{p} \wedge$ $(\mathbf{q} \vee \mathbf{r})$	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \wedge \mathbf{r}$	$(\mathbf{p} \wedge \mathbf{q})$ $\vee(\mathbf{p} \wedge \mathbf{r})$
T	T	T	T	T	T	T	T
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	T
T	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

Chapter 1.1 \& 1.2

Important Equivalences

- How about

```
- \(p \vee(p \wedge q)\) ?
- \(p \wedge(p \vee q) ?\)
\[
\begin{aligned}
& =(p \vee p) \wedge(p \vee q) \\
& =p \wedge(p \vee q)
\end{aligned}
\]
\[
=(p \wedge p) \vee(p \wedge q)
\]
\[
-p \vee(p \wedge q)
\]
```

$$
\begin{aligned}
& \text { Distributive Laws } \\
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

Important Equivalences

Absorption Laws

$$
\begin{aligned}
& p \vee(p \wedge q) \equiv p \\
& p \wedge(p \vee q) \equiv p
\end{aligned}
$$

\mathbf{p}	\mathbf{q}	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \vee(\mathbf{p} \wedge \mathbf{q})$
T	T	T	T
T	F	F	T
F	T	F	F
F	F	F	F

\mathbf{p}	\mathbf{q}	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \wedge(\mathbf{p} \vee \mathbf{q})$
T	T	T	T
T	F	T	T
F	T	T	F
F	F	F	F

Important Equivalences

- De Morgan's Laws

$$
\begin{aligned}
& \neg(p \vee q) \equiv \neg p \wedge \neg q \\
& \neg(p \wedge q) \equiv \neg p \vee \neg q
\end{aligned}
$$

\mathbf{p}	\mathbf{q}	$\mathbf{p} \vee \mathbf{q}$	$\neg(\mathbf{p} \vee \mathbf{q})$	$\neg \mathbf{p}$	$\neg \mathbf{q}$	$\neg \mathbf{p} \wedge \neg \mathbf{q}$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

\mathbf{p}	\mathbf{q}	$\mathrm{p} \wedge \mathbf{q}$	$\neg(\mathrm{p} \wedge \mathbf{q})$	$\neg \mathrm{p}$	$\neg \mathrm{q}$	$\neg \mathrm{p} \vee \neg \mathrm{q}$
T	T	T	F	F	F	F
T	F	F	F	F	T	F
F	T	F	F	T	F	F
F	F	F	T	T	T	T

Important Equivale $\sqrt{\text { Rectal, De Morgan's Laws }}$ $\neg(p \vee q) \equiv \neg p \wedge \neg q$

- De Morgan's Laws Extension

$$
\begin{aligned}
& \neg \neg\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) ? \\
& \quad \text { Assume } q=p_{2} \vee \ldots \vee p_{n} \\
& \quad \neg\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right)=\neg\left(p_{1} \vee q\right)
\end{aligned}
$$

- According to De Morgan's Law

$$
\neg\left(p_{l} \vee q\right)=\neg p_{1} \wedge \neg q=\neg p_{1} \wedge \neg\left(p_{2} \vee \ldots \vee p_{n}\right)
$$

Important Equivale Recall. De Morgans Lave

 $\neg(p \vee q) \equiv \neg p \wedge \neg q$- Assume $\mathbf{s}=p_{3} \vee \ldots \vee p_{n}$

$$
\neg\left(p_{2} \vee p_{3} \vee \ldots \vee p_{n}\right)=\neg\left(p_{2} \vee \mathbf{s}\right)
$$

- According to De Morgan's Law

$$
\neg\left(p_{2} \vee \mathbf{s}\right)=\neg p_{1} \wedge \neg \mathbf{s}=\neg p_{2} \wedge \neg\left(p_{3} \vee \ldots \vee p_{n}\right)
$$

- Therefore,

$$
\neg\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right)=\neg p_{1} \wedge \neg p_{2} \wedge \ldots \wedge \neg p_{n}
$$

Important Equivalences

De Morgan's Laws Extension

- Therefore,

$$
\begin{aligned}
& \neg(p \vee q) \equiv \neg p \wedge \neg q \\
& \neg\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right)=\neg p_{1} \wedge \neg p_{2} \wedge \ldots \wedge \neg p_{n}
\end{aligned}
$$

- Similarly,

$$
\frac{\neg(p \wedge q) \equiv \neg p \vee \neg q}{\neg\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right)=\neg p_{1} \vee \neg p_{2} \vee \ldots \vee \neg p_{n}}
$$

Some Important Equivalences

- Important equivalences about Implication
- $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q} \quad$ You only need to memorize this
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
$-P \vee Q \equiv \neg P \rightarrow Q$
- $P \wedge Q \equiv \neg(P \rightarrow \neg Q)$
- $\neg(P \rightarrow Q) \equiv P \wedge \neg Q$
- $(P \rightarrow Q) \wedge(P \rightarrow R) \equiv P \rightarrow(Q \wedge R)$
- $(P \rightarrow R) \wedge(Q \rightarrow R) \equiv(P \vee Q) \rightarrow R$
- $(P \rightarrow Q) \vee(P \rightarrow R) \equiv P \rightarrow(Q \vee R)$
- $(P \rightarrow R) \vee(Q \rightarrow R) \equiv(P \wedge Q) \rightarrow R$

$$
\begin{aligned}
& \mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{Q} \rightarrow \neg \mathbf{P} \\
& \text { Let } \mathrm{P}=\neg \mathrm{S} \text { and } \mathrm{Q}=\neg \mathbf{T} \\
& \\
& \\
& \mathrm{P} \rightarrow \mathbf{Q} \\
& \equiv \neg \mathbf{P} \vee \mathrm{Q} \quad * * \\
& \equiv \neg(\neg \mathrm{~S}) \vee \neg \mathbf{T} \quad \text { Substitution } \\
& \equiv \mathrm{S} \vee \neg \mathrm{~T} \quad \text { Double Negation Law } \\
& \equiv \mathrm{T} \rightarrow \mathrm{~S} \quad * * \\
& \equiv \neg \mathbf{Q} \rightarrow \neg \mathrm{P} \quad \text { Substitution } \\
& \\
& \neg(\mathbf{P} \rightarrow \mathbf{Q}) \equiv \mathbf{P} \wedge \neg \mathbf{Q} \\
& \\
& \neg(\mathrm{P} \rightarrow \mathrm{Q}) \\
& \equiv \\
& \equiv \\
& \equiv(\neg \mathrm{P} \vee \mathrm{Q}) \quad * * \\
& \equiv \mathrm{P} \wedge \neg \mathrm{Q} \quad \text { De Morgan's Laws }
\end{aligned}
$$

$$
\text { Let } P=\neg S
$$

$$
P \vee Q
$$

$$
\equiv \neg S \vee Q \quad \text { Substitution }
$$

$$
\equiv \mathrm{S} \rightarrow \mathrm{Q}
$$

$$
\equiv \neg \mathrm{P} \rightarrow \mathrm{Q} \quad \text { Substitution }
$$

$$
\mathbf{P} \wedge \mathbf{Q} \equiv \neg(\mathbf{P} \rightarrow \neg \mathbf{Q})
$$

$$
P \wedge Q
$$

$$
\equiv \neg(\neg \mathrm{P} \vee \neg \mathrm{Q}) \quad \text { De Morgan's Laws }
$$

$$
\equiv \neg(\mathrm{P} \rightarrow \neg \mathrm{Q}) \quad * *
$$

$$
\mathbf{P} \vee \mathbf{Q} \equiv \neg \mathbf{P} \rightarrow \mathbf{Q}
$$

$$
\begin{aligned}
& (P \rightarrow Q) \wedge(P \rightarrow R) \equiv P \rightarrow(Q \wedge R) \\
& (P \rightarrow Q) \wedge(P \rightarrow R) \\
& \equiv(\neg \mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{P} \vee \mathrm{R}) \quad{ }^{* *} \\
& \equiv \neg \mathrm{P} \vee(\mathrm{Q} \wedge \mathrm{R}) \quad \text { Distributive Laws } \\
& \equiv P \rightarrow(Q \wedge R) \quad \text { ** } \\
& (P \rightarrow Q) \vee(P \rightarrow R) \equiv P \rightarrow(Q \vee R) \\
& (P \rightarrow Q) \vee(P \rightarrow R) \\
& \equiv(\neg \mathrm{P} \vee \mathrm{Q}) \vee(\neg \mathrm{P} \vee \mathrm{R}) \quad{ }^{* *} \\
& \equiv \neg P \vee \neg P \vee(Q \vee R) \quad \text { Associative Laws } \\
& \equiv \neg \mathrm{P} \vee(\mathrm{Q} \vee \mathrm{R}) \quad \text { Idempotent Laws } \\
& \equiv P \rightarrow(Q \vee R) \quad * * \\
& (P \rightarrow R) \wedge(Q \rightarrow R) \equiv(P \vee Q) \rightarrow P \\
& (P \rightarrow R) \wedge(Q \rightarrow R) \\
& \equiv(\neg \mathrm{P} \vee \mathrm{R}) \wedge(\neg \mathrm{Q} \vee \mathrm{R}){ }^{* *} \\
& \equiv(\neg P \wedge \neg Q) \vee R \quad \text { Distributive Laws } \\
& \equiv \neg(\mathrm{P} \vee \mathrm{Q}) \vee \mathrm{R} \quad \text { De Morgan'sLaws } \\
& \equiv(P \vee Q) \rightarrow R \quad * * \\
& (P \rightarrow R) \vee(Q \rightarrow R) \equiv(P \wedge Q) \rightarrow P \\
& (P \rightarrow R) \vee(Q \rightarrow R) \\
& \equiv(\neg \mathrm{P} \vee \mathrm{R}) \vee(\neg \mathrm{Q} \vee \mathrm{R}) \quad{ }^{* *} \\
& \equiv(\neg P \vee \neg \mathrm{Q}) \vee \mathrm{R} \vee \mathrm{R} \text { Associative Laws } \\
& \equiv(\neg \mathrm{P} \vee \neg \mathrm{Q}) \vee \mathrm{R} \quad \text { Idempotent Laws } \\
& \equiv \neg(P \wedge Q) \vee R \quad \text { De Morgan's Laws } \\
& \equiv(P \wedge Q) \rightarrow R^{* *}
\end{aligned}
$$

$$
{ }^{* *} \mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}
$$

Some Important Equivalences

- Important equivalences about if and only if:
- $P \leftrightarrow Q \equiv(P \rightarrow Q) \wedge(Q \rightarrow P)$
- $P \leftrightarrow Q \equiv(P \wedge Q) \vee(\neg P \wedge \neg Q)$
- $P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$
- $\neg(\mathrm{P} \leftrightarrow \mathrm{Q}) \equiv \mathrm{P} \leftrightarrow \neg \mathrm{Q}$

You only need to memorize this

$$
\begin{aligned}
P \leftrightarrow Q & \equiv(P \rightarrow Q) \wedge(Q \rightarrow P) \\
& \equiv(\neg P \vee Q) \wedge(\neg Q \vee P)
\end{aligned}
$$

Some Important Equivalences

Some Important Equivalences

$$
\begin{aligned}
& \mathbf{P} \leftrightarrow \mathbf{Q} \equiv \neg \mathbf{P} \leftrightarrow \neg \mathbf{Q} \\
& \text { Let } \mathrm{P}=\neg \mathrm{S} \text { and } \mathrm{Q}=\neg \mathbf{T} \\
& \mathrm{P} \leftrightarrow \mathrm{Q} \\
& \equiv(\neg \mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{Q} \vee \mathrm{P}) \quad \text { \#\# } \\
& \equiv(\mathrm{S} \vee \neg \mathrm{~T}) \wedge(\mathrm{T} \vee \neg \mathrm{~S}) \quad \text { Substitution } \\
& \equiv \mathrm{S} \leftrightarrow \mathrm{~T} \quad \# \# \\
& \\
& \equiv \neg \mathrm{P} \leftrightarrow \neg \mathrm{P} \quad \text { Substitution }
\end{aligned}
$$

$$
{ }^{* *} \mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}
$$

$$
\# \# \leftrightarrow Q \equiv(P \rightarrow Q) \wedge(Q \rightarrow P)
$$

$$
\equiv(\neg P \vee Q) \wedge(\neg Q \vee P)
$$

$$
\begin{aligned}
& P \leftrightarrow Q \equiv(P \wedge Q) \vee(\neg P \wedge \neg Q) \\
& P \leftrightarrow Q \\
& \equiv(\neg \mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{Q} \vee \mathrm{P}) \quad \text { \#\# } \\
& \equiv((\neg \mathrm{P} \vee \mathrm{Q}) \wedge \neg \mathrm{Q}) \vee((\neg \mathrm{P} \vee \mathrm{Q}) \wedge \mathrm{P}) \quad \text { Distributive Laws } \\
& \equiv((\neg P \wedge \neg Q) \vee(Q \wedge \neg Q)) \vee((\neg P \wedge P) \vee(Q \wedge P)) \text { Distributive Laws } \\
& \equiv((\neg P \wedge \neg Q) \vee F) \vee(F \vee(Q \wedge P)) \quad \text { Negation Laws } \\
& \equiv(\neg \mathrm{P} \wedge \neg \mathrm{Q}) \vee(\mathrm{Q} \wedge \mathrm{P}) \quad \text { Identify Laws }
\end{aligned}
$$

Some Important Equivalences

$$
\begin{aligned}
& \neg(P \leftrightarrow Q) \equiv P \leftrightarrow \neg Q \\
& \neg(P \leftrightarrow Q) \\
& \equiv \neg((\neg \mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{Q} \vee \mathrm{P})) \\
& \equiv \neg(\neg \mathrm{P} \vee \mathrm{Q}) \vee \neg(\neg \mathrm{Q} \vee \mathrm{P}) \quad \text { De Morgan's Laws } \\
& \equiv(\mathrm{P} \wedge \neg \mathrm{Q}) \vee(\mathrm{Q} \wedge \neg \mathrm{P}) \quad \text { De Morgan's Laws } \\
& \equiv((P \wedge \neg Q) \vee Q) \wedge((P \wedge \neg Q) \vee \neg P) \quad \text { Distributive Laws } \\
& \equiv((\mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{Q} \vee \mathrm{Q})) \wedge((\mathrm{P} \vee \neg \mathrm{P}) \wedge(\neg \mathrm{Q} \vee \neg \mathrm{P})) \text { Distributive Laws } \\
& \equiv(P \vee Q) \wedge T \wedge T \wedge(\neg Q \vee \neg P) \quad \text { Negation Laws } \\
& \equiv(\mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{Q} \vee \neg \mathrm{P}) \quad \text { Identify Laws } \\
& \equiv \mathrm{P} \leftrightarrow \neg \mathrm{Q} \quad \# \#
\end{aligned}
$$

