Discrete Mathematics I Tutorial 08 - Answer

Refer to Chapter 5.6

1. Determine whether the following relations are partial order:
a) "a is taller than b" on the set of all people in the world
b) " $a=b$ or a is an ancestor of b " on the set of all people in the world
c) $(R,=)$
d) (Z, \neq)
e) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
g)

f) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
h)

Answer:
a) No
b) Yes
c) Yes
d) No
e) No
f) Yes
g) No
h) No
2. Let (S, R) be a poset. Show that $\left(S, R^{-1}\right)$ is also a poset.
$\left(\mathrm{S}, \mathrm{R}^{-1}\right)$ is called the dual of (S, R).

Answer:

As R is reflexive:
$\forall a \in S$, we have $(a, a) \in R$,
$\therefore(a, a) \in R^{-1}$
Hence, R^{-1} is reflexive.

As R is antisymmetric:
For $\forall a, b \in S$
If $(a, b) \in R$ and $(b, a) \in R$ then $\mathrm{a}=\mathrm{b}$
Give $(b, a) \in R^{-1}$ and $(a, b) \in R^{-1}$, show $\mathrm{b}=\mathrm{a}$
$(b, a) \in R^{-1}$ implies $(a, b) \in R$
$(a, b) \in R^{-1}$ implies $(b, a) \in R$
Therefore, $\mathrm{a}=\mathrm{b}$
Hence: R^{-1} is antisymmetric.

As R is transitive:
For $\forall a, b, c \in S$
If $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$
Give $(c, b) \in R^{-1}$ and $(\mathrm{b}, a) \in R^{-1}$, show $(c, a) \in R^{-1}$
$(c, b) \in R^{-1}$ implies $(b, c) \in R$
($\mathrm{b}, a) \in R^{-1}$ implies $(a, b) \in R$
Therefore, $(a, c) \in R$, which implies $(c, a) \in R^{-1}$
Hence: R^{-1} is transitive.
3. The poset $\left(S, R^{-1}\right)$ is called the dual of (S, R). Find the duals of these posets.
a) $(\{0,1,2\}, \leq)$
b) (Z, \geq)

Answer:
a) $\{(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)\}$
b) (Z, \leq)
4. Let $S=\{1,2,3,4\}$. With respect to the lexicographic order based on the usual "less than" relation,
a) Find all pairs in $S \times S$ less than $(2,3)$.
b) Find all pairs in $S \times S$ greater than $(3,1)$.
c) Draw the Hasse diagram of the poset ($\mathrm{S} \times \mathrm{S}, \leq$)

Answer:

a) $(1,1),(1,2),(1,3),(1,4),(2,1),(2,2)$
b) $(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)$
c)

$(4,4)$
$(4,3)$
$(4,2)$
$(4,1)$
$(3,4)$
$(3,3)$
$(3,2)$
$(3,1)$
$(2,4)$
$(2,3)$
$(2,2)$
$(2,1)$
$(1,4)$
$(1,3)$
$(1,2)$
$(1,1)$

5. Find the lexicographic ordering of these strings of lower-case English letters:
a) quack, quick, quicksilver, quicksand, quacking
b) open, opener, opera, operand, opened
c) zoo, zero, zoom, zoology, zoological

Answer:

a) quack < quacking < quick < quicksand < quicksilver
b) open $<$ opened $<$ opener $<$ opera $<$ operand
c) zero < zoo < zoological < zoology < zoom
6. Draw the Hasse diagram for divisibility on the set
a) $\{1,2,3,5,7,11,13\}$
b) $\{1,2,3,6,12,24,36,48\}$

Answer:

a)

b)

7. Answer these questions for the poset $(\{3,5,9,15,24,45\}, \mid)$.
a) Find the maximal elements
b) Find the minimal elements
c) Is there a greatest elements?
d) Is there a least elements?
e) Find all upper bounds of $\{3,5\}$.
f) Find the least upper bound of $\{3,5\}$, if it exists
g) Find all lower bounds of $\{15,45\}$
h) Find the greatest lower bound of $\{15,45\}$, if it exists

Answer:

a) 24,45
b) 3,5
c) No
d) No
e) 15,45
f) 15
g) $15,5,3$
h) 15
8. Determine whether these posets are lattices.
a) $(\{1,3,6,9,12\}, \mid)$
b) (Z, \geq)
c) $(P(S), \supseteq)$, where $\mathrm{P}(\mathrm{S})$ is the power set of a set S .

Answer:

a) No (no least upper bound)

b) No (lower bound is not exist)
c) Yes
9. Given $(\{1,2,3,4,6,9,12,18,36\}, \mid)$
a) Suggest the binary operations for \vee and \wedge.
b) Show if it is distributive lattice?
c) Show if it is a complemented lattice?

Answer:

a) $\mathrm{V}=$ Lowest Common Multiple (LCM),
$\wedge=$ Greatest Common Divisor (GCD) / Highest Common Factor (HCF)

Property of HCF and LCM

1) $\mathbf{H C F}(a, b) \times \operatorname{LCM}(a, b)=a \times b$

24, 16
$\operatorname{HCF}(24,16)=8$
$\operatorname{LCM}(24,16)=48$

$$
24 \times 16=384
$$

$$
8 \times 48=384
$$

2) $a=d \times a_{1}$ and $b=d \times b_{1}$, where $\operatorname{HCF}(a, b)=d A N D a_{1}$ and b_{1} are integer

$$
\operatorname{HCF}(24,16)=8
$$

$$
24=8 \times 3
$$

$$
16=8 \times 2
$$

3) $\mathbf{H C F}(\mathbf{a} \times \mathbf{b}, \mathbf{a} \times \mathbf{c})=\mathbf{a} \times \mathbf{H C F}(\mathbf{b}, \mathbf{c})$
$\operatorname{HCF}(24,16)=4 \times \operatorname{HCF}(6,4)=4 \times 2=8$
4) If $b \mid a$ and $c \mid a$, then $\operatorname{LCM}(b, c) \mid a$

2|12 and 3|12
$\operatorname{LCM}(2,3)=6$
6|12
5) If $b \mid a$ and $d \mid c$, then $\operatorname{LCM}(b, d) \mid \operatorname{LCM}(a, c)$

$$
\begin{aligned}
& 3 \mid 12 \text { and } 15 \mid 30 \\
& \operatorname{LCM}(3,15)=15 \\
& \operatorname{LCM}(12,30)=60 \\
& 15 \mid 60
\end{aligned}
$$

6) If $\mathbf{a} \mid \mathrm{b}$ and $\mathbf{a} \mid \mathbf{c}$, then $\mathbf{a} \mid \mathrm{HCF}(b, c)$

```
2|12 and 2|18
HCF}(12,18)=
2|6
```

b) It is distributive lattice.

Prove that for all a, b, c in $\{1,2,3,4,6,9,12,18,36\}$, there exist $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ and $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$

For $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$,
Let $\alpha=a \wedge(b \vee c)=a \wedge \gamma$,

$$
\beta=(a \wedge b) \vee(a \wedge c)=\delta \vee \lambda
$$

$\alpha=\beta$ if $\alpha \mid \beta$ and $\beta \mid \alpha$

Proof of $\boldsymbol{\alpha} \mid \boldsymbol{\beta}$:

As d be HCF of b and c,
$b=b_{1} * d$,
$c=c_{1} * d$,
$\gamma=b \vee c=b_{1} * c_{1} * d$.
As α is HCF of a and γ,
$\gamma=\gamma_{1} * \alpha$,
$a=a_{1} * \alpha$
$a=a_{1} * \alpha$
$\alpha=\frac{\gamma}{\gamma_{1}}=\frac{b_{1} * c_{1} * d}{\gamma_{1}}$.
$a=a_{1} * \alpha=\frac{a_{1} * b_{1} * c_{1} * d}{\gamma_{1}}$

$$
\begin{align*}
\delta & =a \wedge b \\
& =\left(\frac{a_{1} * b_{1} * c_{1} * d}{\gamma_{1}}\right) \wedge\left(b_{1} * d\right) \\
& =\frac{b_{1} * d}{\gamma_{1}}\left(\left(a_{1} * c_{1}\right) \wedge\left(\gamma_{1}\right)\right) \\
& =\frac{b_{1} * d * \delta_{1}}{\gamma_{1}} \tag{9}
\end{align*} \text { where } \delta_{1}=\left(a_{1} * c_{1}\right) \wedge\left(\gamma_{1}\right) .
$$

Property 2 in (a)
Property 1 in (a)

Property 2 in (a)

(4) substituted by (3)
(5) substituted by (6) substituted by (5) \& (1)

Property 3 in (a)

Similarly
$\lambda=a \wedge c$

$$
\begin{align*}
& =\left(\frac{a_{1} * b_{1} * c_{1} * d}{\gamma_{1}}\right) \wedge\left(c_{1} * d\right) \\
& =\frac{c_{1} * d}{\gamma_{1}}\left(\left(a_{1} * b_{1}\right) \wedge\left(\gamma_{1}\right)\right) \\
& =\frac{c_{1} * d * \lambda_{1}}{\gamma_{1}} \tag{11}
\end{align*}
$$

where $\lambda_{1}=\left(a_{1} * b_{1}\right) \wedge\left(\gamma_{1}\right)$

$$
\begin{align*}
& \delta \wedge \lambda \\
& =\frac{b_{1} * d * \delta_{1}}{\gamma_{1}} \wedge \frac{c_{1} * d * \lambda_{1}}{\gamma_{1}} \\
& =\frac{d}{\gamma_{1}}\left(\delta_{1} \wedge \lambda_{1}\right) \tag{13}
\end{align*}
$$

substituted by (5) \& (2)
Property 3 in (a)
substituted by (9) \& (11)
Property 3 in (a) \&
$\underline{b_{1} \wedge c_{1}=1}$ by (1)

$$
\begin{aligned}
\beta & =\delta \vee \lambda \\
& =\frac{\delta * \lambda}{\delta \wedge \lambda} \\
& =\frac{b_{1} * c_{1} * d *\left(\delta_{1} * \lambda_{1}\right)}{\gamma_{1} *\left(\delta_{1} \wedge \lambda_{1}\right)} \\
& =\alpha * \beta_{1}
\end{aligned}
$$

where $\beta_{1}=\frac{\left(\delta_{1} * \lambda_{1}\right)}{\left(\delta_{1} \wedge \lambda_{1}\right)}, \beta_{1}$ is an integer

Property 1 in (a)
substituted by (9), (11) \& (13)
substituted by (6)

Hence $\alpha \mid \beta$.

Proof of $\beta \mid \alpha$:

Since $\delta=(a \wedge b), \delta \mid a$ and $\delta \mid b$ are true Since $\lambda=(a \wedge c), \lambda \mid a$ and $\lambda \mid c$ are true
($\delta|a \operatorname{AND} \lambda| a)$ AND $(\delta \mid b$ AND $\lambda \mid c)$
$\Rightarrow(\delta \vee \lambda)|a A N D(\delta \vee \lambda)|(b \vee c)$
Property 4 \& 5 in (a)
$\Rightarrow \beta \mid a$ AND $\beta \mid \gamma$
$\Rightarrow \beta \mid(a \wedge \gamma)$
$\Rightarrow \beta \mid \alpha$
Hence $\beta \mid \alpha$
Property 6 in (a)

Therefore, $\alpha=\beta$
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$

Similarly, $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ is also true.
c) Not complemented lattice.

Let $\mathrm{L}=\{1,2,3,4,6,9,12,18,36\}$
lub of L is 36 , and glb of L is 1 .
Some elements in L cannot find its complement.
For example, 2. No element in L such that $2 \vee y=36$ and $2 \wedge y=1$

