Discrete Mathematics I Tutorial 08 - Answer

Refer to Chapter 5.6

- 1. Determine whether the following relations are partial order:
 - a) "a is taller than b" on the set of all people in the world
 - b) "a=b or a is an ancestor of b" on the set of all people in the world
 - c) (R, =)d) (Z, ≠) e) $\begin{bmatrix} 1 & 1 \end{bmatrix}$ f) 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 g) h) b a a b

- a) No
- b) Yes
- c) Yes
- d) No
- e) No
- f) Yes
- g) No
- h) No

2. Let (S, R) be a poset. Show that (S, R⁻¹) is also a poset. (S, R⁻¹) is called the dual of (S, R).

Answer:

As R is reflexive: $\forall a \in S$, we have $(a,a) \in R$, $\therefore (a,a) \in R^{-1}$ Hence, R^{-1} is reflexive.

As R is antisymmetric: For $\forall a, b \in S$ If $(a, b) \in R$ and $(b, a) \in R$ then a=b

Give $(b,a) \in R^{-1}$ and $(a,b) \in R^{-1}$, show b=a $(b,a) \in R^{-1}$ implies $(a,b) \in R$ $(a,b) \in R^{-1}$ implies $(b,a) \in R$ Therefore, a=b Hence: R^{-1} is antisymmetric.

As R is transitive: For $\forall a, b, c \in S$ If $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

Give $(c,b) \in R^{-1}$ and $(b,a) \in R^{-1}$, show $(c,a) \in R^{-1}$ $(c,b) \in R^{-1}$ implies $(b,c) \in R$ $(b,a) \in R^{-1}$ implies $(a,b) \in R$ Therefore, $(a,c) \in R$, which implies $(c,a) \in R^{-1}$ Hence: R^{-1} is transitive.

3. The poset (S, R⁻¹) is called the dual of (S, R). Find the duals of these posets. a) $(\{0,1,2\},\leq)$ b) (Z,\geq)

- a) $\{(0,0), (1,0), (1,1), (2,0), (2,1), (2,2)\}$
- b) (Z, ≤)

- 4. Let $S = \{1,2,3,4\}$. With respect to the lexicographic order based on the usual "less than" relation,
 - a) Find all pairs in S x S less than (2,3).
 - b) Find all pairs in S x S greater than (3,1).
 - c) Draw the Hasse diagram of the poset (S x S, \leq)

- a) (1,1), (1,2), (1,3), (1,4), (2,1), (2,2) b) (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4) c) (4,4) (4,3) (4,2) (4,1) (3,4) (3,3) (3,2) (3,1) (2,4) (2,3) (2,2) (2,1) (1,4) (1,3) (1,2)
 - (1,1)

- 5. Find the lexicographic ordering of these strings of lower-case English letters:
 - a) quack, quick, quicksilver, quicksand, quacking
 - b) open, opener, opera, operand, opened
 - c) zoo, zero, zoom, zoology, zoological

- a) quack < quacking < quick < quicksand < quicksilver
- b) open < opened < opener < opera < operand
- c) zero < zoo < zoological < zoology < zoom
- 6. Draw the Hasse diagram for divisibility on the set
 a) {1,2,3,5,7,11,13}
 b) {1,2,3,6,12,24,36,48}

- 7. Answer these questions for the poset $(\{3, 5, 9, 15, 24, 45\}, |)$.
 - a) Find the maximal elements
 - b) Find the minimal elements
 - c) Is there a greatest elements?
 - d) Is there a least elements?
 - e) Find all upper bounds of $\{3, 5\}$.
 - f) Find the least upper bound of $\{3, 5\}$, if it exists
 - g) Find all lower bounds of {15, 45}
 - h) Find the greatest lower bound of {15, 45}, if it exists

- a) 24, 45b) 3, 5
- c) No
- d) No
- e) 15,45
- f) 15
- g) 15, 5, 3
- h) 15

- 8. Determine whether these posets are lattices.
 - a) $(\{1, 3, 6, 9, 12\}, |)$
 - b) (Z,\geq)
 - c) $(P(S), \supseteq)$, where P(S) is the power set of a set S.

b) No (lower bound is not exist)

c) Yes

- 9. Given ({1, 2, 3, 4, 6, 9, 12, 18, 36}, |)
 - a) Suggest the binary operations for V and A.
 - b) Show if it is distributive lattice?
 - c) Show if it is a complemented lattice?

a) V = Lowest Common Multiple (LCM),
 A = Greatest Common Divisor (GCD) / Highest Common Factor (HCF)

Property of HCF and LCM

1) HCF(a,b) \times LCM(a,b) = a \times b

24, 16 HCF(24,16) = 8 LCM(24,16) = 48

 $\begin{array}{l} 24\times 16=384\\ 8\times 48=384 \end{array}$

2) $a = d \times a_1$ and $b = d \times b_1$, where HCF(a,b) = d AND a_1 and b_1 are integer

HCF(24,16) = 8 $24 = 8 \times 3$ $16 = 8 \times 2$

3) HCF($a \times b$, $a \times c$) = $a \times HCF(b, c)$

 $HCF(24,16) = 4 \times HCF(6,4) = 4 \times 2 = 8$

4) If b|a and c|a, then LCM(b,c)|a

2|12 and 3|12 LCM(2,3) = 6 6|12

5) If b|a and d|c, then LCM(b,d)|LCM(a,c)

3|12 and 15|30 LCM(3,15) = 15LCM(12,30) = 6015|60

6) If a|b and a|c, then a|HCF(b,c)

2|12 and 2|18 HCF(12,18) = 62|6

b) It is distributive lattice.

Prove that for all *a*, *b*, *c* in {1, 2, 3, 4, 6, 9, 12, 18, 36}, there exist $a \land (b \lor c) = (a \land b) \lor (a \land c)$ and $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

For $a \land (b \lor c) = (a \land b) \lor (a \land c)$, Let $\alpha = a \land (b \lor c) = a \land \gamma$, $\beta = (a \land b) \lor (a \land c) = \delta \lor \lambda.$

 $\alpha = \beta$ if $\alpha | \beta$ and $\beta | \alpha$

Proof of $\alpha | \beta$:

As d be HCF of b and c ,		
$b=b_1*d,$	(1)	
$c = c_1 * d,$	(2)	Property 2 in (a)
$\gamma = b \lor c = b_1 * c_1 * d.$	(3)	Property 1 in (a)

As α is HCF of a and γ ,

$$\begin{aligned} \gamma &= \gamma_1 * \alpha, \\ a &= a_1 * \alpha \end{aligned} \tag{4}$$

$$a = a_1 * \alpha \tag{5}$$

$$\alpha = \frac{\gamma}{\gamma_1} = \frac{b_1 * c_1 * d}{\gamma_1}.$$
 (6)

$$a = a_1 * \alpha = \frac{a_1 * b_1 * c_1 * d}{\gamma_1}$$
(7)

$$\delta = a \wedge b$$

$$= \left(\frac{a_1 * b_1 * c_1 * d}{\gamma_1}\right) \wedge (b_1 * d)$$

$$= \frac{b_1 * d}{\gamma_1} \left((a_1 * c_1) \wedge (\gamma_1)\right)$$

$$= \frac{b_1 * d * \delta_1}{\gamma_1} \qquad (9)$$
where $\delta_1 = (a_1 * c_1) \wedge (\gamma_1) \qquad (10)$

substituted by (5) & (1)Property 3 in (a)

Property 2 in (a)

(4) substituted by (3)

(5) substituted by (6)

Similarly

$$\lambda = a \wedge c$$

$$= \left(\frac{a_1 * b_1 * c_1 * d}{\gamma_1}\right) \wedge (c_1 * d)$$

$$= \frac{c_1 * d}{\gamma_1} \left((a_1 * b_1) \wedge (\gamma_1)\right)$$

$$= \frac{c_1 * d * \lambda_1}{\gamma_1} \qquad (11)$$
where $\lambda_1 = (a_1 * b_1) \wedge (\gamma_1) \qquad (12)$

substituted by (5) & (2)

Property 3 in (a)

$$\delta \wedge \lambda = \frac{b_1 * d * \delta_1}{\gamma_1} \wedge \frac{c_1 * d * \lambda_1}{\gamma_1} = \frac{d}{\gamma_1} (\delta_1 \wedge \lambda_1)$$
(13)

substituted by (9) & (11) Property 3 in (a) & $b_1 \wedge c_1 = 1$ by (1)

$$\beta = \delta \lor \lambda$$

= $\frac{\delta \ast \lambda}{\delta \land \lambda}$
= $\frac{b_1 \ast c_1 \ast d \ast (\delta_1 \ast \lambda_1)}{\gamma_1 \ast (\delta_1 \land \lambda_1)}$
= $\alpha \ast \beta_1$
where $\beta_1 = \frac{(\delta_1 \ast \lambda_1)}{(\delta_1 \land \lambda_1)}$, β_1 is an integer

Property 1 in (a) substituted by (9) , (11) & (13) substituted by (6)

Hence $\alpha | \beta$.

Proof of $\beta | \alpha$:

Since $\delta = (a \land b)$, $\delta | a$ and $\delta | b$ are true Since $\lambda = (a \land c)$, $\lambda | a$ and $\lambda | c$ are true

$$\begin{array}{l} (\delta | a \ AND \ \lambda | a) \ AND \ (\delta | b \ AND \ \lambda | c) \\ \Rightarrow (\delta \lor \lambda) | a \ AND \ (\delta \lor \lambda) | (b \lor c) \\ \Rightarrow \beta | a \ AND \ \beta | \gamma \\ \Rightarrow \beta | (a \land \gamma) \\ \Rightarrow \beta | \alpha \end{array}$$

$$\begin{array}{l} \text{Property 4 \& 5 in (a)} \\ \text{Property 6 in (a)} \end{array}$$

$$\begin{array}{l} \text{Property 6 in (a)} \\ \text{Property 6 in (a)} \end{array}$$

Therefore, $\alpha = \beta$ $a \land (b \lor c) = (a \land b) \lor (a \land c)$

Similarly, $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ is also true.

c) Not complemented lattice.

Let $L = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ lub of L is 36, and glb of L is 1. Some elements in L cannot find its complement. For example, 2. No element in L such that $2 \lor y = 36$ and $2 \land y = 1$