Discrete Mathematics I Tutorial 07-Answer

Refer to Chapter 5.1, 5.2, 5.3

1. List the ordered pairs in the relation R from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$, where $(a, b) \in R$ if and only if
a) $a=b$
b) $a+b=4$
c) $a>b$

Answer:

a) $\{(0,0),(1,1),(2,2),(3,3)\}$
b) $\{(1,3),(2,2),(3,1),(4,0)\}$
c) $\{(1,0),(2,0),(3,0),(4,0),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)\}$
2. Draw the directed graph and matrix for the following relation:
a) $\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{b})\}$ on the set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
b) $\{(a, a),(a, b),(b, a),(b, b),(c, c),(c, a),(c, d),(d, d)\}$ on the set $A=\{a, b, c, d\}$

Answer:

a)

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

b)

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3. Let R_{1} and R_{2} be relations on a set A represented by the matrices

$$
M_{R_{1}}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \text { and } M_{R_{2}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Find the matrices that represent
a) $R_{2}{ }^{-1}$
b) R_{1}
c) $R_{1} \cup R_{2}$
d) $R_{1} \oplus R_{2}$
e) R_{2} o R_{1}
f) $R_{1}{ }^{2}$

Answer:

a) Matrix for $R_{2}{ }^{-1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
b) Matrix for $\overline{R_{1}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
c) Matrix for $R_{1} \cup R_{2}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
d) Matrix for $R_{1} \oplus R_{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
e) Matrix for R_{2} o $R_{1}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
f) Matrix for $R_{1}{ }^{2}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
4. How many relations are there on the following set:
a) a set 4 elements $\{a, b, c, d\}$
b) a symmetric relation R on the set with n elements?
c) a asymmetric relation R on the set with n elements
d) a irreflexive relation R on the set with n elements

Answer:

a) $2^{4^{2}}=65535$
b) $2^{n(n+1) / 2}$
c) $3^{n(n-1) / 2}$
d) $2^{n(n-1)}$
5. Let R be the relation on the set $\{1,2,3,4,5\}$ containing the ordered pairs $(1,1),(1,2)$, $(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1),(5,2)$, and $(5,4)$. Find
a) R^{2}
b) R^{3}
c) R^{5}

Answer:

a) $R^{2}=\{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3)$, $(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\}$
b) c)

$$
\begin{aligned}
& R^{3}=R^{5} \\
& R=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right) \\
& R^{2}=R \circ R=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R^{3}=R^{2} \circ R=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \\
& R^{5}=R^{4}=R^{3}
\end{aligned}
$$

6. Determine whether the following relation \boldsymbol{R} whether it is symmetric, antisymmetric, asymmetric, transitive, irreflexive and reflexive.
a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$ on set $\{1,2,3,4\}$
b) $\{(2,4),(4,2)\}$ on set $\{1,2,3,4\}$
c) $\{(1,1),(2,2),(3,3),(4,4)\}$ on set $\{1,2,3,4\}$
d) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$ on set $\{1,2,3,4\}$
e) "There are no common links found on both Web page a and Web page b" on the set of all web pages
f) "There is a Web page that includes link to both Web page a and Web page b." on the set of all web pages
g) $x y \geq 0$ on the set of all real numbers
h) $x= \pm y$ on the set of all real numbers
i) $x=1$ or $y=1$ on the set of all real numbers
j) $x-y$ is a rational number on the set of all real numbers
k)
$\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
m)

o)

Answer:

a) transitive
b) symmetric, irreflexive
c) reflexive, symmetric, antisymmetric, transitive
d) irreflexive
e) Symmetric, irreflexive
f) Symmetric, reflexive
g) symmetric,transitive, reflexive
h) symmetric, transitive
i) symmetric
j) symmetric, transitive, reflexive
k) Reflexive, antisymmetric

1) Symmetric, irreflexive
m) Reflexive, Antisymmetric, transitive
n) asymmetric,
o) reflexive, symmetric, transitive
2) Suppose that R and S are reflexive relation on a set A prove or disprove each of these statements
a) $R \cup S$ is reflexive
b) $R-S$ is irreflexive
c) $R \oplus S$ is irreflexive
d) $S \circ R$ is reflexive
```
Answer:
    Given Reflexive
    \(\forall a \in A(a, a) \in R, \forall b \in A(b, b) \in S\)
a) True
    Proof:
    Since \(\forall a \in A(a, a) \in R, \forall b \in A(b, b) \in S\)
    \(\forall a \in A(a, a) \in R \bigcup \mathrm{~S}\)
    So \(R \bigcup S\) are also reflexive
b) True
Proof:
\(\forall a \in A(a, a) \in R,(a, a) \in \mathrm{S}\)
\((a, a) \notin R-\mathrm{S}\)
So \(R-S\) is irreflexive
c) True
Proof:
```

$R \oplus S=R \bigcup S-R \bigcap S$
As $(a, a) \in R \cup \mathrm{~S}$, which is shown in (a). Similarly, $(a, a) \in R \cap \mathrm{~S}$
Therefore, $(a, a) \notin R \bigcup \mathrm{~S}-R \cap \mathrm{~S}$
So $R \oplus S$ is irreflexive
d) True

Proof:
$\forall a, b \in A,(a, b) \in S \circ R$
It means there is a element z , where $(a, z) \in R$ and $(z, b) \in S$

As both S and R are reflexive, for each element a in $\mathrm{A},(a, a) \in R$ and $(a, a) \in S$. Therefore, $S \circ R$ is reflexive

