Discrete Mathematics I Tutorial 04 - Answer

Refer to Chapter 2.1 and 2.2

1. List the members of the set $\{x \mid x \text{ is an integer such that } x^2 = 2\}$.

Answer:

Ø

- 2. Use set builder notation to give a description of each of these sets.
 - a) $\{0, 3, 6, 9, 12\}$
 - b) $\{-3, -2, -1, 0, 1, 2, 3\}$

Answer:

- a) $\{x \mid x = 3n, \text{ where } n \text{ is } 0, 1, 2, 3, 4\}$
- b) $\{x \mid x \text{ is a positive integer and } |x| \le 3\}$
- 3. Determine whether each of these pairs of sets are equal.
 - a) $\{1, 3, 3, 3, 5, 5, 5, 5, 5\}, \{5, 3, 1\}$
 - b) $\{\{1\}\}, \{1, \{1\}\}\}$ c) $\emptyset, \{\emptyset\}$

Answer:

- (a) Yes, for they have the same element
- (b) No, $\{1\}$ is a set, so $\{1,\{1\}\}$ has two elements, while $\{\{1\}\}$ has only one
- (c) No, \emptyset is a element but $\{\emptyset\}$ is a set.
- 4. For each of the following sets, determine whether 2 or $\{2\}$ is an element of that set.
 - a) $\{x \in \mathbf{R} \mid x \text{ is an integer greater than } 1\}$
 - b) $\{x \in \mathbf{R} \mid x \text{ is the square of an integer}\}$
 - c) $\{2,\{2\}\}\$ d) $\{\{2\},\{\{2\}\}\}\$
 - e) $\{\{2\},\{2,\{2\}\}\}\$ f) $\{\{\{2\}\}\}\$

Answer:

	2	{2}
a)	Yes	No
b)	No	No
c)	Yes	Yes
d)	No	Yes
e)	No	Yes
f)	No	No

5.	Determine	whether	these	statements	are	true	or	false.
----	-----------	---------	-------	------------	-----	------	----	--------

a)	$\emptyset \in \{\emptyset\}$
c)	$\{\emptyset\} \in \{\emptyset\}$
e)	$\{\varnothing\} \subset \{\varnothing, \{\varnothing\}\}$
g)	$\{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}\}$

b) $\emptyset \in \{\emptyset, \{\emptyset\}\}\)$ d) $\{\emptyset\} \in \{\{\emptyset\}\}\)$ f) $\{\{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}\}\)$

Answer:

(a) Yes.	(b)	Yes.
(c) No.	(d)	Yes.
(e) Yes.	(f)	Yes.
(g) No		

6. Let A = {a, b, c, d} and B = {y, z}. Find
a) A x B
b) B x A

Answer:

- a) A x B = $\{(a,y),(a,z),(b,y),(b,z),(c,y),(c,z),(d,y),(d,z)\}$
- b) B x A = {(y,a),(y,b),(y,c),(y,d),(z,a),(z,b),(z,c),(z,d)}

7. Explain why A x B x C and (A x B) x C are not the same.

Answer:

Assume $(a,b,c) \in A \times B \times C$, then (a,b,c) is 3-tuple. Assume $((a,b),c) \in (A \times B) \times C$, then ((a,b),c) is 2-tuple. Therefore, they are different. 8. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find

b) $A \cap B$

d) B - A

- a) AUB
- c) A B
- f) $A \oplus B$

Answer:

- a) $A \cup B = \{a,b,c,d,e,f,g,h\}$
- b) $A \cap B = \{a,b,c,d,e\}$
- c) $A-B = \emptyset$
- d) $B-A = \{f,g,h\}$
- f) $A \oplus B = \{f,g,h\}$

- 9. Let A, B, and C be sets. Show that
 - a) $(A \cap B) \subseteq A$.
 - c) $A B \subseteq A$.
 - e) $(A \cup B) \subseteq (A \cup B \cup C)$
 - g) $(A C) \cap (C B) = \emptyset$
- b) $A \subseteq (A \cup B)$. d) $A \cap (B - A) = \emptyset$.
- f) (A B) C = (A C) (B C)
- h) (B A) U (C A) = (B U C) A

Answer:

- a) $(A \cap B) \subseteq A$ Let $x \in (A \cap B)$ $x \in A$ and $x \in B$ Therefore, $x \in A$
- b) $A \subseteq (A \cup B)$ Let $x \in A$ Since $x \in A, x \in A$ or $x \in B$ must be true $x \in A$ or $x \in B$ means $x \in (A \cup B)$
- c) $A-B \subseteq A$ Let $x \in A-B$ $x \in A$ and $x \notin B$ Therefore, $x \in A$
- d) $A \cap (B A) = \emptyset$

$$A \cap (B - A)$$

$$= \{ x \mid (x \in A) \land (x \in B \land x \notin A) \}$$

$$= \{ x \mid (x \in A \land x \in B \land x \notin A) \}$$

$$= \{ x \mid (\emptyset \land x \in B) \}$$

$$= \emptyset$$

e) $(A \cup B) \subseteq (A \cup B \cup C)$

Let $y \in AUB$ $y \in A$ or $y \in B$ Therefore $y \in A$ or $y \in B$ or $y \in C$

f)
$$(A-B)-C = (A-C)-(B-C)$$

$$(A-B) - C$$

= $(A \cap \overline{B}) - C$
= $(A \cap \overline{B}) \cap \overline{C}$
= $A \cap \overline{B} \cap \overline{C}$

(A-C)-(B-C) $= (A \cap \overline{C})-(B \cap \overline{C})$ $= (A \cap \overline{C}) \cap (\overline{B} \cap \overline{C})$ $= (A \cap \overline{C}) \cap (\overline{B} \cup C)$ $= (A \cap \overline{C} \cap \overline{B}) \cup (A \cap \overline{C} \cap C)$ $= (A \cap \overline{C} \cap \overline{B}) \cup \emptyset$ $= A \cap \overline{C} \cap \overline{B}$

So (A-B)-C=(A-C)-(B-C)

- g) $(A C) \cap (C B) = \emptyset$ Let $x \in (A - C) \cap (C - B)$ $x \in (A \cap \overline{C}) \cap (C \cap \overline{B})$ $x \in A \cap \overline{C} \cap C \cap \overline{B}$ $x \in \emptyset$
- h) (B A) U (C A) = (B U C) A.

$$(B U C) - A$$

$$= (B U C) \cap \overline{A}$$

$$= (B \cap \overline{A}) U (C \cap \overline{A})$$

$$= (B - A) U (C - A)$$

- 10. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B \overline{C})$
 - b) $(A \cap \overline{B}) \cup (A \cap \overline{C})$
 - c) $A \subset B$ and $A \subset C$

Discrete Mathematics I – Tutorial 4

11. What can you say about the sets A and B if we know that

- a) A U B = A?
- b) $A \cap B = A$?
- c) A B = A? d) $A \cap B = B \cap A$?
- e) A-B=B-A?

Answer:

- a) $B \subseteq A$
- b) $A \subseteq B$
- c) $A \cap B = \emptyset$
- d) A and B can be any set
- e) A = B
- 12. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i,
 - a) $A_i = \{i, i+1, i+2, ...\}.$
 - b) $A_i = \{0, i\}.$
 - c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.
 - d) $A_i = (i, \infty)$ that is, the set of real numbers x with x > i.

Answer:

a) $\bigcup_{i=1}^{\infty} A_i = N^+$ $\bigcap_{i=1}^{\infty} A_i = \phi$

b)
$$\bigcup_{i=1}^{\infty} A_i = \{ x \mid x \in N^+ \text{ or } x = 0 \}$$
$$\bigcap_{i=1}^{\infty} A_i = \{ 0 \}$$

c)
$$\bigcup_{i=1}^{\infty} A_i = \{ x \in \mathbb{R} \mid x > 0 \}$$
$$\bigcap_{i=1}^{\infty} A_i = \{ x \in \mathbb{R} \mid x \in (0,1) \}$$

d) $\bigcup_{i=1}^{\infty} A_i = \{ \mathbf{x} \in \mathbf{R} \mid x > 1 \}$ $\bigcap_{i=1}^{\infty} A_i = \phi$

Discrete Mathematics I – Tutorial 4

- 13. Suppose that the universal set is $U = \{1,2,3,4,5,6,7,8,9,10\}$. Express each of these sets with bit strings where the ith bit in the string is 1 if i is in the set and 0 otherwise.
 - a) $\{3, 4, 5\}$
 - b) {1, 3, 6, 10}
 - c) $\{2, 3, 4, 7, 8, 9\}$

Answer:

- a) 00111 00000
- b) 10100 10001
- c) 01110 01110