Discrete Mathematics I Tutorial 04-Answer

Refer to Chapter 2.1 and 2.2

1. List the members of the set $\left\{x \mid x\right.$ is an integer such that $\left.x^{2}=2\right\}$.

Answer:

\varnothing
2. Use set builder notation to give a description of each of these sets.
a) $\{0,3,6,9,12\}$
b) $\{-3,-2,-1,0,1,2,3\}$

Answer:
a) $\{\mathrm{x} \mid \mathrm{x}=3 \mathrm{n}$, where n is $0,1,2,3,4\}$
b) $\{x \mid x$ is a positive integer and $|x| \leq 3\}$
3. Determine whether each of these pairs of sets are equal.
a) $\{1,3,3,3,5,5,5,5,5\},\{5,3,1\}$
b) $\{\{1\}\},\{1,\{1\}\}$
c) $\varnothing,\{\varnothing\}$

Answer:
(a) Yes, for they have the same element
(b) No, $\{1\}$ is a set, so $\{1,\{1\}\}$ has two elements, while $\{\{1\}\}$ has only one
(c) No, \varnothing is a element but $\{\varnothing\}$ is a set.
4. For each of the following sets, determine whether 2 or $\{2\}$ is an element of that set.
a) $\{\mathrm{x} \in \boldsymbol{R} \mid \mathrm{x}$ is an integer greater than 1$\}$
b) $\{\mathrm{x} \in \boldsymbol{R} \mid \mathrm{x}$ is the square of an integer $\}$
c) $\{2,\{2\}\}$
d) $\{\{2\},\{\{2\}\}\}$
e) $\{\{2\},\{2,\{2\}\}\}$
f) $\{\{\{2\}\}\}$

Answer:

	2	$\{2\}$
a)	Yes	No
b)	No	No
c)	Yes	Yes
d)	No	Yes
e)	No	Yes
f)	No	No

5. Determine whether these statements are true or false.
a) $\varnothing \in\{\varnothing\}$
b) $\varnothing \in\{\varnothing,\{\varnothing\}\}$
c) $\{\varnothing\} \in\{\varnothing\}$
d) $\{\varnothing\} \in\{\{\varnothing\}\}$
e) $\{\varnothing\} \subset\{\varnothing,\{\varnothing\}\}$
f) $\{\{\varnothing\}\} \subset\{\varnothing,\{\varnothing\}\}$
g) $\{\{\varnothing\}\} \subset\{\{\varnothing\},\{\varnothing\}\}$

Answer:

(a) Yes.
(b) Yes.
(c) No.
(d) Yes.
(e) Yes.
(f) Yes.
(g) No
6. Let $A=\{a, b, c, d\}$ and $B=\{y, z\}$. Find
a) $\mathrm{A} \times \mathrm{B}$
b) BxA

Answer:
a) $\mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{y}),(\mathrm{a}, \mathrm{z}),(\mathrm{b}, \mathrm{y}),(\mathrm{b}, \mathrm{z}),(\mathrm{c}, \mathrm{y}),(\mathrm{c}, \mathrm{z}),(\mathrm{d}, \mathrm{y}),(\mathrm{d}, \mathrm{z})\}$
b) $\mathrm{B} \times \mathrm{A}=\{(\mathrm{y}, \mathrm{a}),(\mathrm{y}, \mathrm{b}),(\mathrm{y}, \mathrm{c}),(\mathrm{y}, \mathrm{d}),(\mathrm{z}, \mathrm{a}),(\mathrm{z}, \mathrm{b}),(\mathrm{z}, \mathrm{c}),(\mathrm{z}, \mathrm{d})\}$
7. Explain why $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$ and $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}$ are not the same.

Answer:

Assume ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) $\in \mathrm{A} \times \mathrm{B} \times \mathrm{C}$, then ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is 3-tuple.
Assume $((\mathrm{a}, \mathrm{b}), \mathrm{c}) \in(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}$, then $((\mathrm{a}, \mathrm{b}), \mathrm{c})$ is 2-tuple.
Therefore, they are different.
8. Let $A=\{a, b, c, d, e\}$ and $B=\{a, b, c, d, e, f, g, h\}$. Find
a) $A \cup B$
b) $A \cap B$
c) $\mathrm{A}-\mathrm{B}$
d) $\mathrm{B}-\mathrm{A}$
f) $\mathrm{A} \oplus \mathrm{B}$

Answer:
a) $\mathrm{A} \cup \mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}\}$
b) $\mathrm{A} \cap \mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
c) $\mathrm{A}-\mathrm{B}=\varnothing$
d) $\mathrm{B}-\mathrm{A}=\{\mathrm{f}, \mathrm{g}, \mathrm{h}\}$
f) $\mathrm{A} \oplus \mathrm{B}=\{\mathrm{f}, \mathrm{g}, \mathrm{h}\}$
9. Let A, B, and C be sets. Show that
a) $(A \cap B) \subseteq A$.
b) $A \subseteq(A \cup B)$.
c) $\mathrm{A}-\mathrm{B} \subseteq \mathrm{A}$.
d) $A \cap(B-A)=\varnothing$.
e) $(\mathrm{A} \cup \mathrm{B}) \subseteq(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
f) $(\mathrm{A}-\mathrm{B})-\mathrm{C}=(\mathrm{A}-\mathrm{C})-(\mathrm{B}-\mathrm{C})$
g) $(\mathrm{A}-\mathrm{C}) \cap(\mathrm{C}-\mathrm{B})=\varnothing$
h) $(\mathrm{B}-\mathrm{A}) \cup(\mathrm{C}-\mathrm{A})=(\mathrm{B} \cup \mathrm{C})-\mathrm{A}$

Answer:

a) $(\mathrm{A} \cap \mathrm{B}) \subseteq \mathrm{A}$

Let $x \in(A \cap B)$
$x \in A$ and $x \in B$
Therefore, $\mathrm{x} \in \mathrm{A}$
b) $A \subseteq(A \cup B)$

Let $x \in A$
Since $x \in A, x \in A$ or $x \in B$ must be true
$x \in A$ or $x \in B$ means $x \in(A \cup B)$
c) $\mathrm{A}-\mathrm{B} \subseteq \mathrm{A}$

Let $x \in A-B$
$x \in A$ and $x \notin B$
Therefore, $\mathrm{x} \in \mathrm{A}$
d) $\mathrm{A} \cap(\mathrm{B}-\mathrm{A})=\varnothing$

$$
\begin{aligned}
& A \cap(B-A) \\
= & \{x \mid(x \in A) \wedge(x \in B \wedge x \notin A)\} \\
= & \{x \mid(x \in A \wedge x \in B \wedge x \notin A)\} \\
= & \{x \mid(\varnothing \wedge x \in B)\} \\
= & \varnothing
\end{aligned}
$$

e) $(\mathrm{A} \cup B) \subseteq(\mathrm{A} U B \cup C)$

Let $\mathrm{y} \in \mathrm{AUB}$
$y \in A$ or $y \in B$
Therefore $y \in A$ or $y \in B$ or $y \in C$
f) $(\mathrm{A}-\mathrm{B})-\mathrm{C}=(\mathrm{A}-\mathrm{C})-(\mathrm{B}-\mathrm{C})$

$$
\begin{aligned}
& (\mathrm{A}-\mathrm{B})-\mathrm{C} \\
& =(\mathrm{A} \cap \bar{B})-\mathrm{C} \\
& =(\mathrm{A} \cap \bar{B}) \cap \bar{C} \\
& =\mathrm{A} \cap \bar{B} \cap \bar{C}
\end{aligned}
$$

(A-C)-(B-C)

$$
=(\mathrm{A} \cap \bar{C})-(\mathrm{B} \cap \bar{C})
$$

$$
=(\mathrm{A} \cap \bar{C}) \cap(B \cap \bar{C})
$$

$$
=\left(\mathrm{A} \cap \bar{C}^{\prime}\right) \cap(\bar{B} \mathrm{UC})
$$

$$
=(\mathrm{A} \cap \bar{C} \cap \bar{B}) \mathrm{U}(\mathrm{~A} \cap \bar{C} \cap \mathrm{C})
$$

$$
=(\mathrm{A} \cap \bar{C} \cap \bar{B}) \mathrm{U} \varnothing
$$

$$
=\mathrm{A} \cap \bar{C} \cap \bar{B}
$$

So (A-B) $-\mathrm{C}=(\mathrm{A}-\mathrm{C})-(\mathrm{B}-\mathrm{C})$
g) $(\mathrm{A}-\mathrm{C}) \cap(\mathrm{C}-\mathrm{B})=\varnothing$

Let $x \in(A-C) \cap(C-B)$
$\mathrm{x} \in(\mathrm{A} \cap \bar{C}) \cap(\mathrm{C} \cap \bar{B})$
$\mathrm{x} \in \mathrm{A} \cap \bar{C} \cap \mathrm{C} \cap \bar{B}$
$x \in \varnothing$
h) $(\mathrm{B}-\mathrm{A}) \cup(\mathrm{C}-\mathrm{A})=(\mathrm{B} \cup \mathrm{C})-\mathrm{A}$.

$$
\begin{aligned}
& (\mathrm{B} \cup \mathrm{C})-\mathrm{A} \\
= & (\mathrm{B} \cup \mathrm{C}) \cap \bar{A} \\
= & (\mathrm{B} \cap \bar{A}) \cup(\mathrm{C} \cap \bar{A}) \\
= & (\mathrm{B}-\mathrm{A}) \cup(\mathrm{C}-\mathrm{A})
\end{aligned}
$$

10. Draw the Venn diagrams for each of these combinations of the sets A, B, and C .
a) $\mathrm{A} \cap(\mathrm{B}-\bar{C})$
b) $(\mathrm{A} \cap \bar{B}) \cup(\mathrm{A} \cap \bar{C})$
c) $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{A} \subset \mathrm{C}$

Answer:
a)

b)

c)

11. What can you say about the sets A and B if we know that
a) $\mathrm{A} \cup \mathrm{B}=\mathrm{A}$?
b) $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$?
c) $\mathrm{A}-\mathrm{B}=\mathrm{A}$?
d) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$?
e) $\mathrm{A}-\mathrm{B}=\mathrm{B}-\mathrm{A}$?

Answer:

a) $\mathrm{B} \subseteq \mathrm{A}$
b) $\mathrm{A} \subseteq \mathrm{B}$
c) $A \cap B=\varnothing$
d) A and B can be any set
e) $\mathrm{A}=\mathrm{B}$
12. Find $\bigcup_{i=1}^{\infty} A_{i}$ and $\bigcap_{i=1}^{\infty} A_{i}$ if for every positive integer i,
a) $A_{i}=\{\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2, \ldots\}$.
b) $A_{i}=\{0, \mathrm{i}\}$.
c) $A_{i}=(0, \mathrm{i})$, that is, the set of real numbers x with $0<\mathrm{x}<\mathrm{i}$.
d) $A_{i}=(\mathrm{i}, \infty)$ that is, the set of real numbers x with $\mathrm{x}>\mathrm{i}$.

Answer:

a) $\bigcup_{i=1}^{\infty} A_{i}=N^{+}$

$$
\bigcap_{i=1}^{\infty} A_{i}=\phi
$$

b) $\bigcup_{i=1}^{\infty} A_{i}=\left\{\mathrm{x} \mid x \in N^{+}\right.$or $\left.x=0\right\}$
$\bigcap_{i=1}^{\infty} A_{i}=\{0\}$
c) $\bigcup_{i=1}^{\infty} A_{i}=\{\mathrm{x} \in \mathrm{R} \mid x>0\}$

$$
\bigcap_{i=1}^{\infty} A_{i}=\{x \in R \mid x \in(0,1)\}
$$

d) $\bigcup_{i=1}^{\infty} A_{i}=\{\mathrm{x} \in \mathrm{R} \mid x>1\}$
$\bigcap_{i=1}^{\infty} A_{i}=\phi$
13. Suppose that the universal set is $U=\{1,2,3,4,5,6,7,8,9,10\}$. Express each of these sets with bit strings where the $\mathrm{i}^{\text {th }}$ bit in the string is 1 if i is in the set and 0 otherwise.
a) $\{3,4,5\}$
b) $\{1,3,6,10\}$
c) $\{2,3,4,7,8,9\}$

Answer:
a) 0011100000
b) 1010010001
c) 0111001110

