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Discrete Mathematics I 
Tutorial 03 - Answer 

 
Refer to Chapter 1.5 and 1.6 

 
 
 
1.  For each of these sets of premises, what relevant conclusion or conclusions can be 

drawn? Explain the rules of inference used to obtain each conclusion from the 
premises.  
a) "If I take the day off, it either rains or snows." "I took Tuesday off or I took 

Thursday off." "It was sunny on Tuesday." "It did not snow on Thursday."  
b) "If I eat spicy foods, then I have strange dreams." "I have strange dreams if there 

is thunder while I sleep." "I did not have strange dreams."  
c) "What is good for corporations is good for the United States." "What is good for 

the United States is good for you." "What is good for corporations is for you to 
buy lots of stuff."  

d) "All rodents gnaw their food." "Mice are rodents." "Rabbits do not gnaw their 
food." "Bats are not rodents." 

 
 
Answer: 
 

a) P(x): I take x off 
 Q(x): x rains.    
 R(x): x snows.    
 
 x (P(x)(Q(x)R(x)))   (P(Tue)P(Thu))   (¬Q(Tue)¬R(Tue))   (¬R(Thu)) 
 
  x (P(x)(Q(x)R(x)))  (P(Tue)P(Thu))   
  (¬Q(Tue)¬R(Tue))    (¬R(Thu)) 
  (P(Tue)(Q(Tue)R(Tue)))  (P(Thu)(Q(Thu)R(Thu)))    
  (P(Tue)P(Thu))  (¬Q(Tue)¬R(Tue))    (¬R(Thu)) 
  ¬P(Tue)  (P(Thu)(Q(Thu)R(Thu)))   (P(Tue)P(Thu))  (¬R(Thu)) 
   (P(Thu)(Q(Thu)R(Thu)))   P(Thu)  (¬R(Thu)) 
   (Q(Thu)R(Thu))  ¬R(Thu) 
   Q(Thu) 

 
It rains on Thursday 
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b) P: I eat spicy foods.    
 Q: I have strange dreams. 
 R: There is a thunder while I sleep. 
 PQ   RQ    ¬Q 
 
  (PQ)  (RQ)  ¬Q 
  ¬Q (PQ) ¬ Q (RQ) 
  ¬P¬ R 
  
 I did not eat spicy foods and there is not thunder while I sleep. 

 
 
 
 

c)  P(x): x is good for corporations.   
 Q(x): x is good for the United States. 
   R(x): x is good for you.   
 S: you buy a lot of stuff.` 
  
 x(P(x) Q(x))   x(Q(x) R(x))  P(S) 
 
  x(P(x) Q(x))   x(Q(x) R(x))  P(S) 
  x(P(x) Q(x)    Q(x) R(x))  P(S) 
  x(P(x)R(x))  P(S) 
  x(P(x) R(x))  P(S) 
  (P(S)  R(S))  P(S) 
  R(S)  
 
 Buying a lot of stuff is good for you. 
 
 
 
 
d)  P(x): x is a rodent.   
 Q(x): x gnaws their food. 
 x(P(x) Q(x))  P(Mice)  ¬Q(Rabbit)  ¬P(Bat) 
 
  x(P(x) Q(x))  P(Mice)  ¬Q(Rabbit)  ¬P(Bat) 
   (P(Mice) Q(Mice))  P(Mice)  
  (P(Rabbit) Q(Rabbit) ¬Q(Rabbit)  
  (P(Bat) Q(Bat)  ¬P(Bat) 
  Q(Mice)  ¬P(Rabbit)  ¬P(Bat) 
 
 Mice gnaw their food. Rabbits are not rodents. 
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2.  For each of these arguments determine whether the argument is correct or incorrect 
and explain why.  
a)  Every computer science major takes discrete mathematics. Natasha is taking 

discrete mathematics. Therefore, Natasha is a computer science major.  
b)  Everyone who eats granola every day is healthy. Linda is not healthy. Therefore, 

Linda does not eat granola every day. 
c)  Quincy likes all action movies. Quincy likes the movie Eight Men Out. Therefore, 

Eight Men Out is an action movie. 
d)  All lobstermen set at least a dozen traps. Hamilton is a lobsterman. Therefore, 

Hamilton sets at least a dozen traps. 
 
 
Answer: 
 

a)  P(x): x is a computer science.    
 Q(x): x takes discrete mathematics. 
  
  x (P(x) Q(x))  Q(Natasha) 
  (P(Natasha)  Q(Natasha))   Q(Natasha) 
  
 P(Natasha) cannot be proved 
 False 
 
 
 
b)  P(x): x eats granola every day.   
 Q(x): x is healthy. 
 
  x (P(x)  Q(x)) ¬Q(Linda) 
  (P(Linda) Q(Linda)) ¬Q(Linda) 
  ¬P(Linda) 
 True 
 
 
 
c)  P(x): x is an action movie.  
 Q(x): x is the movie Quincy likes. 
  
 x(P(x) Q(x))   Q(Eight Men Out) 
 
  x(P(x) Q(x))  Q(Eight Men Out) 
  (P(Eight Men Out) Q (Eight Men Out))  Q(Eight Men Out) 
  
 P(Eight Men Out) cannot be proved 
 False 
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d) P(x): x is a lobstermen 
 Q(x, y): lobstermen x set y dozen traps 
 x y (P(x)  Q(x, y))    P(Hamilton) 
 
  x y (P(x)  Q(x, y))      P(Hamilton) 
  y (P(Hamilton)Q(Hamilton, y))  P(Hamilton) 
  y Q(Hamilton, y) 
 True 

 
 
 
 
 
 
3. Identify the error or errors in this argument that supposedly shows that if  

x (P(x) Q(x)) is true then x P(x)  x Q(x) is true.  
1. x (P(x)  Q(x))    Premise  
2.  P(c)  Q(c)         Universal instantiation from (1)  
3.  P(c)              Simplification from (2)  
4.  x P(x)           Universal generalization from (3)  
5.  Q(c)              Simplification from (2)  
6.  x Q(x)           Universal generalization from (5)  
7.  x P(x)  x Q(x)   Conjunction from (4) and (6)  

 
 
Answer: 
 

Step (3) cannot use simplification since the operator is OR  
 
 
 
 
 
 
4.  Prove or disprove that the sum of two odd integers is even. 
 
 
Answer: 
 

Proof:  
 Assume a, b are two odd integers. 
 There exists two integers m, n such that a=2m+1 and b=2n+1 
 a + b = 2m+1+2n+1 = 2(m+n+1), that means a + b is even 
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5.  Prove or disprove that if x + y ≥ 2,  
 where x and y are real numbers, then x ≥ 1 or y ≥ 1 
 
 
Answer: 
 

Proof:  
 (x + y ≥ 2)  (x ≥ 1)  (y ≥ 1) 
  
  ¬((x ≥ 1)  (y ≥ 1))   ¬(x + y ≥ 2)  
   ((x < 1)  (y < 1))   (x + y < 2)  
  
 Assume x < 1 and y < 1 
 By adding these two inequalities 
  x + y < 1 + 1 
  x + y < 2 
 Therefore, the proof is completed 

 
 
 
 
6. Show that if you pick three socks from a drawer containing just blue socks and black 

socks, you must get either a pair of blue socks or a pair of black socks. 
 
 
Answer: 

P: You must get a pair of same color socks after three socks are picked 
P: You must get at least two socks with the same color after three socks are picked 
  
¬P : We may not get at least two socks with the same color after three socks are 
picked 
 
If ¬P, we need to have more than or equal to three different colors. 
Let Q : we need to have more than or equal to three different colors 
 
However, we only can have two (black or blue). Therefore, Q is not correct 
 
By Proof by Contradiction 
¬P is not correct 
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7. Prove that , 3 2  is irrational. 
 
 
Answer: 

Proof 

 Assume 3 2  is irrational,  

 3 2  = p / q, where p and q have no common factors and q is not equal to 0 
 

 3 2  = p / q 
 2 = p3 / q3 
 2q3 = p3  
  
 As p3 is even, p is also even. 
 Let p = 2m 
 
 2q3 = (2m)3  
 q3 = 4m3 

 
 As q3 is even, q is also even. 
  
 Both p and q have a factor 2. Contradiction is found 

 
 
 
 
 
8.  Show that if n is an integer and n3 + 5 is odd, then n is even using  

a)  a proof by contraposition.  
b)  a proof by contradiction. 

 
Answer: 
 

a) Proof: 
 Assume n is odd, n = 2k+1, where k is an integer 
 n3 + 5 = (2k+1)3 + 5 = 8k3+4k2+2k+6 = 2(4k3+2k2+k+3), where 

4k3+2k2+k+3 is an integer 
 n3 + 5 is even 

 
b) Proof 
  P(x) : p is even 
 
   ¬P(n3+5)  P(n) 
   P(n3+5)  P(n) 
 
   ¬(P(n3+5)  P(n)) 
   ¬P(n3+5)  ¬P(n) 
 
  Assume n3+5 is odd and n is odd 
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 Assume n is odd, n = 2k+1, where k is an integer 
 n3 + 5 = (2k+1)3 + 5 = 8k3+4k2+2k+6 = 2(4k3+2k2+k+3), where 

4k3+2k2+k+3 is an integer 
  Contradict with the assumption 

 
 

 
 
 
 
9. Prove that if n is an integer, n is even and 3n + 1 is odd are equivalent. 
 
 
Answer: 

Proof:  p: n is even.  q:3n+1 is odd 
a) pq 
 Assume “n is even” is true, n = 2k, where k is an integer 
 Therefore, 3n+1 = 3(2k)+1 = 2(3k)+1, 2n+1 is odd 
b) qp 
 Assume “n is even” is false, n = 2k+1, where k is an integer 
 Therefore, 3n+1 = 3(2k+1)+1 = 2(3k+2), 2n+1 is even 

 
 
 
 
10. Show that if n is an odd integer, then there is a unique integer k such that n is the sum 

of k - 2 and k + 3. 
 
 
Answer: 

Proof 
 Existence Part 
  n is an odd integer, n = 2k + 1, where k is an integer 
  n = 2k + 1 + 2 – 2 = (k - 2) + (k + 3)  
 
 Uniqueness Part 
  Let k = r be the solution of n = (k - 2) + (k + 3) 
  (k - 2) + (k + 3) = (r - 2) + (r + 3) 
  2k = 2r 
  k = r 

 This means that if k ≠ r, then n ≠ (k - 2) + (k + 3) 
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11. Prove or disprove that if m and n are integers such that mn = 1, then either m = 1 and 
n = 1, or else m = -1 and n = -1. 

 
 
Answer: 
 

Proof:  
 (mn = 1)  (n=1  m=1)  (n=-1  m=-1) 
 
 By Proof by Contradiction 
  ¬ (¬(mn = 1)  ((n=1  m=1)  (n=-1  m=-1))  
  ¬ (¬(mn = 1)  ((n=1  m=1)  (n=-1  m=-1))  
  (mn = 1)  ¬ ((n=1  m=1)  (n=-1  m=-1) 
  (mn = 1)  (¬((n=1  m=1)  ¬(n=-1  m=-1))) 
  (mn = 1)  (n≠1  m≠1)  (n≠-1  m≠-1) 
 
 For (n≠1  m≠1), there are three situations: 
 1) n=1, m≠1: m (1) = 1, and m = 1, contradiction 
 2) m=1, n≠1: n (1) = 1, and n = 1, contradiction 
 3) m≠1, n≠1:  
  mn=1, n=1/m, since m≠1, n is not an integer,  contradiction 
  mn=1, m=1/n, since n≠1, m is not an integer,  contradiction 
 
 Similar to (n≠-1  m≠-1) 

 
 Therefore, ¬ (¬(mn = 1)  ((n=1  m=1)  (n=-1  m=-1)) is false 
 
 
 
 
12. Use a proof by cases to show that min(a, min(b, c)) = min(min(a, b), c) whenever a, b, 

and c are real numbers. 
 
 
Answer: 
 min(a, min(b, c)) = min(min(a, b), c) 
 

Proof: 
 (1) a ≤ b ≤ c, LHS = a, RHS = a 
 (2) a ≤ c ≤ b, LHS = a, RHS = a 
 (3) b ≤ a ≤ c, LHS = b, RHS = b 
 (4) b ≤ c ≤ a, LHS = b, RHS = b 
 (5) c ≤ a ≤ b, LHS = c, RHS = c 
 (6) c ≤ b ≤ a, LHS = c, RHS = c 
 
Therefore, the proof is finished 
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13. Prove that there are no solutions in integers x and y to the equation 2x2 + 5y2 = 14. 
 
 
Answer: 

Proof 
 Assume there exist integers x and y such that 2x2 + 5y2 = 14 
 
 Since 2x2 and 5y2 must be positive number, 
  2x2 ≤ 14 and 5y2 ≤ 14 
  x2 ≤ 7 and y2 ≤ 2.8 
  
 x may be equal to -2, -1, 0, 1, 2 
 y may be equal to -1, 0, 1 
  
 Substitute the largest value of x and y, 2 and 1, to the LHS 
 2x2 + 5y2 = 2 x 4 + 5 = 13 ≤ 14 
 
 No solution can be found. 
 

 
 


