Data Structure Chapter 6

Non-Binary Trees

Dr. Patrick Chan
School of Computer Science and Engineering
South China University of Technology

Outline

- Non-Binary (General) Tree (Ch 6.1)
- Parent Pointer Implementation (Ch 6.2)
- List of Children Implementation (Ch 6.3.1)
- Left-Child/Right-Sibling Implementation (Ch 6.3.2)
- Dynamic Left-Child/Right-Sibling Implementation (Ch 6.3.4)
- Dynamic Node Implementation (Ch 6.3.3)
- *K*-ary Trees (Ch 6.4)
- Sequential Tree Implementation (Ch 6.5)

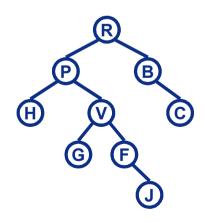
Lec 6: Non-Binary Tree

.

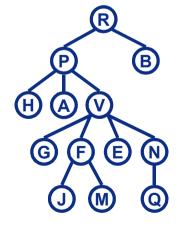
General Tree (Non-binary Tree)

- A tree T is a finite set of one or more nodes such that there is one designated node R called the root of T
- The remaining nodes in (T {R}) are partitioned into n ≥ 0 disjoint subsets T₁, T₂, ..., T_k, each of which is a tree, and whose roots R₁, R₂, ..., R_k, respectively, are children of R

General Tree



Binary Tree
- Two. one or zero child

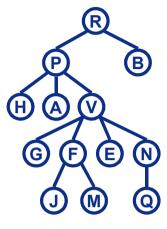


General Tree
- Any number of child

Lec 6: Non-Rinary Tree

General Tree

- To maintain the structure of Binary Tree, each node has
 - Left child pointer
 - Right child pointer
- How about General Tree?



Lec 6: Non-Binary Tree

General Tree Node: ADT // General tree node ADT template <class Elem> class GTNode { public: GTNode (const Elem&); // Constructor // Destructor ~GTNode(); Elem value(); // Return value bool isLeaf(); // TRUE if is a leaf GTNode* leftmost child(); // First child GTNode* right sibling(); // Right sibling // Set value void setValue(Elem&); void insert first(GTNode<Elem>* n): void insert next(GTNode<Elem>* n); void remove first(): // Remove first child void remove next(); // Remove sibling Lec 6: Non-Binary Tree

General Tree: ADT

```
// General Tree ADT
template <class Elem> class GenTree {
private:
  void printhelp(GTNode*); // Print helper function
public:
                             // Constructor
  GenTree();
  ~GenTree();
                             // Destructor
                             // Send nodes to free store
  void clear();
  GTNode* root();
                             // Return the root
                             // Combine two subtrees
  void newroot(ELEM, GTnode *, GTnode *);
                             // Print a tree
  Void print();
};
```

General Tree: Traversal 1

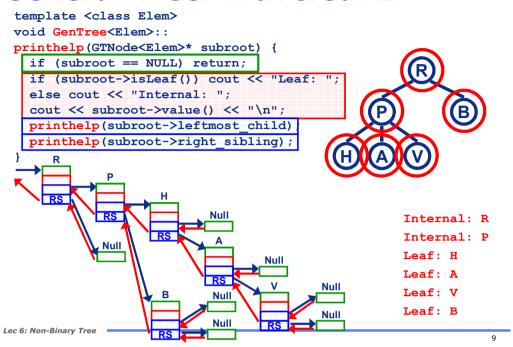
```
template <class Elem>
   void GenTree<Elem>::
   printhelp(GTNode<Elem>* subroot) {
     if (subroot->isLeaf()) cout << "Leaf: ";</pre>
     else cout << "Internal: ";</pre>
     cout << subroot->value() << "\n";</pre>
     for (GTNode<Elem>* temp =
           subroot->leftmost child();
           temp != NULL;
           temp = temp->right sibling())
       printhelp(temp);
                                                  Internal: R
                                                  Internal: P
                                                  Leaf: H
                                                  Leaf: A
                                                  Leaf: V
                                                  Leaf: B
                   temp = V
Lec 6: Non-Binary Tree
```

Lec 6: Non-Binary Tree

Lec 6: Non-Binary Tree

7

General Tree: Traversal 2



General Tree: Implementation

- Parent Pointer Implementation
- List of Children Implementation
- Left-Child/Right-Sibling Implementation
- Dynamic Left-Child/Right-Sibling Implementation
- Dynamic Node Implementation

Parent Pointer Implementation

Only storing pointer may be the simplest general tree implementation

	0	1	2	3	4	5	6	7	8	9	10	
Parent		0	0	1	1	1	2		7	7	7	
Label	R	Α	В	С	D	Ε	F	W	Х	Υ	Z	

Good for answering the question

Are these two nodes in the same tree?

Parent Pointer Implementation **Equivalence Class**

Lec 6: Non-Binary Tree

- Assigning the members of a set to disjoint subsets called equivalence classes
 - E.g.
 Object A and B are equivalent
 Object B and C are equivalent
 Object A and C must be equivalence
- UNION/FIND implementation
 - Check if two objects are equivalent: differ
 - Set "two objects are equivalent": UNION

·

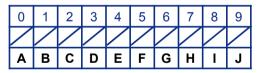
Lec 6: Non-Binary Tree _______ Lec 6: Non-Binary Tree ______

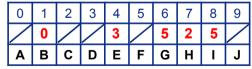
Parent Pointer Implementation

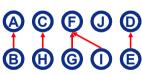
```
class Gentree { // Gentree for UNION/FIND
private:
                             // Node array
  int* array;
  int size:
                             // Size of node array
  int FIND (int) const:
                             // Find root.
public:
                             // Constructor
  Gentree(int);
  ~Gentree() { delete [] array; } // Destructor
                             // Merge equivalences
  void UNION (int, int);
                             // TRUE if not in same tree
  void differ (int, int);
```

Lec 6: Non-Binary Tree

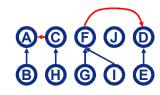
Parent Pointer Implementation **Equivalence Class: Example**







(A, H) (E, G)



Parent Pointer Implementation

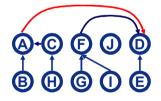
```
int Gentree::FIND(int curr) const {
  while (array[curr]!=ROOT) curr = array[curr];
  return curr; // At root
// Return TRUE if nodes in different trees
bool Gentree::differ(int a, int b) {
  int root1 = FIND(a); // Find root for a
  int root2 = FIND(b): // Find root for b
  return root1 != root2; // Compare roots
void Gentree::UNION(int a, int b) {
  int root1 = FIND(a); // Find root for a
  int root2 = FIND(b); // Find root for b
  if (root1 != root2) array[root2] = root1;
              Parent
                                       Ε
                              вс
                                    D
              Label
```

Lec 6: Non-Binary Tree

Parent Pointer Implementation Equivalence Class: Example

(E, H)

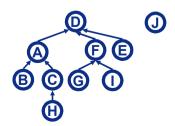
0	1	2	3	4	5	6	7	8	9
3	0	0		3	3	5	2	5	$\overline{}$
Α	В	С	D	Ε	F	G	Н	Ι	J



Is (A, B)? Yes

Is (H, D)? Yes

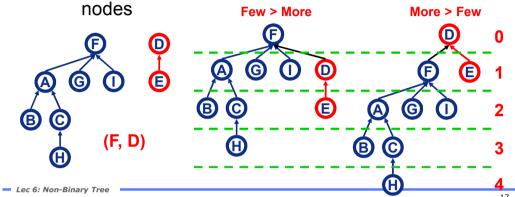
Is (J, I)? No



Lec 6: Non-Binary Tree Lec 6: Non

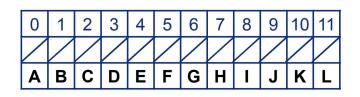
Parent Pointer Implementation Equivalence Class: Reduce the cost

- The search cost can decrease by reducing the height of the tree
 - Weighted Union Rule
 - Join the tree with fewer nodes to the tree with more



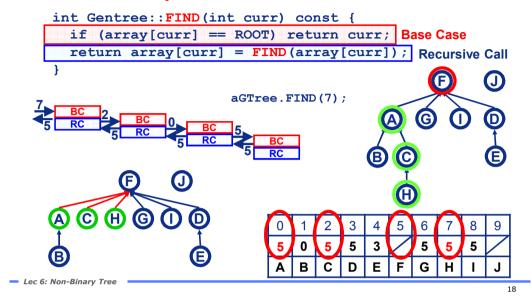
☼ Small Exercise!!!!

- (A, C) If (A, I)?
- (D, F) If (J, B)?
- (L, A) If (K, J)?
- (H, A) If (L, H)?
- (I, L) (path compression)
- (F, B)
- (G, H)
- (J, K)

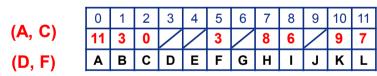


Parent Pointer Implementation Equivalence Class: Reduce the cost

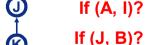
Path Compression



○ Small Exercise!!!! ○



- (H, A)
- (I, L)
- (F, B)
- (G, H)
- (J, K)

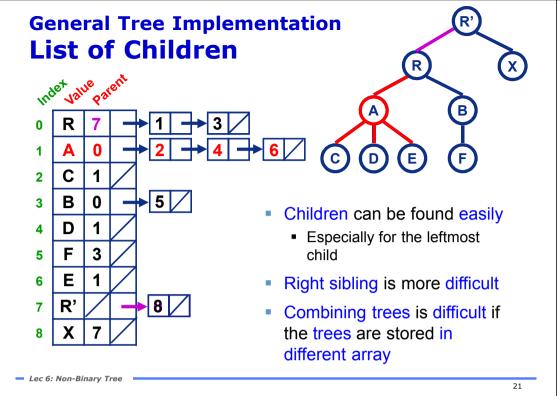


Yes

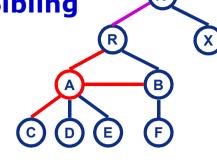
No

Yes

Lec 6: Non-Binary Tree

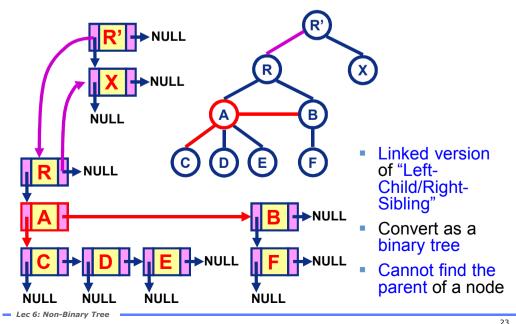


General Tree Implementation Left-Child/Right-Sibling В



- Improved version of "List of Children"
 - Right sibling pointer is added
 - More space efficient as each node requires a fixed amount of space
 - Combining trees is difficult if the trees are stored in different array

General Tree Implementation Dynamic "Left-Child/Right-Sibling"



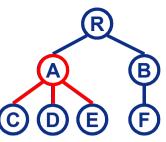
General Tree Implementation Dynamic Node

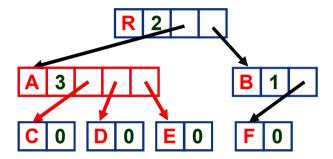
- Allocate variable space for each node
- Two implementation methods:
 - Array-based List
 - Linked List

22

Dynamic Node

- Allocate an array of child pointers as part of the node
- Assume the number of children is known when the node is created

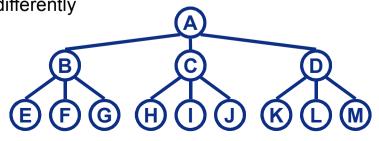




Lec 6: Non-Binary Tree

K-ary Trees

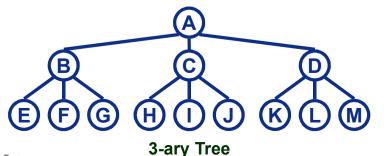
- Easy to implement relatively
 - Many properties of binary trees can be extended
 - When K becomes large, the potential number of NULL pointers increase
 - Internal and leaf nodes should be implemented differently



3-ary Tree

K-ary Trees

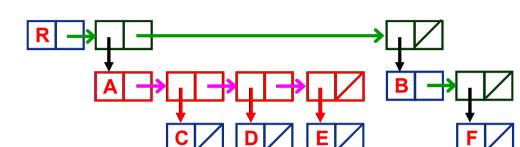
- K-ary Trees are trees with nodes have at most K children
 - e.g. Binary Tree, K = 2General Tree, $K = \inf$



Dynamic Node

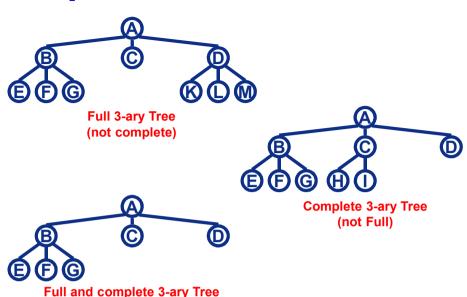
Store a linked list of child pointers with each node

 More flexible (no assumption on number of child) but require more space



Lec 6: Non-Binary Tree

K-ary Trees



Sequential Tree Implementations

- Fundamentally different approach to implementing trees
- Store a series of node values with the minimum information needed to reconstruct the tree structure
 - Preorder traversal is used

Lec 6: Non-Binary Tree

30

Sequential Tree Implementations

For Binary Trees (preorder traversal),

ABCDEFHIJ

Do not have enough information to reconstruct the tree

ABC///DE/F//HI//J//

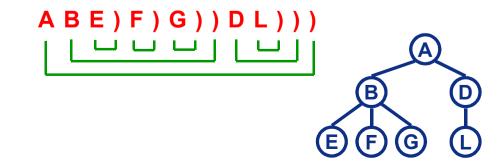
• NULL pointer should also be added "/"

A' B' C / D' E' / F H' I J

- Add ' to the internal node
- Remove the "/" (NULL pointer) of the leaf node

Sequential Tree Implementations

- For General Tree,
 - ")" indicates when a node's child list has come to an end



Sequential Tree Implementations

- Space/Time Tradeoff
 - Space saving
 - No pointer is needed
 - Lost the benefit of tree
 - **Tree:** Efficient access O(log₂n)
 - **Sequential Tree:** Sequential access O(n)

Lec 6: Non-Binary Tree

33