Data Structure
Chapter 6

Non-Binary Trees

Dr. Patrick Chan

School of Computer Science and Engineering
South China University of Technology

Outline

= Non-Binary (General) Tree (Ch 6.1)
Parent Pointer Implementation (Ch 6.2)
List of Children Implementation (Ch 6.3.1)
Left-Child/Right-Sibling Implementation (Ch 6.3.2)

Dynamic Left-Child/Right-Sibling Implementation
(Ch 6.3.4)

= Dynamic Node Implementation (Ch 6.3.3)
= K-ary Trees (Ch 6.4)
= Sequential Tree Implementation (Ch 6.5)

== [ec 6: Non-Binary Tree

General Tree (Non-binary Tree)

= Atree T is a finite set of one or more nodes
such that there is one designated node R
called the root of T

= The remaining nodes in (T — {R}) are
partitioned into » 2 0 disjoint subsets T,, T,, ...
T,, each of which is a tree, and whose roots
R, R,, ..., R, respectively, are children of R

General Tree

Binary Tree General Tree
- Two, one or zero child - Any number of child

== Lec 6: Non-Binary Tree

General Tree General Tree Node: ADT

// General tree node ADT
= To maintain the structure of Binary Tree, template <class Elem> class Gmiode |
eaCh nOde haS GTNode (const Elemg&) ; // Constructor

~GTNode () ; // Destructor

= | eft child pOinter Elem value(); // Return value

bool isLeat ()., // TRUE if is a leaf

= Right child pointer . 1 Eee tng

= How about General Tree? oid asart firstiChaeE et m |

| 'Ide<E1em7; ;;;lve first child
// Remove sibling

== [ec 6: Non-Binary Tree == [ec 6: Non-Binary Tree

General Tree: ADT General Tree: Traversal 1

template <class Elem>
// General Tree ADT void GenTree<Elem>::
template <class Elem> class GenTree { printhelp (GTNode<Elem>* subroot) ({
if (subroot->isLeaf()) cout << "Leaf: ";
private: else cout << "Internal: ";
void printhelp (GTNode*) ; // Print helper function cout << subroot->value() << "\n";
for (GTNode<Elem>* temp =
public: subroot->leftmost child();
GenTree () ; // Constructor temp != NULL; -
~GenTree () ; // Destructor temp = temp->right sibling())
printhelp (temp) ;

void clear(); // Send nodes to free store R
GTNode* root() ; // Return the root = Print |p
“\[BC:RC i Internal: R

. | BC+RC |
// Combine two subtrees \

R Internal: P
void newroot (ELEM, GTnode *, GTnode *); Print & i Leaf: H
Void print(); // Print a tree BC+RC | WK\ Leaf:

};

A
Leaf: Vv
temp=B| ‘temp=V| Leaf: B

== Lec 6: Non-Binary Tree == Lec 6: Non-Binary Tree

General Tree: Traversal 2

template <class Elem>

void GenTree<Elem>: :

printhelp (GTNode<Elem>* subroot) {
if (subroot == NULL) return;
if (subroot—>1sLeaf()) cout << "Leaf: "

else cout << "Internal: "

cout << subroot->value() << "\n";

printhelp (subroot->leftmost child)
printhelp (subroot->right_ sibling) ;

~

R
P

Internal: R

Internal: P
Leaf: H
Leaf: A
Leaf: Vv
Leaf: B

General Tree: Implementation

= Parent Pointer Implementation
= List of Children Implementation
= Left-Child/Right-Sibling Implementation

= Dynamic Left-Child/Right-Sibling
Implementation

= Dynamic Node Implementation

== [ec 6: Non-Binary Tree

Parent Pointer Implementation

= Only storing pointer may be the simplest
general tree implementation

(A)
S KN EXEY EXEVENEA EY EVEC iy 470 5

Label A|B Y @
= Good for answering the question é

Are these two nodes in the same tree?

Parent Pointer Implementation
Equivalence Class
= Assigning the members of a set to disjoint
subsets called equivalence classes
" E.g.
Object A and B are equivalent
Object B and C are equivalent
Object A and C must be equivalence

= UNION/FIND implementation
» Check if two objects are equivalent: differ
= Set “two objects are equivalent”: UNION

Parent Pointer Implementation Parent Pointer Implementation

int Gentree: :FIND (int curr) const {
class Gentree { // Gentree for UNION/FIND while (array[curr]!=ROOT) curr = array[curr];
private: return curr; // At root

int* array; // Node array } @

int size; // Size of node array , , ,
int FIND(int) const; // Find root // Return TRUE :.I.f nod<_es in d_lfferent trees
! bool Gentree::differ (int a, int b) { g 0 e
int rootl = FIND(a); // Find root for a
public: int root2 = FIND(b) ; // Find root for b
Gentree (int) ; // Constructor return rootl != root2; // Compare roots
~Gentree () { delete [] array; } // Destructor }
void UNION (int, int); // Merge equivalences

void differ (int, int); // TRUE if not in same tree void Gentree::UNION(int a, int b) {
int rootl FIND (a) ; // Find root for a

int root2 FIND (b) ; // Find root for b
if (rootl '= root2) array[root2] = rootl; G 0 G e

}

of1]2(3]4]5 7_| 8
array =P | Parent o(1)1]1 7
Label R|A|[B|c|D|E w | x

== [ec 6: Non-Binary Tree == [ec 6: Non-Binary Tree

Parent Pointer Implementation Parent Pointer Implementation
Equivalence Class: Example Equivalence Class: Example

Til5] OO0 -
H GYCIOJOXO) o[1]2 4[s5]s 8 A0 E 0O

3
(F,1) (D, E) -

7|8 0000

2|5
T & Is (A, B)?
Is (H, D)?

@ Is (J, 1)?
26000

== Lec 6: Non-Binary Tree == Lec 6: Non-Binary Tree

Parent Pointer Implementation Parent Pointer Implementation
Equivalence Class: Reduce the cost Equivalence Class: Reduce the cost

= The search cost can decrease by reducing = Path Compression
the helght Of the tree int Gentree::FIND(int curr) const ({

if (array[curr] == ROOT) return curr; |Base Case

n Welghted Union Rule return array[curr] = FIND (array[curr]) ;| Recursive Call

Join the tree with fewer nodes to the tree with more) @
Few > More More > Few aGTree.FIND(7) ;
®e0Cae

o 6
®

5

7
<

9

8
5
|

F J

== [ec 6: Non-Binary Tree == [ec 6: Non-Binary Tree
18

© Small Exercisellll © © Small Exercisellll ©

2[3f4]s5]s 9 [10
(A, C) If (A, 1)? (A, C) 0 3 6

(D, F) If (J, B)? (D, F) clolelFle|n|1]u]xk
L A ﬁ g a2
’ If (L, H)? ’ If (J, B)?
(|, |_) (path compression) (|, |_) B E ()
® If (K, J)?
(F, B) (F, B) If (L, H)?
(G, H) (G, H) (path compression)
(J, K) (J, K) . T3

D|E

== Lec 6: Non-Binary Tree == Lec 6: Non-Binary Tree

General Tree Implementation

List of Children

N
+ @ O
CUIE A4

\(\6\\&Q‘2§

0 7| (1] {3]]
1 (2| 4|6] GG

Children can be found easily

= Especially for the leftmost
child

Right sibling is more difficult

Combining trees is difficult if
the trees are stored in
different array

== [ec 6: Non-Binary Tree

General Tree Implementation

Left-Child/Right-Sibling

= Improved version of
“List of Children”
= Right sibling pointer is added

= More space efficient as each
node requires a fixed amount of
space

= Combining trees is difficult if the
trees are stored in different array

== [ec 6: Non-Binary Tree

General Tree Implementation

Dynamic “Left-Child/Right-Sibling”

= Linked version
of “Left-
Child/Right-
Sibling”
Convert as a
binary tree

| = Cannot find the
t parent of a node

i| D

NULL NULL

== Lec 6: Non-Binary Tree

23

General Tree Implementation
Dynamic Node

= Allocate variable space for each node

= Two implementation methods:
= Array-based List
» Linked List

== Lec 6: Non-Binary Tree

General Tree Implementation
Dynamic Node

= Allocate an array of child
pointers as part of the node

= Assume the number of
children is known when the
node is created

== [ec 6: Non-Binary Tree

General Tree Implementation
Dynamic Node

= Store a linked list of child
pointers with each node

= More flexible (no assumption
on number of child) but
require more space

Ly
v

A

== [ec 6: Non-Binary Tree

K-ary Trees

= K-ary Trees are trees with nodes have at
most K children

= e.g. Binary Tree, K=2
General Tree, K = inf

3-ary Tree

== Lec 6: Non-Binary Tree

K-ary Trees

= Easy to implement relatively

= Many properties of binary trees can be extended

» When K becomes large, the potential number of
NULL pointers increase

Internal and leaf nodes should be implemented

differently
A

== Lec 6: Non-Binary Tree

K-ary Trees
Eo0 60

(not complete)
Complete 3-ary Tree

6& —g— - o 2o

Full and complete 3-ary Tree

== [ec 6: Non-Binary Tree

Sequential Tree Implementations

= Fundamentally different approach to
implementing trees

= Store a series of node values with the
minimum information needed to reconstruct
the tree structure

= Preorder traversal is used

Sequential Tree Implementations

= For Binary Trees (preorder traversal),

ABCHBEFHT]

* Do not have enough information to reconstruct the tree

ABC//IDE/FI/IHLIIJII]
» NULL pointer should also be added “/”

AB C/DE/FH IJ
» Add ‘ to the internal node
= Remove the “/” (NULL pointer) of the leaf node

== Lec 6: Non-Binary Tree

Sequential Tree Implementations

= For General Tree,
»)" indicates when a node’s child list has come

Sequential Tree Implementations

= Space/Time Tradeoff
= Space saving
No pointer is needed
= Lost the benefit of tree

Tree: Efficient access O(log,n)
Sequential Tree: Sequential access O(n)

== [ec 6: Non-Binary Tree

33

