
Data Structure
Chapter 1 & 3

Dr. Patrick Chan
School of Computer Science and Engineering

South China University of Technology

Introduction and
Algorithm Analysis

Lec 1 & 3: Introduction and Algorithm Analysis
2

Outline

 Introduction (Ch1)

 Philosophy of Data Structure (1.1)

 Abstract Data Types and Data Structures (1.2)

 Problems, Algorithms and Programs (1.3)

Lec 1 & 3: Introduction and Algorithm Analysis
3

Outline

 Algorithm Analysis (Ch3)

 Best, Worst and Average Cases (3.2)

 Fast Computer or Fast Algorithm? (3.3)

 Asymptotic Analysis (3.4)

 Multiple Parameters (3.8)

 Space Bounds (3.9)

Lec 1 & 3: Introduction and Algorithm Analysis
4

Introduction: Efficient Programs?

 Program is the soul of a machine

 Objective of learning “data structure” is to
improve the efficiency of a program

 Shorter running time

 Less memory

Lec 1 & 3: Introduction and Algorithm Analysis
5

Introduction: Efficient Programs?

 1982: Intel® 80286

 16 MHz (16,000,000 Hz)

 2023: Intel® Core i9-14900K

 6.00 GHz (6,000,000,000Hz)

 Naïve Comparison:
375 times difference!!

 Core i9 calculates 1 sec

 80286 calculates 6.25 mins

 Nowadays, the hardware is very powerful.
Why do we still need to write an efficient program?

Lec 1 & 3: Introduction and Algorithm Analysis
6

Introduction: Efficient Programs?

 More powerful
computers encourage
more complex
applications

 More calculations

 Resources demanding

 A more efficient program is always desirable

With great power
comes great responsibility!

Lec 1 & 3: Introduction and Algorithm Analysis
7

Data Structure

 Data Structure usually refers a complex data
representation and its associated operations

 e.g. Array of Integer | Insertion, Deletion
Student Record | Update ID

Lec 1 & 3: Introduction and Algorithm Analysis

Data Structure

 Proper data structure can
make significant difference
in program quality

 How to store an age?
 Integer VS String

 How to find a minimum
value from n integers?
 Array VS Tree

8

Lec 1 & 3: Introduction and Algorithm Analysis
9

Data Structure

 Real Number is better than Integer?

 Every data structure has costs and benefits

 No data structure is better than another in all
situations

 A data structure requires:

 Space for each data item it stores

 Time to perform each basic operation

 Programming effort

No

Lec 1 & 3: Introduction and Algorithm Analysis
10

Data Structure

 Each problem has constraints,
e.g. time and space

 Data Structure Selection:

 Analyze the problem and determine the resource
constraints

 Determine the basic operations and quantify the
resource constraints for each operation

 Select the data structure that best meets these
requirement

Lec 1 & 3: Introduction and Algorithm Analysis
11

Detailed Definitions

 Data: a piece of information
 e.g. 1

 Type: a collection of values
 e.g. Integer type: collection of 1,2,3… value

 Data Type: a type and its related operations
 e.g. Integer data type: Integer type and +-x÷ operations

 Data Structure: a complex type and its operations

 Data Item: a piece of information of a data type
 e.g., 1 : a piece of information from a Integer type

 A member of a data type

Lec 1 & 3: Introduction and Algorithm Analysis
12

Detailed Definitions

 Abstract Data Type: a definition for a data type
solely in terms of a set of values and a set of
operations on that data type

 ADT operation is defined by its inputs and outputs

 Hide implementation details (Encapsulation)

 Data Structure: the physical implementation of an
ADT

 Operations associated with the ADT are implemented
by subroutines (functions)

 Usually refers to an organization for data in main
memory

Lec 1 & 3: Introduction and Algorithm Analysis
13

Detailed Definitions

Logical vs Physical Form

 Data items have both a logical and a physical
form

 Logical Form

 Definition of the data item within an ADT

 e.g. Integers in mathematical sense: +, -

 Physical Form

 Implementation of the data item within a data
structure

 e.g. 16/32 bit integers: overflow

Lec 1 & 3: Introduction and Algorithm Analysis
14

Detailed Definitions

Logical vs Physical Form

Data Type

ADT:
Type
Operations

Data Items:
Physical Form

Data Structure:
Storage Space
Subroutines

Data Items:
Logical Form

Lec 1 & 3: Introduction and Algorithm Analysis
15

Detailed Definitions

Problem, Algorithm & Program

 Problem: A task to be
performed

 Best thought of as inputs
and matching outputs

 Problem definition should
include constraints on the
resources that may be
consumed by any
acceptable solution

Lec 1 & 3: Introduction and Algorithm Analysis
16

Detailed Definitions

Problem, Algorithm & Program

 Algorithm: a method to
solve a problem

 Correct

 No ambiguity

 A series of concrete steps

 A finite number of steps

 Terminate

Lec 1 & 3: Introduction and Algorithm Analysis
17

Detailed Definitions

Problem, Algorithm & Program

 Program: an instance for
an algorithm in some
programming languages

Lec 1 & 3: Introduction and Algorithm Analysis
18

Algorithm Evaluation

 Many approaches (algorithms) to solve a
problem. Which one is the best?

 Two criteria:

 Efficiency

 Concern of Data Structures and
Algorithm Analysis

 Easy to understand

 Concern of Software Engineering

 They are conflicting

Lec 1 & 3: Introduction and Algorithm Analysis
19

Minnie Piglet SlinkyPinocchio Squirt SullyMickey Mike

Algorithm Evaluation

 Example: How can we find Squirt?

Low Efficiency

High Efficiency

Easy

Difficult

Sequential Search

Binary Search

Lec 1 & 3: Introduction and Algorithm Analysis
20

How to Compare Efficiency?

 Two Methods:
 Empirical Comparison

 Run a program and see how much
of the resources is used

 Machine dependent

 Difficult to setup and may be
biased

 Algorithm Analysis
 Estimate the time and space

needed for a program

 Machine independent

Lec 1 & 3: Introduction and Algorithm Analysis
21

Algorithm Analysis

Running Time T(n)

 Critical resource of a program is most often its
Running Time

 Which one has the longest running time?

 Assume n is input by users

a = n;
b = n*n;
c = n*n*n;
d = n*n*n*n;
ans = a+b+c+d;

ans = 0;
for i = 1 to 3

ans = ans+n;
end

ans = 0;
for i = 1 to n

ans = ans+i;
end

Running time does not rely on user’s input Running time relies on
user’s input

Lec 1 & 3: Introduction and Algorithm Analysis
22

sum = 0;
for i = 1 to n

for j = 1 to n
sum = sum + 1;

end
end

Algorithm Analysis

Running Time T(n)
 Focus on the program which depends on “size” of

inputs

 T(n) for some function T on input size n

sum = 0;

c : the running time to assign a value to a variable

T(n) = c

c : the running time to assign
a value to a variable

T(n) = c + cn2

This c is not really important
(not relate to n)

Loop
n

times

Loop
n

times

Lec 1 & 3: Introduction and Algorithm Analysis
23

s1 = 1;
s2 = 1;
s3 = 1;
for a = 1 to n/2

s1 = s1 + s1;
end
for b = 1 to n*n

s2 = s2 * s2;
end
for i = 1 to n

for j = 1 to log(n)
s3 = s1+s2+s3;

end
end

Algorithm Analysis

Running Time T(n): Exercise

c

cn/2

cn2

cn log n

T(n) = c + cn/2
+ cn2 + c n log n

Lec 1 & 3: Introduction and Algorithm Analysis
24

Algorithm Analysis

Growth Rate

X-axis: input size
Y-axis: any measure of cost

(e.g. time or space)

Lec 1 & 3: Introduction and Algorithm Analysis
25

Algorithm Analysis

Best, Worst, Average Cases

 Same input size may require different
amounts of running time

 For example:
Sequential search for K in an array of n integers

 Begin at first element in array and look at each
element in turn until K is found

 Best Case:

 Worst Case:

 Average Case:

1

n

(n+1)/2

Minnie Piglet SlinkyPinocchio Squirt SullyMickey Mike

Lec 1 & 3: Introduction and Algorithm Analysis
26

Algorithm Analysis

Best, Worst, Average Cases

 Which measure should be used?
 Best case

 May happen rarely

 Too optimistic

 Worst case
 Upper bound

 Important to real time algorithms

 Average case
 The fairest measure

 Difficult to determine
 Need to know the all possible inputs and their costs

Lec 1 & 3: Introduction and Algorithm Analysis
27

Algorithm Analysis: Running Time T(n)

Fast Computer or Fast Algorithm?

 If we want to reduce the running time of a
program, what should we do?

 Buy a faster computer?

 Write a faster algorithm?

Lec 1 & 3: Introduction and Algorithm Analysis
28

nnew / noldChangennewnoldT(n)

Algorithm Analysis: Running Time T(n)

Fast Computer or Fast Algorithm?

 Old Computer (10,000 code/hour)

 New Computer (100,000 code/hour)

Size of input that can be processed
using OLD Computer in one hour

Size of input that can be processed
using NEW Computer in one hour

10n

20n

2n2

2n

5n log n

1,000

500

70

13

250

10,000

5,000

223

16

1,842

nnew = 10nold

nnew = 10nold

nnew = 10nold

nnew = nold + 3

10 nold < nnew < 10 nold

10

10

3.16

~1

7.37

Lec 1 & 3: Introduction and Algorithm Analysis
29

Algorithm Analysis

 Which program has a lower time complexity?

 Program A: T(n) = cn4

 Program B: T(n) = cn + cn2 + c log n + cn3

 It is difficult to compare as there are many
terms

Lec 1 & 3: Introduction and Algorithm Analysis
30

Algorithm Analysis

 We would like to know what the change of
the complexity is when n grows to

 Three different measures:

 Big-Oh (O)

 Big-Omega ()

 Big-Theta ()

Lec 1 & 3: Introduction and Algorithm Analysis
31

Algorithm Analysis: Big-Oh

 Indicates the upper bound of a growth rate

 Definition
For T(n) a non-negatively valued function,
T(n) is in the set O(f (n))
if there exist two positive constants c and n0

such that T(n) ≤ c f (n) for all n > n0

 n0 is the smallest value of n for which the claim of an
upper bound holds true

 Actually value of c is irrelevant

Lec 1 & 3: Introduction and Algorithm Analysis
32

Algorithm Analysis: Big-Oh

f (n) = n2c = 3 n0 = 1

T(n) = 3n2

T(n) ≤ c f(n)

3n2 ≤ c f(n)

if T(n) ≤ c f (n) for all n > n0,
T(n) is in the set O(f (n))

T(n) = 3n2 + n

T(n) ≤ c f(n)

3n2 + n ≤ 3n2 + n2

= 4n2

f (n) = n2c = 4 n0 = 1

T(n) is in O(n2)

= 3n2

By substituting, By substituting,

3n2 ≤ 4n23n2 + n

T(n) is in O(n2)

Lec 1 & 3: Introduction and Algorithm Analysis
33

Algorithm Analysis: Big-Oh

Exercise

T(n) = c + cn/2 + cn2 + cn log n

if T(n) ≤ c f (n) for all n > n0,
T(n) is in the set O(f (n))

T(n) ≤ s f(n)

≤ cn2 + cn2/2 + cn2 + cn2

= (c + c/2 + c + c)n2

f (n) = n2s = 7c/2 n0 = 1

By substituting,

T(n) is in O(n2)

c + cn/2 + cn2 + cn log n

= (7c/2)n2

n > log n, as n →

c + cn/2 + cn2 + cn log n ≤ (7c/2)n2

Lec 1 & 3: Introduction and Algorithm Analysis
34

Algorithm Analysis: Big-Oh

 Given T(n) = 3n

 We know that “T(n) = 3n is in O(n)”

 Can we say “T(n) = 3n is in O(n3)”?

 Yes but the tightest upper bound is preferred

Lec 1 & 3: Introduction and Algorithm Analysis
35

Algorithm Analysis: Big-Oh

O(1): constant
O(log2n): logarithmic
O(log22

n): log squared
O(n): linear

O(nlog2n): n log n
O(n2): quadratic
O(n3): cubic
O(2n): exponential

Lec 1 & 3: Introduction and Algorithm Analysis
36

Algorithm Analysis: Big-Oh

 Big-Oh VS Worst Case

 Big-Oh refers to a growth rate

 Worst case refers to the worst input from among
the choices for possible inputs of a given size

 e.g. Sequential Search

 Big-oh: T(n) is in O(n)

 Worst Case: n

Lec 1 & 3: Introduction and Algorithm Analysis
37

Algorithm Analysis: Big-Omega

 Indicates the lower bound of a growth rate

 Definition
For T(n) a non-negatively valued function,
T(n) is in the set (g(n))
if there exist two positive constants c and n0

such that T(n) ≥ c g(n) for all n > n0

 n0 is the smallest value of n for which the claim of an
upper bound holds true

 The actually value of c is irrelevant

Lec 1 & 3: Introduction and Algorithm Analysis
38

Algorithm Analysis: Big-Omega

f (n) = n2c = 3 n0 = 1

T(n) = 3n2

T(n) ≥ c f(n)

3n2 ≥ c f(n)

if T(n) ≥ c f (n) for all n > n0,
T(n) is in the set (f (n))

T(n) = 3n2 + n

T(n) ≥ c f(n)

3n2 + n ≥ 3n2

= 3n2

f (n) = n2c = 3 n0 = 1

T(n) is in (n2)

= 3n2

By substituting, By substituting,

3n2 ≥ 3n23n2 + n

T(n) is in (n2)

Lec 1 & 3: Introduction and Algorithm Analysis
39

Algorithm Analysis: Big-Theta

 When O and are the same, we indicate this
situation by using notation

 Definition
An algorithm is said to be (h(n))
if it is in O(h(n)) and (h(n))

Lec 1 & 3: Introduction and Algorithm Analysis
40

Algorithm Analysis: Big-Theta

 Example 1

 T(n) = 1 O(1) and (1) (1)

 Example 2:

 T(n) = c1n + c2 (n) and (n) (n)

sum = 0;
for (i=1; i<=n; i++)

sum += n;

a = b;

Lec 1 & 3: Introduction and Algorithm Analysis
41

 Small Exercise

 What is the Big-O, Big-Omega and Big-Theta of the
following program?

 T(n)

 O(n2), (n2), (n2)

sum = 0;
for (i=1; i<=n; i++) //first loop

for (j=1; j<=i; j++) //double loop
sum++;

for (k=0; k<n; k++) //second loop
A[k] = k;

ncicc
n

i
3

1
21

nc
nn

cc 321
2

)1(

Lec 1 & 3: Introduction and Algorithm Analysis
42

 Small Exercise

 What is the Big-O, Big-Omega and Big-Theta of the
following program?

 T(n) = c1 + c2n
2 + c1 + c2 n(n+1)/2

 (n2), O(n2), (n2)

sum1 = 0;
for(i=1;i<=n;i++) //first double loop

for(j=1;j<=n;j++) //do n times
sum1++;

sum2 = 0;
for(i=1;i<=n;i++) //second double loop

for(j=1;j<=i;j++) //do i times
sum2++;

Lec 1 & 3: Introduction and Algorithm Analysis
43

l

Algorithm Analysis: Case Study

Binary Search

// Return position of element in sorted
// array of size n with value K.
int binary(int array[], int n, int K) {
int l = -1;
int r = n; // l, r are beyond array bounds
while (l+1 != r) { // Stop when l, r meet

int i = (l+r)/2; // Check middle
if (K < array[i]) r = i; // Left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // Right half

}
return n; // Search value not in array

}

 How many elements are examined in worst case?

11 13 21 26 29 36 40 41 45 51 54 56 65 72 77 83

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Position

Value

l ri iriri

Find: 45

Lec 1 & 3: Introduction and Algorithm Analysis
44

Algorithm Analysis: Case Study

Binary Search

 How many elements are examined in worst case?

T(n) = T(n/2) + 1

where n>1 and T(1) = 1

 Therefore, T(n) = log2 n + 1

 Cost is (log2 n)

11 13 21 26 29 36 40 41 45 51 54 56 65 72 77 83

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Position

Value

Lec 1 & 3: Introduction and Algorithm Analysis
45

Algorithm Analysis

Other Control Statements

 While loop
Analyze like a for loop

 If statement
Take greater complexity of then/else clauses

 Switch statement
Take complexity of most expensive case

 Subroutine call
Complexity of the subroutine

Lec 1 & 3: Introduction and Algorithm Analysis
46

Analyzing Problems

Multiple Parameters

 Compute the rank ordering for all C pixel
values in a picture of P pixels.

 T(P, C) = C + P + C2

 O(P + C2) and (P + C2)

 (P + C2)

for (i=0; i<C; i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all pixels
count[value(i)]++; // Increment count

bubbleSort(count); // Sort pixel counts

C: 256 colors (8 bits)
P: 50 x 40 pixels

Lec 1 & 3: Introduction and Algorithm Analysis
47

Analyzing Problems

Space/Time Tradeoff Principle

 One can often reduce time if one is willing to
sacrifice space, or vice versa, e.g.

 Encoding or packing information

 Boolean Flags
 Boolean takes one bit, but a byte is the smallest storage, so

pack 8 Booleans into 1 byte

 Table lookup

 Factorials
 Compute once, store results, use many times

