Data Structure
Chapter 1 & 3

Introduction and
Algorithm Analysis

Dr. Patrick Chan

School of Computer Science and Engineering
South China University of Technology

Outline

= Introduction (Ch1)
» Philosophy of Data Structure (1.1)
= Abstract Data Types and Data Structures (1.2)
» Problems, Algorithms and Programs (1.3)

== |ec 1 & 3: Introduction and Algorithm Analysis

Outline

= Algorithm Analysis (Ch3)
» Best, Worst and Average Cases (3.2)
» Fast Computer or Fast Algorithm? (3.3)
= Asymptotic Analysis (3.4)
» Multiple Parameters (3.8)
= Space Bounds (3.9)

== |ec 1 & 3: Introduction and Algorithm Analysis

Introduction: Efficient Programs?

= Program is the soul of a machine

= Objective of learning “data structure” is to
improve the efficiency of a program

= Shorter running time
» Less memory

== |ec 1 & 3: Introduction and Algorithm Analysis

Introduction: Efficient Programs?

= 1982: Intel® 80286
= 16 MHz (16,000,000 Hz)

= 2023: Intel® Core™ i9-14900K
» 6.00 GHz (6,000,000,000Hz)
= Naive Comparison:
375 times difference!!

= Core i9 calculates 1 sec
= 80286 calculates 6.25 mins

= Nowadays, the hardware is very powerful.
Why do we still need to write an efficient program?

== |ec 1 & 3: Introduction and Algorithm Analysis

Introduction: Efficieny

= More powerful
computers encourage
more complex
applications
= More calculations
» Resources demanding

X

With great power
comes great responsibility!

= A more efficient program is always desirable

== |ec 1 & 3: Introduction and Algorithm Analysis

Data Structure

= Data Structure usually refers a complex data
representation and its associated operations

= e.g. Array of Integer | Insertion, Deletion
Student Record | Update ID

== |ec 1 & 3: Introduction and Algorithm Analysis

Data Structure

= Proper data structure can
make significant difference
In program quality

= How to store an age?
= Integer VS String

= How to find a minimum

value from n integers?
= Array VS Tree

== |ec 1 & 3: Introduction and Algorithm Analysis

Data Structure

= Real Number is better than Integer? No

= Every data structure has costs and benefits

= No data structure is better than another in all
situations

= A data structure requires:
= Space for each data item it stores

* Time to perform each basic operation
* Programming effort

== |ec 1 & 3: Introduction and Algorithm Analysis

Data Structure

= Each problem has constraints,
e.g. time and space

= Data Structure Selection:

= Analyze the problem and determine the resource
constraints

» Determine the basic operations and quantify the
resource constraints for each operation

= Select the data structure that best meets these
requirement

== |ec 1 & 3: Introduction and Algorithm Analysis
10

== |ec 1 & 3: Introduction and Algorithm Analysis

Detailed Definitions

= Data: a piece of information
" eg. 1

Type: a collection of values
» e.g. Integer type: collection of 1,2,3... value

Data Type: a type and its related operations
= e.g. Integer data type: Integer type and +-x+ operations

Data Structure: a complex type and its operations

Data Item: a piece of information of a data type
" e.g., 1: a piece of information from a Integer type
= A member of a data type

11

== |ec 1 & 3: Introduction and Algorithm Analysis

Detailed Definitions

= Abstract Data Type: a definition for a data type
solely in terms of a set of values and a set of
operations on that data type
= ADT operation is defined by its inputs and outputs
» Hide implementation details (Encapsulation)

= Data Structure: the physical implementation of an
ADT

» Operations associated with the ADT are implemented
by subroutines (functions)

» Usually refers to an organization for data in main
memory

12

Detailed Definitions

Logical vs Physical Form

= Data items have both a logical and a physical

form
= Logical Form

Definition of the data item within an ADT
e.g. Integers in mathematical sense: +, -

= Physical Form

Implementation of the data item within a data

structure

e.g. 16/32 bit integers: overflow

== |ec 1 & 3: Introduction and Algorithm Analysis

13

Detailed Definitions

Logical vs Physical Form

Data Type
ADTI':ype Data Items:
Operations Logical Form

|

Data Structure:
Storage Space
Subroutines

Data Items:
Physical Form

== |ec 1 & 3: Introduction and Algorithm Analysis

14

Detailed Definitions

Problem, Algorithm & Program

!
’(\ \ = Problem: A task to be

/ ‘- ! df*‘“‘\/’ performed
A

» Best thought of as inputs
and matching outputs

* Problem definition should
iInclude constraints on the
resources that may be
consumed by any
acceptable solution

== |ec 1 & 3: Introduction and Algorithm Analysis
15

Detailed Definitions

Problem, Algorithm & Program

\ = Algorithm: a method to
solve a problem

= Correct
\‘@/// = No ambiguity

= A series of concrete steps
= A finite number of steps
» Terminate

== |ec 1 & 3: Introduction and Algorithm Analysis
16

Detailed Definitions

Problem, Algorithm & Program

\ = Program: an instance for
an algorithm in some

= programming languages
W

== |ec 1 & 3: Introduction and Algorithm Analysis
17

Algorithm Evaluation

= Many approaches (algorithms) to solve a
problem. Which one is the best?

= Two criteria:
» Efficiency

Concern of Data Structures and
Algorithm Analysis

= Easy to understand
Concern of Software Engineering

» They are conflicting

== |ec 1 & 3: Introduction and Algorithm Analysis

Algorithm Evaluation

= Example: How can we find Squirt?

Sequential Search Low Efficiency Easy

ie Piglet Pinocchio Slinky Squirt Sully

Binary Search High Efficiency Difficult

Mickey Mike Mi

== |ec 1 & 3: Introduction and Algorithm Analysis
19

How to Compare Efficiency?

= Two Methods:

= Empirical Comparison e

Run a program and see how much poatatate
of the resources is used

Machine dependent

Difficult to setup and may be
biased

= Algorithm Analysis

Estimate the time and space
needed for a program

Machine independent

== |ec 1 & 3: Introduction and Algorithm Analysis
20

Algorithm Analysis

Running Time T(n)

= Critical resource of a program is most often its

Running Time

= Which one has the longest running time?
= Assume = is input by users

a =n;

b = n*n;

c = n*n*n;

d = n*n*n*n
ans = a+b+c+d;

ans
for

=0 ;
i =
ans

end

1l to 3
= ans+n;

Running time does not rely on user’s input

== |ec 1 & 3: Introduction and Algorithm Analysis

ans = 0;

for i =1 ton
ans = ans+i;

end

Running time relies on
user’s input

21

Algorithm Analysis

Running Time T(n)

= Focus on the program which depends on “size” of

inputs

= T(n) for some function T on input size n

¢ : the running time to assign a value to a variable

Loop
n
times

sum = 0; T(n)=c
sum = 0;
for 1 =1 ton
for j =1 ton
sum = sum + 1;
end
end

== |ec 1 & 3: Introduction and Algorithm Analysis

Loop
> n

times

This c is not really important
| (not relate to n)

T(n) = ¢ + cn?

¢ : the running time to assign
a value to a variable

22

Algorithm Analysis

Running Time T(n): Exercise

sl =1;
s2 = 1; C
s3 =1;
for a =1 to n/2

sl = s1 + sl; cn/?2
end
for b =1 to n*n

s2 = 82 * s2; C‘I’l2
end
for 1i =1 ton

for j =1 to log(n) cn lOgn

s3 = sl+s2+s3;

end T(n) =c+ cn/2

2 > +cn?+cnlogn

== |ec 1 & 3: Introduction and Algorithm Analysis
23

Algorithm Analysis |...,/ -
GI‘OWth Rate 1200

1000

——

\
1
—

-
-
-
-
-
-
-
-
-
-
-

20 0 0 50

{
+ 3

X-axis: input size
Y-axis: any measure of cost
(e.g. time or space)

400

300

————————___

100 |

24

Algorithm Analysis
Best, Worst, Average Cases

= Same input size may require different
amounts of running time
* For example:
Sequential search for K in an array of n integers

Begin at first element in array and look at each
element in turn until K is found

Best Case: 1
Worst Case: n
Average Case: (n+1)/2

Slinky Squirt Sully

Mickey

Algorithm Analysis
Best, Worst, Average Cases

= Which measure should be used?

= Best case

May happen rarely

Too optimistic
= Worst case

Upper bound

Important to real time algorithms
= Average case

The fairest measure

Difficult to determine
» Need to know the all possible inputs and their costs

== |ec 1 & 3: Introduction and Algorithm Analysis
26

Algorithm Analysis: Running Time T(n)
Fast Computer or Fast Algorithm?

= If we want to reduce the running time of a
program, what should we do?

= Buy a faster computer?
= Write a faster algorithm?

== |ec 1 & 3: Introduction and Algorithm Analysis

27

Algorithm Analysis: Running Time T(n)
Fast Computer or Fast Algorithm?

= Old Computer (10,000 code/hour)
= New Computer (100,000 code/hour)

Size of input that can be processed
using OLD Computer in one hour

N

y

Size of input that can be processed
using NEW Computer in one hour

T(n) M1 Myy0 Change yery | Mypy
10n 1,000 | 10,000 n,,=10n,, 10
20n 500 | 5,000 n,,=10n,, 10
212 70 223 n,,.,=N10n,,, 3.16
2 13 16 n, =n,,+3 ~1
Snlogn | 250 | 1,842 | N10mn,,<n, <10n,, 7.37

== |ec 1 & 3: Introduction and Algorithm Analysis

28

Algorithm Analysis

= Which program has a lower time complexity?
* Program A: T(n) = cn*
* Program B: T(n) = cn + cn? + ¢ log n + cn®

= |t is difficult to compare as there are many
terms

== |ec 1 & 3: Introduction and Algorithm Analysis

29

Algorithm Analysis

= We would like to know what the change of
the complexity is when n grows to «

= Three different measures:
= Big-Oh (O)
= Big-Omega (Q2)
= Big-Theta (0O)

== |ec 1 & 3: Introduction and Algorithm Analysis
30

Algorithm Analysis: Big-Oh
* |Indicates the upper bound of a growth rate

= Definition
For T(n) a non-negatively valued function,
T(n) is in the set O(f (n))
If there exist two positive constants ¢ and n,

such that T(n) < ¢ f(n) for all n > n,

= n, is the smallest value of » for which the claim of an
upper bound holds true

= Actually value of ¢ is irrelevant

== |ec 1 & 3: Introduction and Algorithm Analysis
31

if T(n) < cf(n)forall n>n,,
T(n) is in the set O(f (n))

Algorithm Analy

T(n) = 3n? T(n)=3n*+n
T(n) <c f(n) T(n) <c f(n)
3n? <c f(n) 3n’+n <3n*+n?
= 4n?
By substituting, By substituting,
c=3 f(m)=n* n,=1 c=4 f(n)=n* n,=1
3n* =3n? 3n*+ n< 4n?

T(n) is in O(n?) T(n) is in O(n?)

== |ec 1 & 3: Introduction and Algorithm Analysis
32

Algorithm Analysis: Big-Oh

] if T(n) < cf(n)forall n>n,,
Exercise

T(n) is in the set O(f (n))

T(n)=c+cn/2 +cn*+cnlogn

T(n)sz(n) n>logn,asn— o

c+cn/2 +cn?+ cnlog n < cn®+ cn*/2 + cn? + cn?

=(c+c/2+c+c)n?

= (7¢/2)n?
By substituting,

s="7c/l2 f(n)=n? ny=1
c¢+tcn/2+cn*+cenlogn<(7c/2)n?
T(n) is in O(n?)

== |ec 1 & 3: Introduction and Algorithm Analysis

33

Algorithm Analysis: Big-Oh
= Given T(n) =3n
= We know that “T(n) = 3n is in O(n)”

= Can we say “T(n) =3nis in O(n?)"?

= Yes but the tightest upper bound is preferred

== |ec 1 & 3: Introduction and Algorithm Analysis

34

Algorithm Analysis: Big-Oh

1000

10

1000

100

10

1

—— a1

coraplesiny

—l—':ﬂagn:l
)

— Cin log n)
—— 0 s ame]
—— gxyponen fial

123456?-[819101112131415

O(1):
O(log2"):

O(log,2"): log squared

O(n):

== |ec 1 & 3: Introduction and Algorithm Analysis

constant
logarithmic

linear

O(nlog,n): nlogn

O(n?):
O(n?):
O(2"):

quadratic
cubic
exponential

35

Algorithm Analysis: Big-Oh

= Big-Oh VS Worst Case
= Big-Oh refers to a growth rate

» Worst case refers to the worst input from among
the choices for possible inputs of a given size

» e.g. Sequential Search
Big-oh: T(n) is in O(n)
Worst Case: n

== |ec 1 & 3: Introduction and Algorithm Analysis

36

Algorithm Analysis: Big-Omega
* |ndicates the lower bound of a growth rate

= Definition
For T(n) a non-negatively valued function,
T(n) is In the set Q(g(n))
If there exist two positive constants ¢ and n,

such that T(n) = ¢ g(n) for all n > n,

= n, is the smallest value of » for which the claim of an
upper bound holds true

» The actually value of ¢ is irrelevant

== |ec 1 & 3: Introduction and Algorithm Analysis
37

if T(n) 2 c f(n) for all n> n,,
T(n) is in the set Q(f (n))

Algorithm Analy

T(n) = 3n? T(n)=3n*+n
T(n) > c f(n) T(n) > c f(n)
3n*>c f(n) 3n’+n >3n?
= 3n?
By substituting, By substituting,
c=3 f(m)=n* n,=1 c=3 f(n)=n* n,=1
3n? =3n? 3n*+ n>3n?

T(n) is in Q(n?) T(n) is in Q(n?)

== |ec 1 & 3: Introduction and Algorithm Analysis
38

Algorithm Analysis: Big-Theta

= When O and Q are the same, we indicate this
situation by using ® notation

= Definition
An algorithm is said to be ®(/(n))
if it is in O(h(n)) and Q(A(n))

== |ec 1 & 3: Introduction and Algorithm Analysis

39

Algorithm Analysis: Big-Theta
= Example 1

a =D>b;
n T(I’l) —

= Example 2:

sum = O;
for (i=1; i<=n; i++)
sum += n;

» T(n) =

== |ec 1 & 3: Introduction and Algorithm Analysis

40

© Small Exercise ©

= What is the Big-O, Big-Omega and Big-Theta of the
following program?

sum = 0;
for (i=1l; i<=n; i++) //first loop
for (j=1; j<=i; j++) //double loop

sum++;
for (k=0; k<n; k++) //second loop
A[k] = k;
n
: n(n+1
* T(n)=c,+c,) i+cn =c¢ +c, (2)+c3n

= O(n2), Q(n?), O(n?)

== |ec 1 & 3: Introduction and Algorithm Analysis

41

© Small Exercise ©

= What is the Big-O, Big-Omega and Big-Theta of the
following program?

suml = 0;
for(i=1l;i<=n;i++) //first double loop
for (j=1;j<=n;j++) //do n times
suml++;
sum2 = 0;
for (i=1l;i<=n;i++) //second double loop
for(j=1;j<=i;j++) //do i times
sum2++;

= T(n)=c,+ c,n*>+c, +c, n(nt1)/2
= Q(n?), O(n?), O(n?)

== |ec 1 & 3: Introduction and Algorithm Analysis

42

Algorithm Analysis: Case Study
Binary Search

= How many elements are examined in worst case?

// Return position of element in sorted
// array of size n with value K.
int binary(int array[], int n, int K) ({

int 1 = -1;
int r = n; // 1, r are beyond array bounds
while (141 '= r) { // Stop when 1, r meet
int i = (1l+r)/2; // Check middle
if (K < array[i]) r = i; // Left half
if (K == array[i]) return i; // Found it
if (K > array[i]) 1 = i; // Right half
} .
return n; // Search value not in array Find: 45

‘}
Position 0
Value 11

== |ec 1 & 3: Introduction and Algorithm Analysis

43

Algorithm Analysis: Case Study
Binary Search

= How many elements are examined in worst case?

Position 01 2 3 45 6 7 8 910 1 12 13 14 15
Value 11

T(n)=Tm/2)+ 1
where n>1 and T(1) =1

= Therefore, T(n)=1log, n+ 1
= Cost is O(log, n)

== |ec 1 & 3: Introduction and Algorithm Analysis

44

Algorithm Analysis
Other Control Statements

= While loop
Analyze like a for loop

= If statement
Take greater complexity of then/else clauses

= Switch statement
Take complexity of most expensive case

= Subroutine call
Complexity of the subroutine

== |ec 1 & 3: Introduction and Algorithm Analysis

45

Analyzing Problems
Multiple Parameters

= Compute the rank ordering for all C pixel
values in a picture of P pixels.

for (i=0; i<C; i++) // Initialize count
count[i] = O0;

for (i=0; i<kP; i++) // Look at all pixels
count[value (i)]++; // Increment count

bubbleSort (count) ; // Sort pixel counts
“ T(P,C)=C+P+(?)
= O(P +C?) by
O @(P + C2) C: 256 colors (8 bits)

P: 50 x 40 pixels

== |ec 1 & 3: Introduction and Algorithm Analysis

46

Analyzing Problems
Space/Time Tradeoff Principle

= One can often reduce time if one is willing to
sacrifice space, or vice versa, e.g.

= Encoding or packing information
Boolean Flags

» Boolean takes one bit, but a byte is the smallest storage, so
pack 8 Booleans into 1 byte

= Table lookup

Factorials
= Compute once, store results, use many times

== |ec 1 & 3: Introduction and Algorithm Analysis

