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Outline

 Introduction (Ch1)

 Philosophy of Data Structure (1.1)

 Abstract Data Types and Data Structures (1.2)

 Problems, Algorithms and Programs (1.3)
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Outline

 Algorithm Analysis (Ch3)

 Best, Worst and Average Cases (3.2)

 Fast Computer or Fast Algorithm? (3.3)

 Asymptotic Analysis (3.4)

 Multiple Parameters (3.8)

 Space Bounds (3.9)
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Introduction: Efficient Programs?

 Program is the soul of a machine

 Objective of learning “data structure” is to 
improve the efficiency of a program

 Shorter running time

 Less memory
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Introduction: Efficient Programs?

 1982: Intel® 80286

 16 MHz   (16,000,000 Hz)

 2023: Intel® Core i9-14900K

 6.00 GHz (6,000,000,000Hz)

 Naïve Comparison:
375 times difference!!

 Core i9 calculates 1 sec 

 80286 calculates 6.25 mins

 Nowadays, the hardware is very powerful. 
Why do we still need to write an efficient program?
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Introduction: Efficient Programs?

 More powerful 
computers encourage 
more complex 
applications

 More calculations

 Resources demanding

 A more efficient program is always desirable

With great power
comes great responsibility!
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Data Structure

 Data Structure usually refers a complex data 
representation and its associated operations

 e.g. Array of Integer  |   Insertion, Deletion
Student Record  |   Update ID
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Data Structure

 Proper data structure can 
make significant difference
in program quality

 How to store an age?
 Integer VS String

 How to find a minimum 
value from n integers?
 Array VS Tree

8
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Data Structure

 Real Number is better than Integer? 

 Every data structure has costs and benefits

 No data structure is better than another in all 
situations

 A data structure requires:

 Space for each data item it stores

 Time to perform each basic operation

 Programming effort

No

Lec 1 & 3: Introduction and Algorithm Analysis
10

Data Structure

 Each problem has constraints, 
e.g. time and space

 Data Structure Selection:

 Analyze the problem and determine the resource 
constraints

 Determine the basic operations and quantify the 
resource constraints for each operation

 Select the data structure that best meets these 
requirement
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Detailed Definitions

 Data: a piece of information
 e.g. 1

 Type: a collection of values
 e.g. Integer type: collection of 1,2,3… value

 Data Type: a type and its related operations
 e.g. Integer data type: Integer type and +-x÷ operations

 Data Structure: a complex type and its operations

 Data Item: a piece of information of a data type
 e.g., 1 : a piece of information from a Integer type

 A member of a data type
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Detailed Definitions

 Abstract Data Type: a definition for a data type 
solely in terms of a set of values and a set of 
operations on that data type

 ADT operation is defined by its inputs and outputs

 Hide implementation details (Encapsulation)

 Data Structure: the physical implementation of an 
ADT

 Operations associated with the ADT are implemented 
by subroutines (functions)

 Usually refers to an organization for data in main 
memory
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Detailed Definitions

Logical vs Physical Form

 Data items have both a logical and a physical 
form

 Logical Form

 Definition of the data item within an ADT

 e.g. Integers in mathematical sense: +, -

 Physical Form

 Implementation of the data item within a data 
structure

 e.g. 16/32 bit integers: overflow
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Detailed Definitions

Logical vs Physical Form

Data Type

ADT:
Type
Operations

Data Items:
Physical Form

Data Structure:
Storage Space
Subroutines

Data Items: 
Logical Form
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Detailed Definitions

Problem, Algorithm & Program

 Problem: A task to be 
performed

 Best thought of as inputs 
and matching outputs

 Problem definition should 
include constraints on the 
resources that may be 
consumed by any 
acceptable solution
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Detailed Definitions

Problem, Algorithm & Program

 Algorithm: a method to 
solve a problem

 Correct

 No ambiguity 

 A series of concrete steps

 A finite number of steps

 Terminate
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Detailed Definitions

Problem, Algorithm & Program

 Program: an instance for 
an algorithm in some 
programming languages
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Algorithm Evaluation

 Many approaches (algorithms) to solve a 
problem. Which one is the best?

 Two criteria:

 Efficiency

 Concern of Data Structures and 
Algorithm Analysis

 Easy to understand

 Concern of Software Engineering

 They are conflicting



Lec 1 & 3: Introduction and Algorithm Analysis
19

Minnie Piglet SlinkyPinocchio Squirt SullyMickey Mike

Algorithm Evaluation

 Example: How can we find Squirt?

Low Efficiency

High Efficiency

Easy

Difficult

Sequential Search

Binary Search
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How to Compare Efficiency?

 Two Methods:
 Empirical Comparison

 Run a program and see how much 
of the resources is used

 Machine dependent

 Difficult to setup and may be 
biased

 Algorithm Analysis
 Estimate the time and space

needed for a program

 Machine independent
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Algorithm Analysis

Running Time T(n)

 Critical resource of a program is most often its 
Running Time

 Which one has the longest running time?

 Assume n is input by users

a = n;
b = n*n;
c = n*n*n;
d = n*n*n*n;
ans = a+b+c+d;

ans = 0;
for i = 1 to 3

ans = ans+n;
end

ans = 0;
for i = 1 to n

ans = ans+i;
end

Running time does not rely on user’s input Running time relies on
user’s input
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sum = 0;
for i = 1 to n

for j = 1 to n
sum = sum + 1;

end
end

Algorithm Analysis

Running Time T(n)
 Focus on the program which depends on “size” of 

inputs

 T(n) for some function T on input size n

sum = 0;

c :  the running time to assign a value to a variable

T(n) = c

c :  the running time to assign 
a value to a variable

T(n) = c + cn2

This c is not really important 
(not relate to n)

Loop 
n

times

Loop 
n

times
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s1 = 1;
s2 = 1;
s3 = 1;
for a = 1 to n/2

s1 = s1 + s1;
end
for b = 1 to n*n

s2 = s2 * s2;
end
for i = 1 to n

for j = 1 to log(n)
s3 = s1+s2+s3;

end
end

Algorithm Analysis

Running Time T(n): Exercise

c

cn/2

cn2

cn log n

T(n) = c + cn/2
+ cn2 + c n log n
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Algorithm Analysis

Growth Rate

X-axis: input size
Y-axis: any measure of cost 

(e.g. time or space)
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Algorithm Analysis

Best, Worst, Average Cases

 Same input size may require different 
amounts of running time

 For example: 
Sequential search for K in an array of n integers

 Begin at first element in array and look at each 
element in turn until K is found

 Best Case:

 Worst Case:

 Average Case:

1

n

(n+1)/2

Minnie Piglet SlinkyPinocchio Squirt SullyMickey Mike
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Algorithm Analysis

Best, Worst, Average Cases

 Which measure should be used?
 Best case

 May happen rarely

 Too optimistic

 Worst case
 Upper bound

 Important to real time algorithms

 Average case
 The fairest measure

 Difficult to determine
 Need to know the all possible inputs and their costs
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Algorithm Analysis: Running Time T(n) 

Fast Computer or Fast Algorithm?

 If we want to reduce the running time of a 
program, what should we do?

 Buy a faster computer?

 Write a faster algorithm?
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nnew / noldChangennewnoldT(n)

Algorithm Analysis: Running Time T(n) 

Fast Computer or Fast Algorithm?

 Old Computer (10,000 code/hour)

 New Computer (100,000 code/hour)

Size of input that can be processed 
using OLD Computer in one hour

Size of input that can be processed 
using NEW Computer in one hour

10n

20n

2n2

2n

5n log n

1,000

500

70

13

250

10,000

5,000

223

16

1,842

nnew = 10nold

nnew = 10nold

nnew = 10nold

nnew = nold + 3

10 nold < nnew < 10 nold

10

10

3.16

~1

7.37
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Algorithm Analysis

 Which program has a lower time complexity?

 Program A: T(n) = cn4

 Program B: T(n) = cn + cn2 + c log n + cn3

 It is difficult to compare as there are many 
terms
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Algorithm Analysis

 We would like to know what the change of 
the complexity is when n grows to 

 Three different measures:

 Big-Oh (O)

 Big-Omega ()

 Big-Theta ()
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Algorithm Analysis: Big-Oh

 Indicates the upper bound of a growth rate

 Definition
For T(n) a non-negatively valued function, 
T(n) is in the set O(f (n))
if there exist two positive constants c and n0

such that T(n) ≤ c f (n) for all n > n0

 n0 is the smallest value of n for which the claim of an 
upper bound holds true

 Actually value of c is irrelevant
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Algorithm Analysis: Big-Oh

f (n) = n2c = 3 n0 = 1

T(n) = 3n2

T(n) ≤ c f(n)

3n2 ≤ c f(n)

if T(n) ≤ c f (n) for all n > n0, 
T(n) is in the set O(f (n))

T(n) = 3n2 + n

T(n) ≤ c f(n)

3n2 + n ≤ 3n2 + n2

= 4n2

f (n) = n2c = 4 n0 = 1

T(n) is in O(n2)

= 3n2

By substituting, By substituting,

3n2 ≤ 4n23n2 + n

T(n) is in O(n2)
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Algorithm Analysis: Big-Oh

Exercise

T(n) = c + cn/2 + cn2 + cn log n

if T(n) ≤ c f (n) for all n > n0, 
T(n) is in the set O(f (n))

T(n) ≤ s f(n)

≤ cn2 + cn2/2 + cn2 + cn2

= (c + c/2 + c + c)n2

f (n) = n2s = 7c/2 n0 = 1

By substituting,

T(n) is in O(n2)

c + cn/2 + cn2 + cn log n

= ( 7c/2 )n2

n > log n, as n → 

c + cn/2 + cn2 + cn log n ≤ ( 7c/2 )n2
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Algorithm Analysis: Big-Oh

 Given T(n) = 3n

 We know that “T(n) = 3n is in O(n)”

 Can we say “T(n) = 3n is in O(n3)”?

 Yes but the tightest upper bound is preferred
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Algorithm Analysis: Big-Oh

O(1): constant
O(log2n): logarithmic
O(log22

n): log squared
O(n): linear

O(nlog2n): n log n 
O(n2): quadratic
O(n3): cubic
O(2n): exponential
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Algorithm Analysis: Big-Oh

 Big-Oh VS Worst Case

 Big-Oh refers to a growth rate

 Worst case refers to the worst input from among 
the choices for possible inputs of a given size

 e.g. Sequential Search

 Big-oh: T(n) is in O(n)

 Worst Case: n
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Algorithm Analysis: Big-Omega

 Indicates the lower bound of a growth rate

 Definition
For T(n) a non-negatively valued function, 
T(n) is in the set (g(n))
if there exist two positive constants c and n0

such that T(n) ≥ c g(n) for all n > n0

 n0 is the smallest value of n for which the claim of an 
upper bound holds true

 The actually value of c is irrelevant

Lec 1 & 3: Introduction and Algorithm Analysis
38

Algorithm Analysis: Big-Omega

f (n) = n2c = 3 n0 = 1

T(n) = 3n2

T(n) ≥ c f(n)

3n2 ≥ c f(n)

if T(n) ≥ c f (n) for all n > n0, 
T(n) is in the set (f (n))

T(n) = 3n2 + n

T(n) ≥ c f(n)

3n2 + n ≥ 3n2

= 3n2

f (n) = n2c = 3 n0 = 1

T(n) is in (n2)

= 3n2

By substituting, By substituting,

3n2 ≥ 3n23n2 + n

T(n) is in (n2)
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Algorithm Analysis: Big-Theta

 When O and  are the same, we indicate this 
situation by using  notation

 Definition
An algorithm is said to be (h(n))
if it is in O(h(n)) and (h(n))
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Algorithm Analysis: Big-Theta

 Example 1

 T(n) = 1  O(1) and (1)  (1)

 Example 2:

 T(n) = c1n + c2  (n) and (n)  (n)

sum = 0;
for (i=1; i<=n; i++)

sum += n;

a = b;
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 Small Exercise 

 What is the Big-O, Big-Omega and Big-Theta of the 
following program?

 T(n) 

 O(n2), (n2), (n2)

sum = 0;
for (i=1; i<=n; i++) //first loop

for (j=1; j<=i; j++) //double loop
sum++;

for (k=0; k<n; k++) //second loop
A[k] = k;

ncicc
n

i
3

1
21  



nc
nn

cc 321
2

)1(




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 Small Exercise 

 What is the Big-O, Big-Omega and Big-Theta of the 
following program?

 T(n) = c1 + c2n
2 + c1 + c2 n(n+1)/2

 (n2), O(n2), (n2)

sum1 = 0;
for(i=1;i<=n;i++) //first double loop

for(j=1;j<=n;j++) //do n times
sum1++;

sum2 = 0;
for(i=1;i<=n;i++) //second double loop

for(j=1;j<=i;j++) //do i times
sum2++;
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l

Algorithm Analysis: Case Study

Binary Search

// Return position of element in sorted
// array of size n with value K. 
int binary(int array[], int n, int K) {
int l = -1;
int r = n; // l, r are beyond array bounds
while (l+1 != r) { // Stop when l, r meet

int i = (l+r)/2; // Check middle
if (K < array[i]) r = i; // Left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // Right half

}
return n; // Search value not in array

}

 How many elements are examined in worst case?

11 13 21 26 29 36 40 41 45 51 54 56 65 72 77 83

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Position

Value

l ri iriri

Find: 45
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Algorithm Analysis: Case Study

Binary Search

 How many elements are examined in worst case?

T(n) = T(n/2) + 1

where n>1 and T(1) = 1

 Therefore, T(n) = log2 n + 1

 Cost is (log2 n)

11 13 21 26 29 36 40 41 45 51 54 56 65 72 77 83

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Position

Value
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Algorithm Analysis

Other Control Statements

 While loop
Analyze like a for loop

 If statement
Take greater complexity of then/else clauses

 Switch statement
Take complexity of most expensive case

 Subroutine call
Complexity of the subroutine

Lec 1 & 3: Introduction and Algorithm Analysis
46

Analyzing Problems

Multiple Parameters

 Compute the rank ordering for all C pixel 
values in a picture of P pixels.

 T(P, C) = C + P + C2

 O(P + C2) and (P + C2)

 (P + C2)

for (i=0; i<C; i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all pixels
count[value(i)]++; // Increment count

bubbleSort(count); // Sort pixel counts

C: 256 colors (8 bits)
P: 50 x 40 pixels
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Analyzing Problems

Space/Time Tradeoff Principle

 One can often reduce time if one is willing to 
sacrifice space, or vice versa, e.g.

 Encoding or packing information

 Boolean Flags
 Boolean takes one bit, but a byte is the smallest storage, so 

pack 8 Booleans into 1 byte

 Table lookup

 Factorials
 Compute once, store results, use many times


