

Data Structure Chapter 1 & 3

Introduction and Algorithm Analysis

Dr. Patrick Chan

School of Computer Science and Engineering South China University of Technology

Outline

- Introduction (Ch1)
 - Philosophy of Data Structure (1.1)
 - Abstract Data Types and Data Structures (1.2)
 - Problems, Algorithms and Programs (1.3)

Outline

- Algorithm Analysis (Ch3)
 - Best, Worst and Average Cases (3.2)
 - Fast Computer or Fast Algorithm? (3.3)
 - Asymptotic Analysis (3.4)
 - Multiple Parameters (3.8)
 - Space Bounds (3.9)

Lec 1 & 3: Introduction and Algorithm Analysis

Introduction: Efficient Programs?

- Program is the soul of a machine
- Objective of learning "data structure" is to improve the efficiency of a program
 - Shorter running time
 - Less memory

Introduction: Efficient Programs?

- 1982: Intel® 80286
 - 16 MHz (16,000,000 Hz)
- 2023: Intel® CoreTM i9-14900K
 - 6.00 GHz (6,000,000,000Hz)
- Naïve Comparison: 375 times difference!!
 - Core i9 calculates 1 sec
 - 80286 calculates 6.25 mins

Nowadays, the hardware is very powerful. Why do we still need to write an efficient program?

Lec 1 & 3: Introduction and Algorithm Analysis

A more efficient program is always desirable

Data Structure

- Data Structure usually refers a complex data representation and its associated operations
 - e.g. Array of Integer | Insertion, Deletion Student Record | Update ID

Lec 1 & 3: Introduction and Algorithm Analysis

Data Structure

- Proper data structure can make significant difference in program quality
- How to store an age?
 - Integer VS String
- How to find a minimum value from n integers?
 - Array VS Tree

Data Structure

- Real Number is better than Integer? No
- Every data structure has costs and benefits
 - No data structure is better than another in all situations
- A data structure requires:
 - Space for each data item it stores
 - Time to perform each basic operation
 - Programming effort

Lec 1 & 3: Introduction and Algorithm Analysis

Data Structure

- Each problem has constraints, e.g. time and space
- Data Structure Selection:
 - Analyze the problem and determine the resource constraints
 - Determine the basic operations and quantify the resource constraints for each operation
 - Select the data structure that best meets these requirement

Detailed Definitions

- Data: a piece of information
 - e.g. 1
- Type: a collection of values
 - e.g. Integer type: collection of 1,2,3... value
- Data Type: a type and its related operations
 - e.g. Integer data type: Integer type and +-x÷ operations
- Data Structure: a complex type and its operations
- Data Item: a piece of information of a data type
 - e.g., 1 : a piece of information from a Integer type
 - A member of a data type

Lec 1 & 3: Introduction and Algorithm Analysis

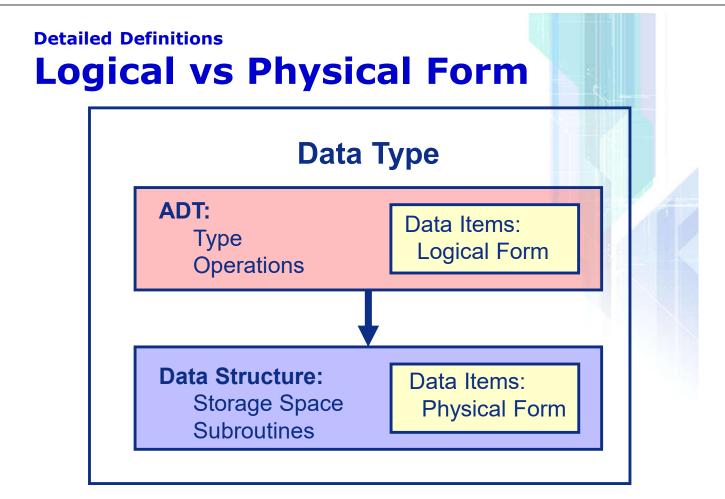
Detailed Definitions

- Abstract Data Type: a definition for a data type solely in terms of a set of values and a set of operations on that data type
 - ADT operation is defined by its inputs and outputs
 - Hide implementation details (Encapsulation)
- Data Structure: the physical implementation of an ADT
 - Operations associated with the ADT are implemented by subroutines (functions)
 - Usually refers to an organization for data in main memory

Detailed Definitions Logical vs Physical Form

- Data items have both a logical and a physical form
 - Logical Form
 - Definition of the data item within an ADT
 - e.g. Integers in mathematical sense: +, -
 - Physical Form
 - Implementation of the data item within a data structure
 - e.g. 16/32 bit integers: overflow

Lec 1 & 3: Introduction and Algorithm Analysis



Detailed Definitions Problem, Algorithm & Program

- Problem: A task to be performed
 - Best thought of as inputs and matching outputs
 - Problem definition should include constraints on the resources that may be consumed by any acceptable solution

Lec 1 & 3: Introduction and Algorithm Analysis

Detailed Definitions Problem, Algorithm & Program

- Algorithm: a method to solve a problem
 - Correct
 - No ambiguity
 - A series of concrete steps
 - A finite number of steps
 - Terminate

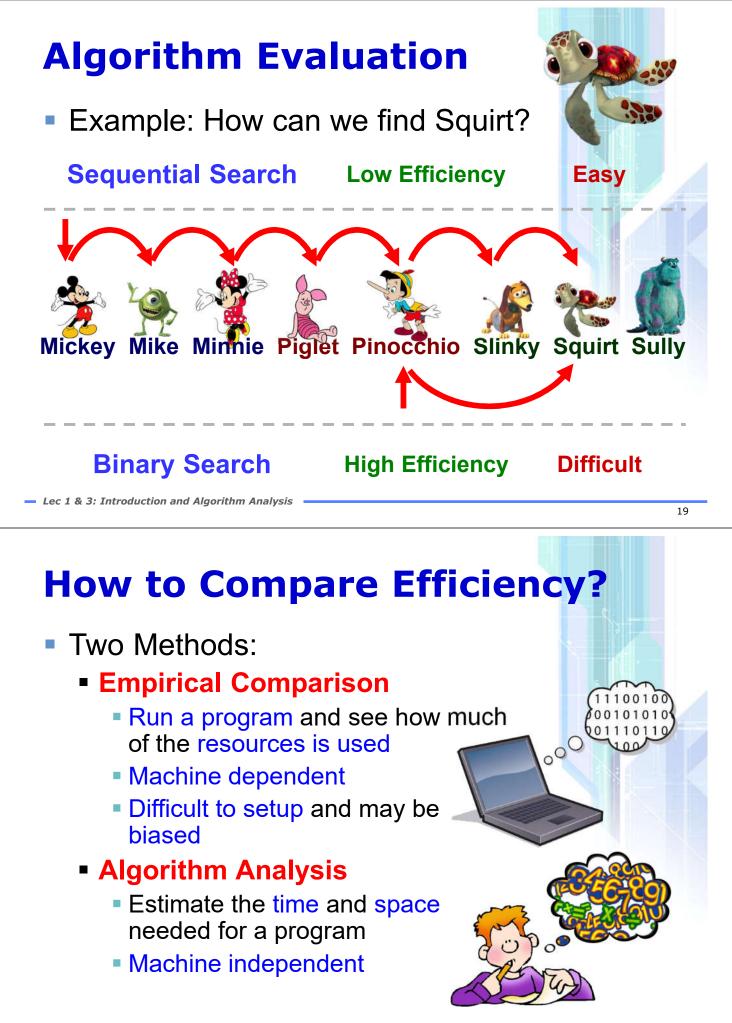
Detailed Definitions Problem, Algorithm & Program

Program: an instance for an algorithm in some programming languages

Lec 1 & 3: Introduction and Algorithm Analysis

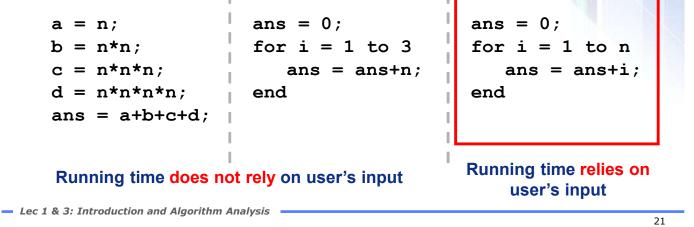
Algorithm Evaluation

- Many approaches (algorithms) to solve a problem. Which one is the best?
- Two criteria:
 - Efficiency
 - Concern of Data Structures and Algorithm Analysis
 - Easy to understand
 - Concern of Software Engineering
 - They are conflicting



Algorithm Analysis Running Time T(n)

- Critical resource of a program is most often its Running Time
- Which one has the longest running time?
 - Assume *n* is input by users



Algorithm Analysis Running Time T(n)

- Focus on the program which depends on "size" of inputs
- T(n) for some function T on input size n

sum = 0; T(n) = c

c: the running time to assign a value to a variable

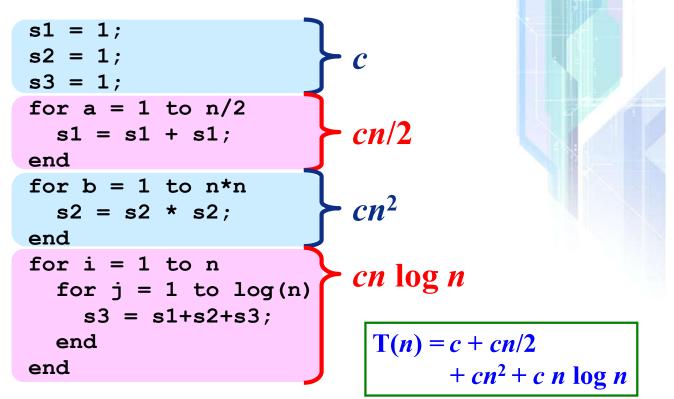
sum = 0;
for i = 1 to n
 for j = 1 to n
 sum = sum + 1;
 end
end
end

This c is not really important (not relate to n)

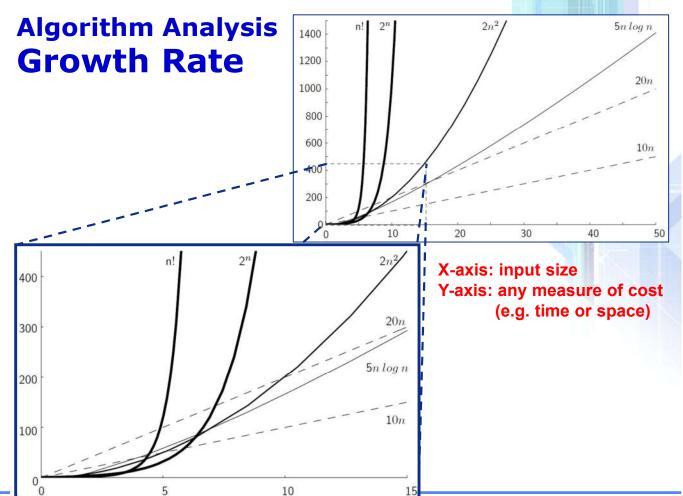
```
\mathbf{T}(n) = c + cn^2
```

c : the running time to assign a value to a variable

Algorithm Analysis Running Time T(n): Exercise



Lec 1 & 3: Introduction and Algorithm Analysis



Algorithm Analysis Best, Worst, Average Cases

- Same input size may require different amounts of running time
 - For example:

Sequential search for *K* in an array of *n* integers

- Begin at first element in array and look at each element in turn until *K* is found
- Best Case:
- Worst Case:
- Average Case: (n+1)/2

Algorithm Analysis Best, Worst, Average Cases

- Which measure should be used?
 - Best case
 - May happen rarely
 - Too optimistic
 - Worst case
 - Upper bound
 - Important to real time algorithms
 - Average case
 - The fairest measure
 - Difficult to determine
 - Need to know the all possible inputs and their costs

Algorithm Analysis: Running Time T(n) Fast Computer or Fast Algorithm?

- If we want to reduce the running time of a program, what should we do?
 - Buy a faster computer?
 - Write a faster algorithm?

Lec 1 & 3: Introduction and Algorithm Analysis

Algorithm Analysis: Running Time T(n) Fast Computer or Fast Algorithm?

- Old Computer (10,000 code/hour)
- New Computer (100,000 code/hour)

Size of input that can be processed using OLD Computer in one hour			Size of input that can be processed using NEW Computer in one hour	
T(<i>n</i>)	n _{old}	n _{new}	Change	n _{new} / n _{old}
10 <i>n</i>	1,000	10,000	$n_{new} = 10 n_{old}$	10
20 <i>n</i>	500	5,000	$n_{new} = 10 n_{old}$	10
$2n^{2}$	70	223	$n_{new} = \sqrt{10}n_{old}$	3.16
2 ⁿ	13	16	$n_{new} = n_{old} + 3$	~1
5 <i>n</i> log <i>n</i>	250	1,842	$\sqrt{10} \ \mathbf{n}_{old} < \mathbf{n}_{new} < 10 \ \mathbf{n}_{old}$	7.37

Algorithm Analysis

- Which program has a lower time complexity?
 - Program A: T(n) = cn⁴
 - **Program B:** $T(n) = cn + cn^2 + c \log n + cn^3$
- It is difficult to compare as there are many terms

Lec 1 & 3: Introduction and Algorithm Analysis

Algorithm Analysis

- We would like to know what the change of the complexity is when n grows to ∞
- Three different measures:
 - Big-Oh (O)
 - Big-Omega (Ω)
 - Big-Theta (Θ)

Algorithm Analysis: Big-Oh

Indicates the upper bound of a growth rate

Definition

For T(n) a non-negatively valued function, <u>T(n) is in the set O(f(n))</u>

if there exist two positive constants *c* and n_0 such that $T(n) \le c f(n)$ for all $n > n_0$

- *n*₀ is the smallest value of *n* for which the claim of an upper bound holds true
- Actually value of *c* is irrelevant

Algorithm Analy if $T(n) \le c f(n)$ for all $n > n_0$, T(n) is in the set O(f(n))

$$\mathbf{T}(n)=3n^2$$

$$\mathbf{T}(n) \leq c f(n)$$

$$3n^2 \leq c f(n)$$

By substituting,

c = 3 $f(n) = n^2$ $n_0 = 1$ $3n^2 = 3n^2$ T(n) is in $O(n^2)$ $T(n) = 3n^{2} + n$ $T(n) \leq c f(n)$ $3n^{2} + n \leq 3n^{2} + n^{2}$ $= 4n^{2}$ By substituting, $c = 4 \quad f(n) = n^{2} \quad n_{0} = 1$ $3n^{2} + n \leq 4n^{2}$ $T(n) \text{ is in } O(n^{2})$

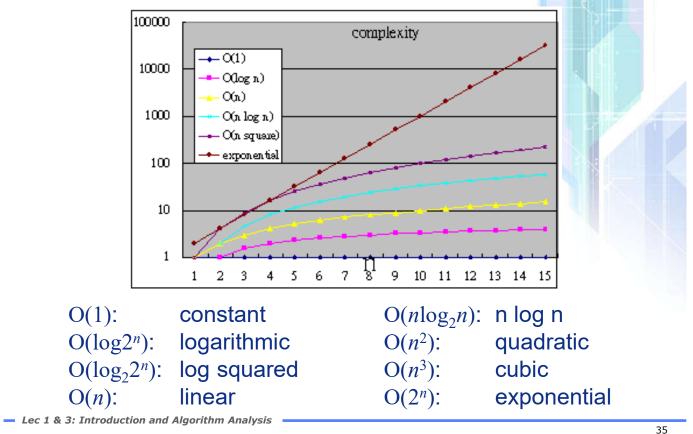
Algorithm Analysis: Big-Oh Exercise $if T(n) \le c f(n) \text{ for all } n > n_0, T(n) \text{ is in the set } O(f(n))$ $T(n) = c + cn/2 + cn^2 + cn \log n$ $T(n) \le s f(n) \quad n > \log n, \text{ as } n \to \infty$ $c + cn/2 + cn^2 + cn \log n \le cn^2 + cn^2/2 + cn^2 + cn^2$ $= (c + c/2 + c + c)n^2$ $= (7c/2)n^2$ By substituting, $s = 7c/2 \qquad f(n) = n^2 \qquad n_0 = 1$ $c + cn/2 + cn^2 + cn \log n \le (7c/2)n^2$ $T(n) \text{ is in } O(n^2)$

Lec 1 & 3: Introduction and Algorithm Analysis

Algorithm Analysis: Big-Oh

- Given T(n) = 3n
- We know that "T(n) = 3n is in O(n)"
- Can we say "T(n) = 3n is in $O(n^3)$ "?
- Yes but the tightest upper bound is preferred

Algorithm Analysis: Big-Oh



Algorithm Analysis: Big-Oh

Big-Oh VS Worst Case

- Big-Oh refers to a growth rate
- Worst case refers to the worst input from among the choices for possible inputs of a given size
- e.g. Sequential Search
 - Big-oh: T(n) is in O(n)
 - Worst Case: n

Algorithm Analysis: Big-Omega

Indicates the lower bound of a growth rate

Definition

For T(n) a non-negatively valued function, <u>T(n) is in the set $\Omega(g(n))$ </u>

if there exist two positive constants *c* and n_0 such that $T(n) \ge c g(n)$ for all $n > n_0$

- n₀ is the smallest value of n for which the claim of an upper bound holds true
- The actually value of *c* is irrelevant

Lec 1 & 3: Introduction and Algorithm Analysis

Algorithm Analy if $T(n) \ge c f(n)$ for all $n > n_0$, T(n) is in the set $\Omega(f(n))$

$$\mathbf{T}(n)=3n^2$$

$$\mathbf{T}(n) \geq c f(n)$$

$$3n^2 \ge c f(n)$$

By substituting,

 $c = 3 \quad f(n) = n^2 \quad n_0 = 1$ $3n^2 = 3n^2$ $T(n) \text{ is in } \Omega(n^2)$

 $T(n) = 3n^{2} + n$ $T(n) \ge c f(n)$ $3n^{2} + n \ge 3n^{2}$ $= 3n^{2}$ By substituting, $c = 3 \quad f(n) = n^{2} \quad n_{0} = 1$ $3n^{2} + n \ge 3n^{2}$

T(*n*) is in $\Omega(n^2)$

Algorithm Analysis: Big-Theta

When O and Ω are the same, we indicate this situation by using Θ notation

Definition

An algorithm is said to be $\Theta(h(n))$ if it is in O(h(n)) and $\Omega(h(n))$

Algorithm Analysis: Big-Theta

Example 1

a = b;

•
$$T(n) =$$

Example 2:

sum = 0; for (i=1; i<=n; i++) sum += n;

• T(n) =

☺ Small Exercise ☺

What is the Big-O, Big-Omega and Big-Theta of the following program?

sum = 0; for (i=1; i<=n; i++) //first loop for (j=1; j<=i; j++) //double loop sum++; for (k=0; k<n; k++) //second loop A[k] = k;

•
$$T(n) = c_1 + c_2 \sum_{i=1}^{n} i + c_3 n = c_1 + c_2 \frac{n(n+1)}{2} + c_3 n$$

• $O(n^2), \Omega(n^2), \Theta(n^2)$

Lec 1 & 3: Introduction and Algorithm Analysis

☺ Small Exercise ☺

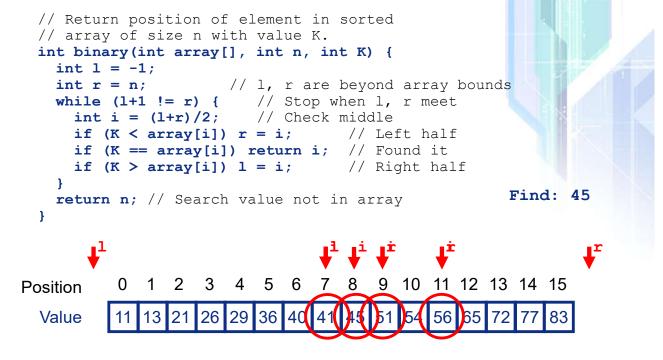
What is the Big-O, Big-Omega and Big-Theta of the following program?

sum1 = 0; for(i=1;i<=n;i++) //first double loop for(j=1;j<=n;j++) //do n times sum1++; sum2 = 0; for(i=1;i<=n;i++) //second double loop for(j=1;j<=i;j++) //do i times sum2++; = T(n) = c_1 + c_2n^2 + c_1 + c_2 n(n+1)/2

```
• \Omega(n^2), O(n^2), \Theta(n^2)
```

Algorithm Analysis: Case Study Binary Search

How many elements are examined in worst case?



Lec 1 & 3: Introduction and Algorithm Analysis

Algorithm Analysis: Case Study Binary Search

How many elements are examined in worst case?

Position Value

$$\mathrm{T}(n) = \mathrm{T}(n/2) + 1$$

where n > 1 and T(1) = 1

- Therefore, $T(n) = \log_2 n + 1$
- Cost is $\Theta(\log_2 n)$

43

15

Algorithm Analysis Other Control Statements

- While loop
 Analyze like a for loop
- If statement
 Take greater complexity of then/else clauses
- Switch statement
 Take complexity of most expensive case
- Subroutine call Complexity of the subroutine

Lec 1 & 3: Introduction and Algorithm Analysis

Analyzing Problems Multiple Parameters

 Compute the rank ordering for all C pixel values in a picture of P pixels.

for (i=0; i<C; i++) // Initialize count
 count[i] = 0;
for (i=0; i<P; i++) // Look at all pixels
 count[value(i)]++; // Increment count</pre>

bubbleSort(count); // Sort pixel counts

- $T(P, C) = C + P + C^2$
- $O(P + C^2)$
- $\Theta(P + C^2)$

Analyzing Problems Space/Time Tradeoff Principle

- One can often reduce time if one is willing to sacrifice space, or vice versa, e.g.
 - Encoding or packing information
 - Boolean Flags
 - Boolean takes one bit, but a byte is the smallest storage, so pack 8 Booleans into 1 byte
 - Table lookup
 - Factorials
 - Compute once, store results, use many times

Lec 1 & 3: Introduction and Algorithm Analysis