
Artificial Intelligence III: Artificial Intelligence and Deep Learning

Ch06 – Unsupervised Learning Tutorial

1. Given the following dataset:

- a) By using Single Linkage approach, group the samples into THREE clusters. Euclidean distance should be used.
- b) By using Complete Linkage approach, group the samples into THREE clusters. Euclidean distance should be used.
- c) Assume Sum-of-Squared-Error (SSE) $(S = \sum_{i=1}^{c} \sum_{x \in D_i} ||x m_i||^2)$ as a criterion function. By setting initial points to (0, 0), (0, 10) and (8, 8), find the clusters using K-mean (k = 3).

2. Given the following dataset:

Sample	Feature 1	Feature 2
S ₁	1	0
S ₂	2	0
S ₃	3	0
S ₄	5	6
S ₅	6	6
S ₆	7	6

a) Calculate the standardized dataset (A)

•
$$a = A - \mu$$

b) Calculate the covariance matrix (M) for the features in the dataset

•
$$Cov(D) = M = \frac{a^T a}{n}$$

c) Calculate the **eigenvalues** (λ_i) and **eigenvectors** (x_i, y_i) for the covariance matrix.

•
$$det(M - I\lambda) = 0$$

•
$$det(M - I\lambda) = 0$$

• $M \begin{bmatrix} x_i \\ y_i \end{bmatrix} = \lambda_i \begin{bmatrix} x_i \\ y_i \end{bmatrix}$

• Put
$$x_i = 1$$
 and convert to unit vector: $\sqrt{{x_i}^2 + {y_i}^2} = 1$

d) Pick top k eigenvalues, where k =2 (
$$\Lambda_k$$
)

• $\Lambda_k = \begin{bmatrix} x_1 & x_2 & \dots & x_k \\ y_1 & y_2 & \dots & y_k \end{bmatrix}$, where x_i and y_i correspond to the i^{th} highest λ .

e) Transform the original space to the principal component space (X)

•
$$M\Lambda_k = X$$