Artificial Intelligence III: Artificial Intelligence and Deep Learning

Ch05 –Ensemble **Tutorial Answer**

1. Given three base classifiers in a ensemble and 5 testing samples as below:

Testing		f_1			f_2			f_3	True	
Sample	ω_1	ω_2	ω_3	ω_1	ω_2	ω_3	ω_1	ω_2	ω_3	Output
x_1	0.7	0.2	0.3	0.5	0.2	0.6	0.7	0.4	0.1	ω_1
x_2	0.4	0.6	0.1	0.2	0.2	0.9	0.1	0.4	0.2	ω_3
x_3	0.2	0.2	0.5	0.5	0.2	0.4	0.7	0.5	0.5	ω_1
<i>X</i> 4	0.5	0.3	0.6	0.4	0.5	0.1	0.1	0.1	0.4	ω_3
x_5	0.2	0.9	0.8	0.0	0.1	0.2	0.2	0.6	0.7	ω_2

a) What is the testing accuracy of each base classifier?

Answer:

Testing Sample	f_1	f_2	f_3	True Output
x_1	ω_1	ω_3	ω_1	ω_1
x_2	ω_2	<i>w</i> ₃	ω_2	<i>0</i> 3
<i>x</i> ₃	ω_3	ω_1	ω_1	ω_1
χ_4	ω_3	ω_2	<i>w</i> ₃	<i>0</i> 3
<i>x</i> ₅	ω_2	ω_3	ω_3	ω_2

Testing accuracy of $f_1 = 60\%$

Testing accuracy of $f_2 = 40\%$

Testing accuracy of $f_3 = 60\%$

b) If MAJORITY vote is used as the fusion method, which class does the samples $(x_i, i = 1..5)$ belongs to? What is the testing accuracy of this ensemble?

Answer:

Testing Sample	f_1	f_2	f_3	ensemble (MVote)	True Output
x_1	ω_1	ω_3	ω_1	ω_1	ω_1
x_2	ω_2	ω_3	ω_2	ω_2	ω_3
<i>x</i> ₃	ω_3	ω_1	ω_{l}	ω_1	ω_1
<i>X</i> 4	ω_3	ω_2	ω_3	<i>0</i> 3	<i>0</i> 3
<i>x</i> ₅	ω_2	<i>0</i> 3	ω_3	<i>0</i> 3	ω_2

Testing accuracy of ensemble using majority vote = 60%

c) If MAX is used as the fusion method, which class does the samples $(x_i, i = 1..5)$ belongs to? What is the testing accuracy of this ensemble?

Answer:

		f_1		f_2		f_3		ensemble			ensemble	True		
	ω_1	ω_2	ω_3	Output	Output									
x_1	0.7	0.2	0.3	0.5	0.2	0.6	0.7	0.4	0.1	0.7	0.4	0.6	ω_1	ω_1
x_2	0.4	0.6	0.1	0.2	0.2	0.9	0.1	0.4	0.2	0.4	0.6	0.9	<i>0</i> 3	<i>w</i> ₃
x_3	0.2	0.2	0.5	0.5	0.2	0.4	0.7	0.5	0.5	0.7	0.5	0.5	ω_1	ω_1
x_2	0.5	0.3	0.6	0.4	0.5	0.1	0.1	0.1	0.4	0.5	0.5	0.6	<i>0</i> 3	<i>w</i> ₃
x_{5}	0.2	0.9	0.8	0.0	0.1	0.2	0.2	0.6	0.7	0.2	0.9	0.8	ω_2	ω_2

Testing accuracy of ensemble using MAX = 100%

d) Assume that the training accuracy of classifier 1, 2 and 3 are 95%, 85% and 95%. By using WEIGHTED AVERAGE as the fusion method, which class does the samples (x_i , i = 1...5) belongs to? The weight should be determined by using this formula:

la:
$$w_i = \frac{err_i}{\sum_{j=1}^{L} err_j}, \text{ where } err_i \text{ is the training accuracy of classifier } i$$

What is the testing accuracy of this ensemble?

Answer:

```
w_1 = 0.3455
w_2 = 0.3091
w_3 = 0.3455
x_1 \text{ is class } \omega_1
0.7*0.3455+0.5*0.3091+0.7*0.3455=0.6382
0.2*0.3455+0.2*0.3091+0.4*0.3455=0.2691
0.3*0.3455+0.6*0.3091+0.1*0.3455=0.3237
x_2 \text{ is class } \omega_2
0.4*0.3455+0.2*0.3091+0.1*0.3455=0.2346
0.6*0.3455+0.2*0.3091+0.4*0.3455=0.4073
0.1*0.3455+0.9*0.3091+0.2*0.3455=0.3818
x_3 \text{ is class } \omega_3
0.2*0.3455+0.5*0.3091+0.7*0.3455=0.4655
0.2*0.3455+0.2*0.3091+0.5*0.3455=0.3037
0.5*0.3455+0.4*0.3091+0.5*0.3455=0.4691
```

 x_4 is class ω_3

 x_5 is class ω_3

```
0.2*0.3455+0.0*0.3091+0.2*0.3455=0.1382
0.9*0.3455+0.1*0.3091+0.6*0.3455=0.5492
0.8*0.3455+0.2*0.3091+0.7*0.3455=0.5801
```

Testing accuracy of ensemble using weight average = 40%

- e) Calculate the diversity for the ensemble by using the following measurements:
 - i) Disagreement Measure
 - ii) Double Fault Measure
 - iii) Correlation coefficient

Answer:

Testing Sample	$f_1 f_2$	f_2f_3	f_1f_3
Dis	5/5	3/5	2/5
DFM	0/5	1/5	1/5

- i) Disagreement Measure = 2/3
- ii) Double Fault Measure = 2/5
- iii) Correlation coefficient

$f_1 f_2 : \omega_1$	0.4892	$f_1f_3:\omega_1$	0.1506	$f_2f_3:\omega_1$	0.6778
$f_1 f_2 : \omega_2$	-0.4757	$f_1 f_3$: ω_2	0.4820	$f_2 f_3:\omega_2$	-0.9692
$f_1 f_2 : \omega_3$	-0.9284	$f_1f_3:\omega_3$	0.8759	$f_2f_3:\omega_3$	-0.7048

Mean of all those values is the answer.

f) Do you think adding more base classifiers can increase the performance of the ensemble?

Answer:

The performance of the ensemble can improve only if added base classifiers contribute independently among others.