
Artificial Intelligence III: Artificial Intelligence and Deep Learning

Ch04 – Classifiers **Tutorial Answer**

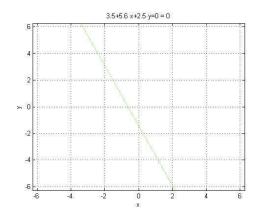
1. For a two-class problem:

$$g(x) = w_0 + w_1x_1 + w_2x_2$$

where x_1 and x_2 is the feature 1 and 2 of a sample. If g(x) > 0, sample x belongs to class 1; otherwise, it is class 2. Given that w_0 , w_1 and w_2 are 3.5, 5.6 and 2.5 respectively. What is the value of g(x) and the class when

1

$$g(x) = X^{t}W$$
where $X = (1 x_1 x_2)^{t}$ and $W = (w_0 w_1 w_2)^{t}$


a)
$$x = (-3.0 \ 2.1)$$

b)
$$x = (1.5 \ 3.6)$$

c)
$$x = (-2.03.08)$$

Answer:

- a) Class 2
- b) Class 1
- c) On the decision boundary (can be either class 1 and class 2)

2. Mary wants to solve a 4-class problem:

	x_1	x_2	ω
1	1	5	1
2	3	4	1
3	4	6	2
4	4	8	2

	x_1	x_2	ω
5	6	2	3
6	8	3	3
7	7	5	4
8	8	5	4

However, she only can use binary classifiers.

a) Can you suggest two methods to help Mary?

Answer:

1-against-all and 1-against-1

b) How many binary classifiers should be trained for each method? What are they? How do these methods work?

Answer:

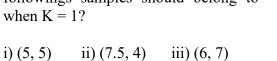
1-against-all method needs 4 binary classifiers:

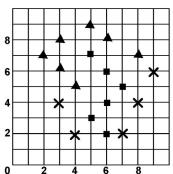
$$g_{1\text{vs}234}(x), g_{2\text{vs}134}(x), g_{3\text{vs}124}(x), g_{4\text{vs}123}(x)$$

If
$$g_{1\text{vs}234}(x) > 0$$
, $g_{2\text{vs}134}(x) < 0$, $g_{3\text{vs}124}(x) < 0$, $g_{4\text{vs}123}(x) < 0$, g

1-against-1 method need 6 binary classifiers:

$$g_{1\text{vs2}}(x), g_{1\text{vs3}}(x), g_{1\text{vs4}}(x), g_{2\text{vs3}}(x), g_{2\text{vs4}}(x), g_{3\text{vs4}}(x)$$


If
$$g_{1vs2}(x) > 0$$
, $g_{1vs3}(x) > 0$, $g_{1vs4}(x) > 0$, x is class 1


c) Please discuss the pros and cons of these two methods.

Answer:

1-against-All needs a smaller number of classifiers 1-against-1 has a smaller ambiguous region 3.

a) According to K-nn, which class the followings samples should belong to when K = 1?

Answer:

- i) Triangle
- ii) cross
- iii) Unknown (triangle or square)
- b) If K = 3, what is the answer of part (a)?

Answer:

- i) square
- ii) square
- iii) square
- 4. Bob wants to try a Decision Tree algorithm on a simple dataset listed as follows. The dataset has 8 instances each of which has 3 attributes and a class label. The attributes are abstracted as x1, x2, and x3 and the class label as Y. All of them are binary variables.

Sample	x_1	x_2	<i>x</i> ₃	Y
1	0	0	0	0
2	0	0	1	0
3	0	1	0	1
4	0	1	1	1
5	1	0	1	1
6	1	0	1	1
7	1	1	0	0
8	1	1	0	0

a) What is the value of the Entropy of class labels, H(Y), in the dataset?

Answer:

$$H(Y) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1$$

b) What are the Information Gains of Y with respect to each of the three attributes, $IG(Y,x_1)$, $IG(Y,x_2)$ and $IG(Y,x_3)$?

Answer:

$$H(Y \mid x_1) = \frac{1}{2} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) \right) + \frac{1}{2} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) \right)$$

$$= \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) \right)$$

$$= 1$$

$$H(Y | x_2) = \frac{1}{2} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) \right) + \frac{1}{2} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) \right)$$

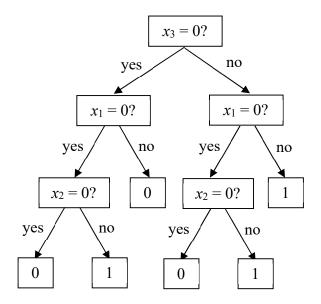
$$= \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) \right)$$

$$= 1$$

$$H(Y | x_3) = \frac{1}{2} \left(-\frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4}) \right) + \frac{1}{2} \left(-\frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4}) \right)$$
$$= \left(-\frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4}) \right)$$
$$= 0.8113$$

$$IG(Y, x_1) = H(Y) - H(Y \mid x_1) = 0$$

 $IG(Y, x_2) = H(Y) - H(Y \mid x_2) = 0$
 $IG(Y, x_3) = H(Y) - H(Y \mid x_3) = 0.1887$


c) Which attribute should be chosen for the root according to the algorithm?

Answer:

Feature 3 should be used as it has the highest Information Gain among three features.

d) Build the rest of the tree according to the Information Gains.

Answer:

Sample	x_1	x_2	Y
1	0	0	0
3	0	1	1
7	1	1	0
8	1	1	0

Sample	x_1	x_2	Y
2	0	0	0
4	0	1	1
5	1	0	1
6	1	0	1

$$H(Y) = -\frac{3}{4}\log_2(\frac{3}{4}) - \frac{1}{4}\log_2(\frac{1}{4}) = 0.811$$

$$H(Y \mid x_1)$$

$$= \frac{1}{2}\left(-\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2})\right)$$

$$+ \frac{1}{2}\left(-\frac{2}{2}\log_2(\frac{2}{2}) - \frac{0}{2}\log_2(\frac{0}{2})\right)$$

$$= -\frac{1}{2}\log_2(\frac{1}{2}) = \frac{1}{2}$$

$$H(Y \mid x_2)$$

$$= \frac{1}{4}\left(-\frac{1}{1}\log_2(\frac{1}{1}) - \frac{0}{1}\log_2(\frac{0}{1})\right)$$

$$+ \frac{3}{4}\left(-\frac{2}{3}\log_2(\frac{2}{3}) - \frac{1}{3}\log_2(\frac{1}{3})\right)$$

$$= 0.6887$$

$$H(Y \mid x_2)$$

$$= \frac{1}{4}\left(-\frac{1}{1}\log_2(\frac{1}{1}) - \frac{0}{1}\log_2(\frac{0}{1})\right)$$

$$+ \frac{3}{4}\left(-\frac{2}{3}\log_2(\frac{2}{3}) - \frac{1}{3}\log_2(\frac{1}{3})\right)$$

$$= 0.6887$$

e) Bob wants to prune the tree as he thinks the tree is too complicated. Which node should be deleted and why?

Answer:

The either one of the nodes in middle layer [x1 = 0?] in the decision tree can be deleted. This is because removing one of these nodes only misclassifies one sample.