Artificial Intelligence III: Artificial Intelligence and Deep Learning

Ch04 – Classifiers <u>Tutorial</u>

1. For a two-class problem:

$$g(x) = w_0 + w_1 x_1 + w_2 x_2$$

where x_1 and x_2 is the feature 1 and 2 of a sample. If g(x) > 0, sample x belongs to class 1; otherwise, it is class 2. Given that w_0 , w_1 and w_2 are 3.5, 5.6 and 2.5 respectively. What is the value of g(x) and the class when

$$g(x) = X^{t}W$$
where $X = (1 x_1 x_2)^{t}$ and

 $\mathbf{W} = (w_0 \ w_1 \ w_2)^t$

 \mathcal{W}_0

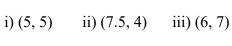
a)
$$x = (-3.0 \ 2.1)$$

b)
$$x = (1.5 \ 3.6)$$

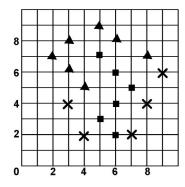
c)
$$x = (-2.0 \ 3.08)$$

2. Mary wants to solve a 4-class problem:

	x_1	x_2	ω
1	1	5	1
2	3	4	1
3	4	6	2
4	4	8	2


	x_1	x_2	ω
5	6	2	3
6	8	3	3
7	7	5	4
8	8	5	4

However, she only can use binary classifiers.


- a) Can you suggest two methods to help Mary?
- b) How many binary classifiers should be trained for each method? What are they? How do these methods work?
- c) Please discuss the pros and cons of these two methods.

3.

a) According to K-nn, which class the followings samples should belong to when K = 1?

b) If K = 3, what is the answer of part (a)?

4. Bob wants to try a Decision Tree algorithm on a simple dataset listed as follows. The dataset has 8 instances each of which has 3 attributes and a class label. The attributes are abstracted as x1, x2, and x3 and the class label as Y. All of them are binary variables.

Sample	x_1	x_2	<i>x</i> ₃	Y
1	0	0	0	0
2	0	0	1	0
3	0	1	0	1
4	0	1	1	1
5	1	0	1	1
6	1	0	1	1
7	1	1	0	0
8	1	1	0	0

- a) What is the value of the Entropy of class labels, H(Y), in the dataset?
- b) What are the Information Gains of Y with respect to each of the three attributes, $IG(Y,x_1)$, $IG(Y,x_2)$ and $IG(Y,x_3)$?
- c) Which attribute should be chosen for the root according to the algorithm?
- d) Build the rest of the tree according to the Information Gains.
- e) Bob wants to prune the tree as he thinks the tree is too complicated. Which node should be deleted and why?