

Artificial Intelligence III:
Artificial Intelligence and Deep Learning

Lecture 6

Unsupervised Learning

Dr. Patrick Chan
patrickchan@ieee.org
South China University of Technology, China

Agenda

- Introduction
- Clustering
 - Similarity Measure
 - Criterion Function
 - Algorithm
- Feature Extraction
 - Principal Components Analysis

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

Supervised VS Unsupervised

- Supervised Learning
 - Label is given
 - Someone (a supervisor) provides the true answer

- No Label is given "Learning without a teacher"
- Much harder than supervised learning
- You never know the correct answer
 - How to evaluate the result?

Unsupervised Learning

- No Supervision (No Label) How to evaluate the result?
 - External: Expert comments
 - Expert may be wrong
 - Internal: Objective functions
 - E.g. Distance between samples and centers
 - Very intuitive
- Different from Supervised Learning, the evaluation method is subjective

Why No Label?

- Label is expensive
 - Especially for a huge dataset
 - E.g. Medical application
- Sometimes, the objective is not clear
 - Data Mining
- Gain some insight about the data structure before designing classifiers
 - E.g. Feature selection

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Unsupervised Learning Type

- Parametric Approach
 - Assume distribution is known
 - Estimate parameters of distribution
 - E.g. Maximum-Likelihood Estimate
- Non-Parametric Approach
 - No assumption on the distribution
 - Group data into clusters
 - Samples in the same group share something in common

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

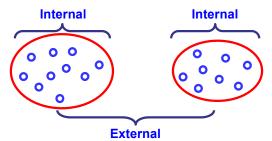
Clustering

How many clusters (groups) are there?

How can you know it?

Clustering

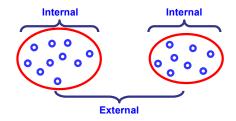
How many clusters (groups) are there?



- Assumptions
 - Internal Characteristic (intra-cluster):
 - Distance within a cluster should be small
 - External Characteristic (inter-cluster):
 - Distance between clusters should be large

Clustering Three Important Factors

- Distance (Similarity) Measure
 - How similar between two samples?
- Criterion Function
 - What kind of clustering result is expected?
- Clustering Algorithm
 - E.g. optimize the criterion function

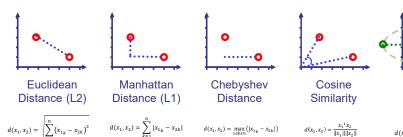


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering **Similarity Measure**

- No best measure for all cases
- Application dependent



Dr. Patrick Chan @ SCUT

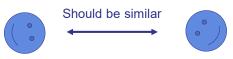
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Mahalanobis

Distance

Clustering Similarity Measure

- No best measure for all cases
- Application dependent
 - Examples:
 - Rotation Invariance in Face Recognition

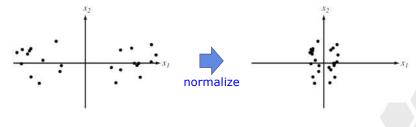


NO Rotation Invariance in Character Recognition

Should be different

Clustering Similarity Measure

- Scale of features may be different
 - Different Ranges (Weight: 80 300, waist width: 28 45)
 - Different Units (Km VS mile, cm VS meter)
- May be solved by normalized, e.g. [0, 1]
 - Sometimes may not be suitable
 - normalization reduces cluster effect (right diagram)



Naïve Clustering Algorithm

- A naïve clustering algorithm can be developed only based on similarity measure between samples
- Algorithm:
 - Calculate similarity for each sample pair
 - Group the samples in the same cluster if the measure between them is less than a threshold (d₀)

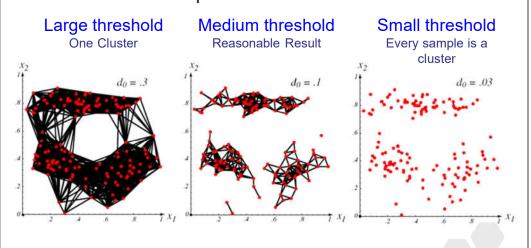
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering Naïve Clustering Algorithm Large threshold 1.0 2.0 3.2 3.0 $(d_0 = 4.0)$ 0 1.0 2.2 3.2 1 cluster 1.0 0 1.4 3.6 2.2 1.4 0 3.6 Medium threshold $(d_0 = 2.5)$ 2 clusters Small threshold $(d_0 = 0.5)$ 5 clusters Dr. Patrick Chan @ SCUT Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering Naïve Clustering Algorithm

Another Example



Clustering Naïve Clustering Algorithm

- Advantage:
 - Easy to understand
 - Simple to implement
- Disadvantage:
 - Only local information is considered
 - Highly dependent on the threshold

Clustering

Criterion Function

- Commonly used criteria
 - Intra-cluster scatter (Variance of each cluster) Smaller is better

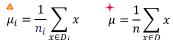
$$S_A = \sum_{i=1}^{c} \sum_{x \in D_i} (x - \mu_i)(x - \mu_i)^t$$

Inter-cluster scatter (Distance between clusters) Larger is better

$$S_E = \sum_{i=1}^{c} n_i (\mu_i - \mu) (\mu_i - \mu)^t$$

Combination

$$S = \alpha S_A - (1 - \alpha) S_E$$



c: the number of cluster

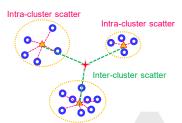
the number of samples

 n_i : the number of samples in cluster i

D: the set of all samples

 D_i : the set of samples in cluster i

 α : the tradeoff



Dr. Patrick Chan @ SCUT

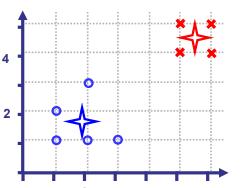
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering

Criterion Function: Example

Intra-cluster scatter

$$S_A = \sum_{i=1}^{c} \sum_{x \in D_i} (x - \mu_i)(x - \mu_i)^t$$



Dr. Patrick Chan @ SCUT

$$\mu_1 = \frac{1}{4} \begin{pmatrix} [5 & 4] + [5 & 5] \\ +[6 & 4] + [6 & 5] \end{pmatrix} = [5.5 & 4.5]$$

$$\mu_2 = \frac{1}{5} \begin{pmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \end{bmatrix} \\ + \begin{bmatrix} 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1.8 & 1.6 \end{bmatrix}$$

$$= \begin{pmatrix} \sqrt{(5-5.5)^2 + (4-4.5)^2} + \sqrt{(5-5.5)^2 + (5-4.5)^2} \\ + \sqrt{(6-5.5)^2 + (4-4.5)^2} + \sqrt{(6-5.5)^2 + (5-4.5)^2} \end{pmatrix} \\ + \begin{pmatrix} \sqrt{(1-1.8)^2 + (1-1.6)^2} + \sqrt{(1-1.8)^2 + (2-1.6)^2} \\ + \sqrt{(2-1.8)^2 + (1-1.6)^2} + \sqrt{(2-1.8)^2 + (3-1.6)^2} \end{pmatrix} \\ + \sqrt{(3-1.8)^2 + (1-1.6)^2} \end{pmatrix}$$

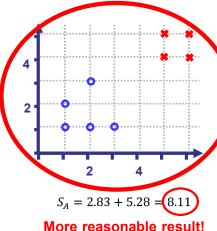
$$= 2.83 + 5.28 = 8.11$$

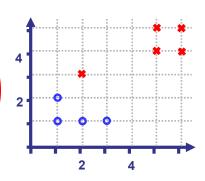
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering

Criterion Function: Example

 \bullet Smaller S_A is preferred



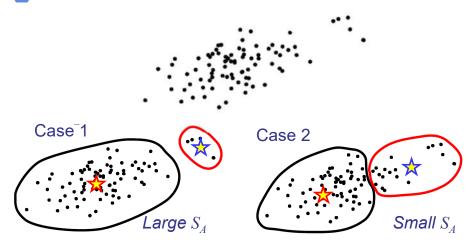


$$S_4 = 6.81 + 3.48 = 10.29$$

Clustering **Criterion Function**

- Is S_A (Intra-cluster scatter) a good criterion for all situations?
- How to separate the following samples into two clusters?

Criterion Function



Case 1 is more reasonable

However, it has a larger value of S_A due to the large cluster

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Criterion Function

- \bullet S_A (Intra-cluster scatter) is
- Appropriate:
 - The clusters form compact groups
 - Equally sized clusters
- Not Appropriate
 - When natural groupings have very different sizes

2 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

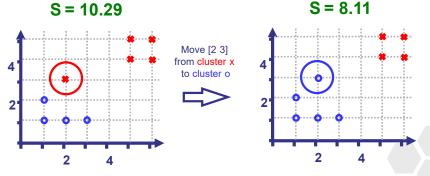
Clustering Algorithm

- Find the optimal clustering result
- Exhaustive search is impossible
 - ~Cⁿ possible partitions
 - C: class number, n: sample number
- Methods:
 - Iterative Optimization Algorithm
 - K-means
 - Hierarchical Clustering
 - Bottom Up Approach
 - Top Down Approach

Iterative Optimization Algorithm

Euclidean Distance is used

- 1. Find a reasonable initial cluster result
- 2. Move sample(s) from one cluster to another such that the objective function is improved the most
- 3. Goto 2 until stable



Clustering: Iterative Optimization Algorithm

K-means

- ◆ A well-known technique: K-means
 - Assume there are k clusters
 - Minimize Criterion Function (Intra-class scatter):

$$S = \sum_{i=1}^{k} \sum_{x \in D_i} \|x - \mu_i\|^2 \qquad \mu_i = \frac{1}{n_i} \sum_{x \in D_i} x$$

$$k: \quad \text{the number of cluster}$$

$$\mu_i = \frac{1}{n_i} \sum_{x \in D_i} x$$

 n_i : the number of samples in cluster i D_i : the set of samples in cluster i

 In each iteration, assign a sample to its closest cluster

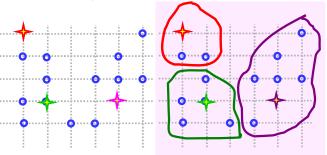
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Iterative Optimization Algorithm

K-means

◆ Example: *k*=3



1. Initialization

Randomly assign the center of each cluster

2. Assign Samples

Assign samples to closest center

3. Re-calculate mean

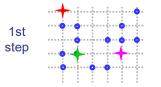
Compute the new means using new samples

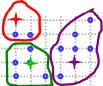
Repeat until stable (no sample moves again)

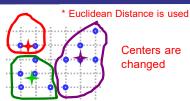
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Iterative Optimization Algorithm

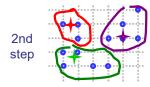
K-means



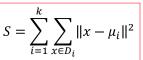


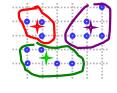


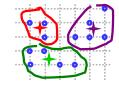
Centers are changed



Centers are







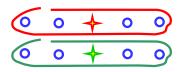
Centers are not changed K-means Stops

Clustering: Iterative Optimization Algorithm

K-means

Dr. Patrick Chan @ SCUT

- Pros:
 - Optimize the objective function efficiently
 - Algorithm converges
- Cons:
 - May be trapped at local minimum (similar to gradient descent)

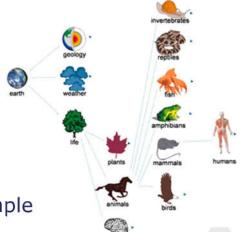


Trapped at Local Minimum

Global Minimum

Clustering **Hierarchical Clustering**

- Sometimes, clusters have subclusters, and so on
 - A cluster can further be broken down into smaller clusters
- Hierarchical cluster
- Taxonomy is an example



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering **Hierarchical Clustering**

- Two types:
 - Top Down Approach
 - Start with 1 cluster
 - One cluster contains all samples
 - Form hierarchy by splitting the most dissimilar clusters

Bottom Up Approach

- Start with n clusters
 - Each cluster contains one sample
- Form hierarchy by merging the most similar clusters
- Not efficient if a large number of samples but a number of clusters is needed

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

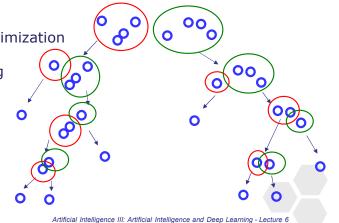
Clustering: Hierarchical Clustering

Top Down Approach

Start from one cluster

 Break down a cluster with more than one sample into two

 Any Iterative Optimization Algorithm can be applied by setting c = 2



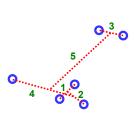
Clustering: Hierarchical Clustering

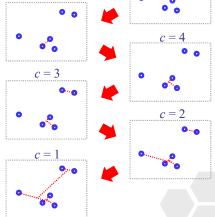
Bottom Up Approach

* Fuclidean Distance is used

Initially each sample forms a cluster

 Merge the nearest two clusters until one cluster left





Clustering: Hierarchical Clustering

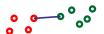
Bottom Up Approach

How to calculate distance between clusters?



Mean Distance

$$d_{mean}(D_i, D_j) = ||m_i - m_i||$$



Minimum Distance

$$d_{min}(D_i, D_j) = \min_{x \in D_i, z \in D_j} ||x - z||$$

Maximum Distance

$$d_{max}(D_i, D_j) = \max_{x \in D_i, z \in D_j} ||x - z||$$

Average Distance

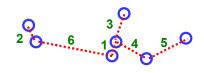
$$d_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{x \in D_j} ||x - z||$$

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering Bottom Up Approach

- Single Linkage (Nearest-Neighbor)
 - Minimum Distance is used
 - Encourage growth of elongated clusters
- Complete Linkage (Farthest Neighbor)
 - Maximum Distance is used
 - Encourages compact clusters



Single Linkage

Min distance between points of each cluster

Complete Linkage

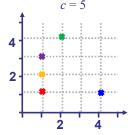
Max distance between points of each cluster

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering: Bottom Up Approach

Single Linkage: Example 1/4

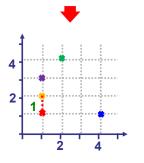


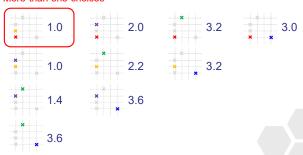
$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2}$$

= 3.2

Euclidean Distance is used

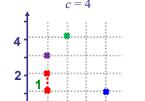
$$min(3.2) = 3.2$$

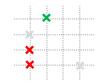




Clustering: Hierarchical Clustering: Bottom Up Approach

Single Linkage: Example 2/4



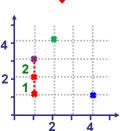




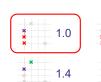
$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$



Euclidean Distance is used



Dr. Patrick Chan @ SCUT



Clustering: Hierarchical Clustering: Bottom Up Approach

Single Linkage: Example 3/4

Example:

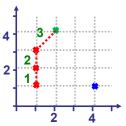
Euclidean Distance is used

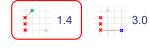
$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

$$d((1,3),(2,4)) = \sqrt{(1-2)^2 + (3-4)^2} = 1.4$$

$$\min(3.2, 2.2, 1.4) = 1.4$$



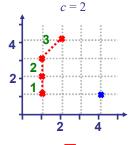


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering: Bottom Up Approach

Single Linkage: Example 4/4



Example:

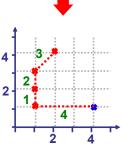
$$d((1,1),(4,1)) = \sqrt{(1-4)^2 + (1-1)^2} = 3.0$$

$$d((1,2),(4,1)) = \sqrt{(1-4)^2 + (2-1)^2} = 3.2$$

$$d((1,3),(4,1)) = \sqrt{(1-4)^2 + (3-1)^2} = 3.6$$

$$d((2,4),(4,1)) = \sqrt{(2-4)^2 + (4-1)^2} = 3.6$$

min(3.2, 2.2, 1.4) = 3.0



3.0

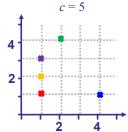
* This step is unnecessary as only one candidate

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering: Bottom Up Approach

Complete Linkage: Example 1/4



Example:

More than one choices

$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2}$$

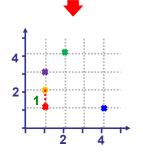
= 3.2

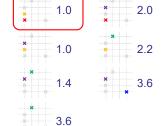
$$max(3.2) = 3.2$$

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

* This step is the same as Single Linkage since distance measure of clusters with one point

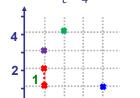
* Euclidean Distance is used





Clustering: Hierarchical Clustering: Bottom Up Approach

Complete Linkage: Example 2/4



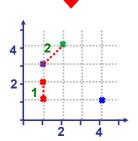
Example:

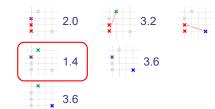
 $d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

max(3.2, 2.2) = 3.2

* Euclidean Distance is used

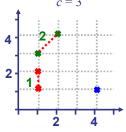




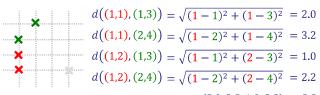
Dr. Patrick Chan @ SCUT

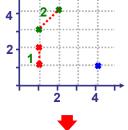
Clustering: Hierarchical Clustering: Bottom Up Approach

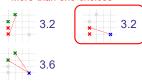
Complete Linkage: Example 3/4



Example:





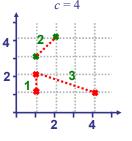


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering: Bottom Up Approach

Complete Linkage: Example 4/4



$$d((1,1),(1,3)) = \sqrt{(1-1)^2 + (1-3)^2} = 2.0$$

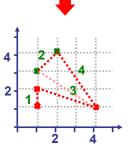
$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$$

$$d((1,2),(1,3)) = \sqrt{(1-1)^2 + (2-3)^2} = 1.0$$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

$$d((4,1),(1,3)) = \sqrt{(4-1)^2 + (1-3)^2} = 3.6$$
$$d((4,1),(2,4)) = \sqrt{(4-2)^2 + (1-4)^2} = 3.6$$

$$\max(2.0, 3.2, 1.0, 2.2, 3.6, 3.6) = 3.6$$



3.6

* This step is unnecessary as only one candidate

Dr. Patrick Chan @ SCUT

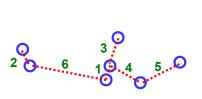
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering

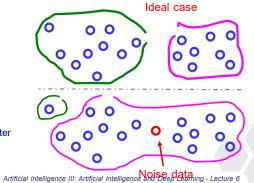
Bottom Up Approach

Single Linkage (Nearest-Neighbor)

- Minimum Distance is used
- Encourage growth of elongated clusters
- Disadvantage: Sensitive to noise



Min distance between points of each cluster



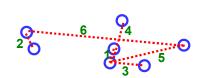
Clustering: Hierarchical Clustering

Bottom Up Approach

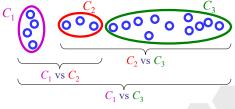
Complete Linkage (Farthest Neighbor)

- Maximum Distance is used
- Encourages compact clusters
- Disadvantage: Does not work well if elongated clusters present

Ideally, C2 and C3 should be merged



Max distance between points of each cluster



However, C₁ and C₂ will be merged

Clustering: Hierarchical Clustering

Bottom Up Approach

- Minimum and maximum distance are noise sensitive (especially, minimum)
- More robust result to outlier when average or mean are used

$$d_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{x \in D_j} ||x - z||$$

$$d_{mean}(D_i, D_i) = ||m_i - m_i||$$

 Mean is less time consumed than Average distance

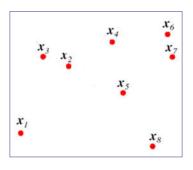
Dr. Patrick Chan @ SCUT

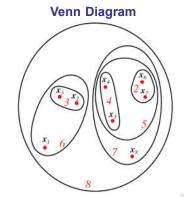
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering Venn

- Venn diagram can show hierarchical clustering
- No quantitative information is provided

Sample points





Dr. Patrick Chan @ SCUT

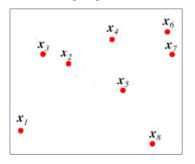
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering

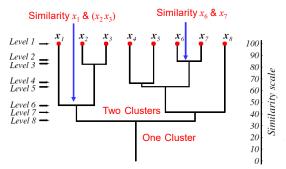
Dendogram

- Dendogram is another way to represent a hierarchical clustering
- Able to indicate the similarity value

Sample points



Dendogram

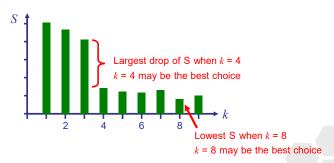


Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering

Number of Clusters

- How to decide the number of clusters?
- Possible solution:
 - Try a range of k and see which one has the lowest or largest drop criterion value (S)
 - Example:



Dr. Patrick Chan @ SCUT

Curse of Dimensionality

- Real data usually have plenty of features
 - E.g., documents, images...
- Huge number of features causes problems
 - Sparsity
 - Complexity (storage and process)

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

Curse of Dimensionality

Can the data be described with fewer dimensions, without losing much of its original meaning?

Dimensionality Reduction

- Not just reduce the amount of data
- Often brings out the useful part of the data

D

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

Feature Reduction

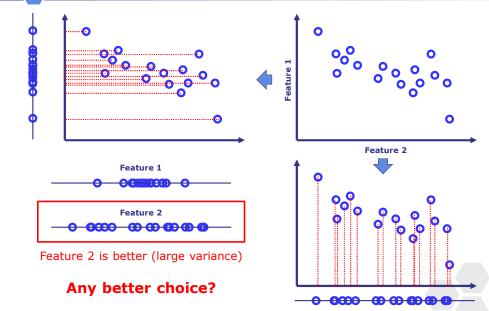
For unsupervised learning, which feature is more useful to represent a dataset?

Feature A Values are simil

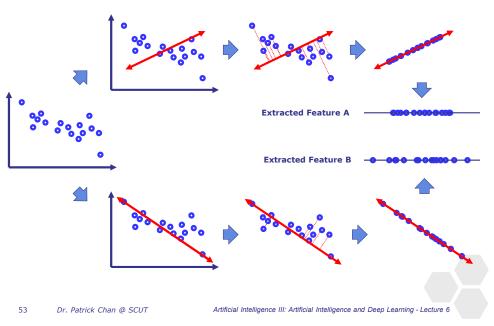
Feature B O O O O O O Values are very different

- A feature with different values provides more information
 - Variance is one of measures

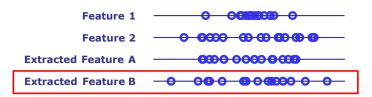
Feature Reduction



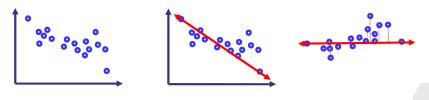
Feature Reduction



Feature Reduction



 Extracted Feature B is the best for representing the data



Dr. Patrick Chan @ SCUT

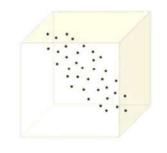
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

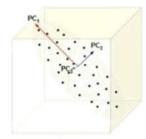
Principal Components Analysis

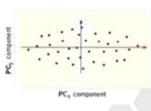
- PCA reduces data by geometrically projecting them onto lower dimensions called principal components (PCs)
- Project a dataset into a new set of features such that:
 - The features have zero covariance to each other (they are orthogonal)
 - Each feature captures the most remaining variance in the data, while orthogonal to the existing feature

Principal Components Analysis

- First principal component (PC) is the direction of greatest variability (variance) in the data
- Second PC is the next orthogonal (uncorrelated) direction of greatest variability
- And so on...

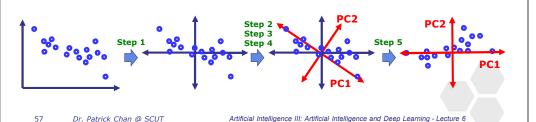






Principal Components Analysis

- **Standardize** the dataset
- Calculate the **covariance matrix** for the features in the dataset
- 3. Calculate the **eigenvalues** and **eigenvectors** for the covariance matrix.
- 4. Pick top k eigenvalues and form their eigenvectors
- Transform the original matrix

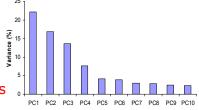


Principal Components Analysis

PC number Determination

 A feature with small eigenvalue contains small information

- n dimensions in original data
- Choose only the first p eigenvectors, based on their eigenvalues (p < n)
- Final data has only p dimensions



How to determine k?

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

Principal Components Analysis

PC number Determination

Determine by projection error

$$\frac{\frac{1}{m}\sum_{i=1}^{n} \left(x^{(i)} - z_k(x^{(i)})\right)^2}{\frac{1}{m}\sum_{i=1}^{n} (x^{(i)})^2} \le \varepsilon$$

Determine by variation ratio

$$\frac{\sum_{j=1}^{k} \sigma_j^2}{\sum_{j=1}^{n} \sigma_j^2} \approx r$$

 σ_i : the jth variance in descending order

r: expected ratio (e.g. 85%)

Principal Components Analysis

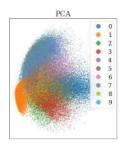
Limitation

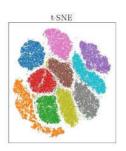
Orthogonal Feature

Non-linear projection

Principal Components Analysis

Other feature extraction methods





References

http://users.umiacs.umd.edu/~jbg/teachin g/INST_414/

