

Artificial Intelligence III: Artificial Intelligence and Deep Learning

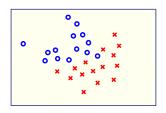
Unsupervised Learning

Dr. Patrick Chan
patrickchan@ieee.org
South China University of Technology, China

- Introduction
- Clustering
 - Similarity Measure
 - Criterion Function
 - Algorithm
- Feature Extraction
 - Principal Components Analysis

Supervised VS Unsupervised

- Supervised Learning
 - Label is given
 - Someone (a supervisor) provides the true answer



- Unsupervised Learning
 - No Label is given "Learning without a teacher"

- Much harder than supervised learning
- You never know the correct answer
 - How to evaluate the result?

3

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Unsupervised Learning

- No Supervision (No Label) How to evaluate the result?
 - External: Expert comments
 - Expert may be wrong
 - Internal: Objective functions
 - E.g. Distance between samples and centers
 - Very intuitive
- Different from Supervised Learning, the evaluation method is subjective

- Label is expensive
 - Especially for a huge dataset
 - E.g. Medical application
- Sometimes, the objective is not clear
 - Data Mining
- Gain some insight about the data structure before designing classifiers
 - E.g. Feature selection

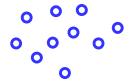
Dr. Patrick Chan @ SCUT

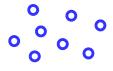
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Unsupervised Learning Type

- Parametric Approach
 - Assume distribution is known
 - Estimate parameters of distribution
 - E.g. Maximum-Likelihood Estimate
- Non-Parametric Approach
 - No assumption on the distribution
 - Group data into clusters
 - Samples in the same group share something in common

How many clusters (groups) are there?





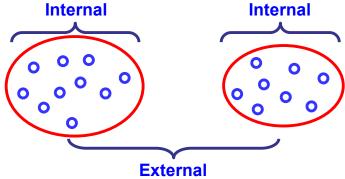
How can you know it?

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

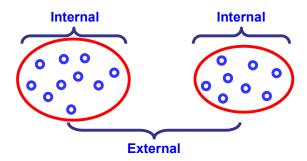
Clustering

How many clusters (groups) are there?



- Assumptions
 - Internal Characteristic (intra-cluster):
 - Distance within a cluster should be small
 - External Characteristic (inter-cluster):
 - Distance between clusters should be large

- Distance (Similarity) Measure
 - How similar between two samples?
- Criterion Function
 - What kind of clustering result is expected?
- Clustering Algorithm
 - E.g. optimize the criterion function

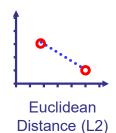


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

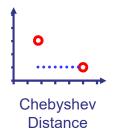
Clustering **Similarity Measure**

- No best measure for all cases
- Application dependent

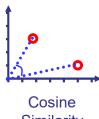


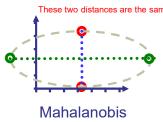


$$d(x_1, x_2) = \sum_{k=1}^{n} |x_{1_k} - x_{2k}|$$



$$d(x_1, x_2) = \max_{1 \le k \le n} (|x_{1_k} - x_{2k}|)$$

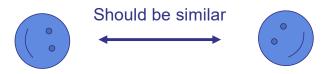




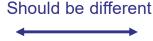
Distance

$$d(x_1, x_2) = \sqrt{\sum_{k=1}^{n} \frac{(x_{1_k} - x_{2_k})^2}{\sigma_k^2}}$$

- No best measure for all cases
- Application dependent
 - Examples:
 - Rotation Invariance in Face Recognition



 NO Rotation Invariance in Character Recognition



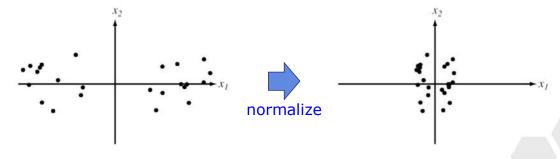
11

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Similarity Measure

- Scale of features may be different
 - Different Ranges (Weight: 80 300, waist width: 28 45)
 - Different Units (Km VS mile, cm VS meter)
- May be solved by normalized, e.g. [0, 1]
 - Sometimes may not be suitable
 - normalization reduces cluster effect (right diagram)



Dr. Patrick Chan @ SCUT

- A naïve clustering algorithm can be developed only based on similarity measure between samples
- Algorithm:
 - Calculate similarity for each sample pair
 - Group the samples in the same cluster if the measure between them is less than a threshold (d_0)

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

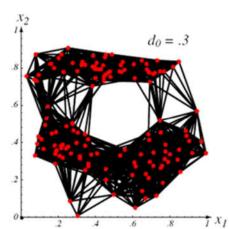
13

Dr. Patrick Chan @ SCUT

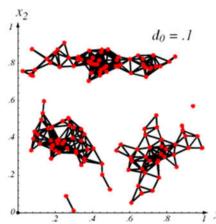
Naïve Clustering Algorithm

* Euclidean Distance is used Large threshold 1.0 2.0 3.2 3.0 $(d_0 = 4.0)$ 1.0 2.2 3.2 1 cluster 1.4 3.6 2.2 Medium threshold $(d_0 = 2.5)$ 2 clusters 4 2 Small threshold $(d_0 = 0.5)$ 5 clusters 2

Another Example

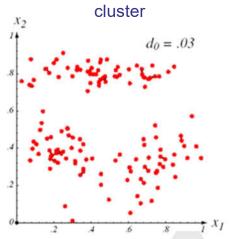


Medium threshold



Small threshold

Every sample is a cluster



5 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering

Naïve Clustering Algorithm

- Advantage:
 - Easy to understand
 - Simple to implement
- Disadvantage:
 - Only local information is considered
 - Highly dependent on the threshold

Commonly used criteria

Intra-cluster scatter (Variance of each cluster) Smaller is better

$$S_A = \sum_{i=1}^{c} \sum_{x \in D_i} (x - \mu_i)(x - \mu_i)^t$$

Inter-cluster scatter (Distance between clusters) Larger is better

$$S_E = \sum_{i=1}^{c} n_i (\mu_i - \mu) (\mu_i - \mu)^t$$

Combination

$$S = \alpha S_A - (1 - \alpha) S_E$$

$$\mu_i = \frac{1}{n_i} \sum_{x \in D_i} x \qquad \mu = \frac{1}{n} \sum_{x \in D} x$$

c: the number of cluster

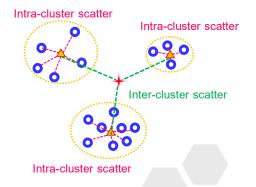
n: the number of samples

 n_i : the number of samples in cluster i

D: the set of all samples

 D_i : the set of samples in cluster i

 α : the tradeoff



17

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

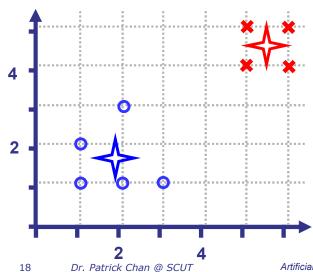
Clustering

Criterion Function: Example

* Euclidean Distance is used

Intra-cluster scatter

$$S_A = \sum_{i=1}^{c} \sum_{x \in D_i} (x - \mu_i)(x - \mu_i)^t$$



$$\mu_1 = \frac{1}{4} \begin{pmatrix} [5 & 4] + [5 & 5] \\ +[6 & 4] + [6 & 5] \end{pmatrix} = [5.5 & 4.5]$$

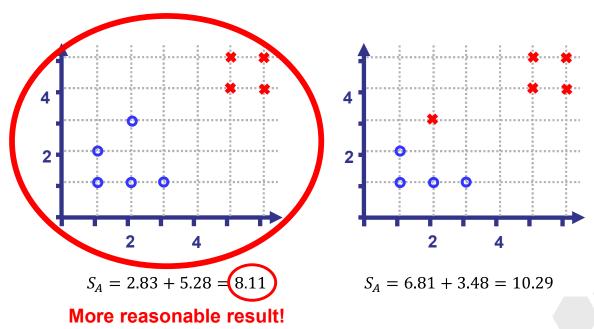
$$\mu_2 = \frac{1}{5} \begin{pmatrix} [1 & 1] + [1 & 2] \\ +[2 & 1] + [2 & 3] \\ +[3 & 1] \end{pmatrix} = \begin{bmatrix} 1.8 & 1.6 \end{bmatrix}$$

$$= \begin{pmatrix} \sqrt{(5-5.5)^2 + (4-4.5)^2} + \sqrt{(5-5.5)^2 + (5-4.5)^2} \\ + \sqrt{(6-5.5)^2 + (4-4.5)^2} + \sqrt{(6-5.5)^2 + (5-4.5)^2} \\ + \sqrt{(1-1.8)^2 + (1-1.6)^2} + \sqrt{(1-1.8)^2 + (2-1.6)^2} \\ + \sqrt{(2-1.8)^2 + (1-1.6)^2} + \sqrt{(2-1.8)^2 + (3-1.6)^2} \end{pmatrix}$$

$$= 2.83 + 5.28 = 8.11$$

* Euclidean Distance is used

 \bullet Smaller S_A is preferred

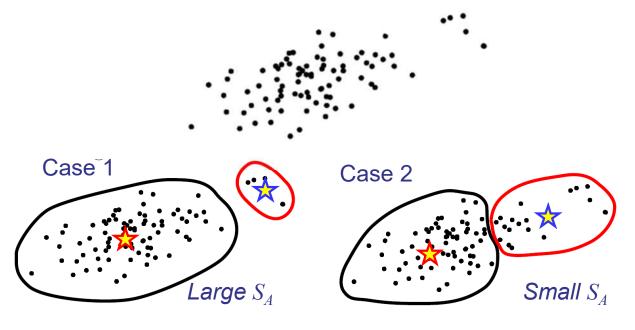


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Criterion Function

- Is S_A (Intra-cluster scatter) a good criterion for all situations?
- How to separate the following samples into two clusters?



Case 1 is more reasonable

However, it has a larger value of S_A due to the large cluster

21 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering

Criterion Function

- \bullet S_A (Intra-cluster scatter) is
- Appropriate:
 - The clusters form compact groups
 - Equally sized clusters
- Not Appropriate
 - When natural groupings have very different sizes

- Find the optimal clustering result
- Exhaustive search is impossible
 - ~Cⁿ possible partitions
 - C: class number, n: sample number
- Methods:
 - Iterative Optimization Algorithm
 - K-means
 - Hierarchical Clustering
 - Bottom Up Approach
 - Top Down Approach

23 Dr. Patrick Chan @ SCUT

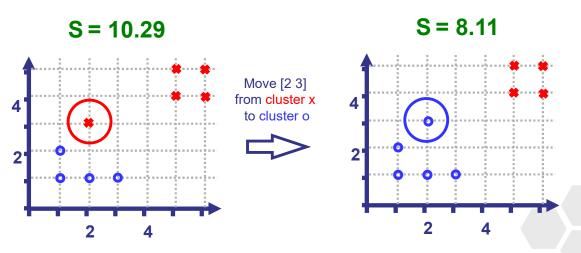
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering

Iterative Optimization Algorithm

* Euclidean Distance is used

- 1. Find a reasonable initial cluster result
- 2. Move sample(s) from one cluster to another such that the objective function is improved the most
- 3. Goto 2 until stable



Clustering: Iterative Optimization Algorithm K-means

- A well-known technique: K-means
 - Assume there are k clusters
 - Minimize Criterion Function (Intra-class scatter):

$$S = \sum_{i=1}^{k} \sum_{x \in D_i} ||x - \mu_i||^2 \qquad \mu_i = \frac{1}{n_i} \sum_{x \in D_i} x$$

$$k : \text{ the number of cluster}$$

$$\mu_i = \frac{1}{n_i} \sum_{x \in D_i} x$$

 n_i : the number of samples in cluster i D_i : the set of samples in cluster i

In each iteration, assign a sample to its closest cluster

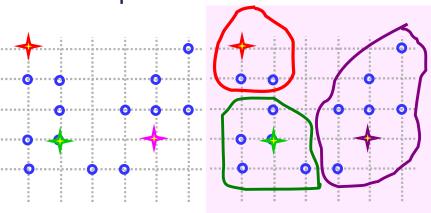
25

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Iterative Optimization Algorithm K-means

Example: k=3

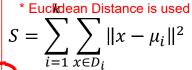


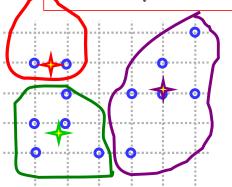
1. Initialization

Randomly assign the center of each cluster

2. Assign Samples

Assign samples to closest center



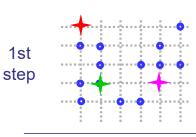


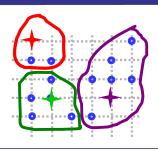
3. Re-calculate mean

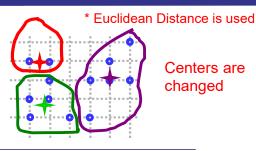
Compute the new means using new samples

Clustering: Iterative Optimization Algorithm

K-means

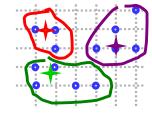


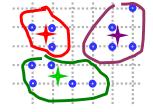




Centers are changed

2nd step

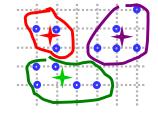


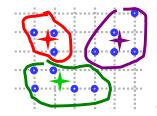


Centers are changed

$$S = \sum_{i=1}^{k} \sum_{x \in D_i} ||x - \mu_i||^2$$

step





Centers are not changed K-means **Stops**

27

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

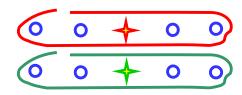
Clustering: Iterative Optimization Algorithm K-means

Pros:

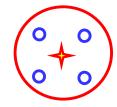
- Optimize the objective function efficiently
- Algorithm converges

Cons:

May be trapped at local minimum (similar to gradient descent)



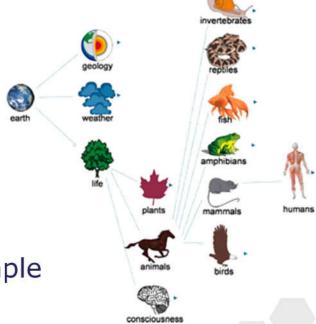
Trapped at Local Minimum



Global Minimum

Hierarchical Clustering

- Sometimes, clusters have subclusters, and so on
 - A cluster can further be broken down into smaller clusters
- Hierarchical cluster



29

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering

Hierarchical Clustering

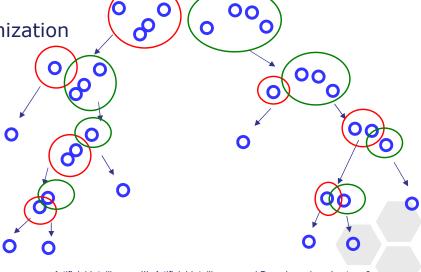
- Two types:
 - Top Down Approach
 - Start with 1 cluster
 - One cluster contains all samples
 - Form hierarchy by splitting the most dissimilar clusters
 - Bottom Up Approach
 - Start with n clusters
 - Each cluster contains one sample
 - Form hierarchy by merging the most similar clusters
 - Not efficient if a large number of samples but a number of clusters is needed

Start from one cluster

 Break down a cluster with more than one sample into two

Any Iterative Optimization
 Algorithm can be
 applied by setting

c = 2



31

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering Rottom IIn Approach

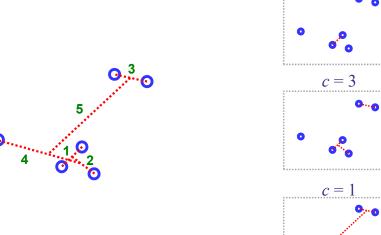
Bottom Up Approach

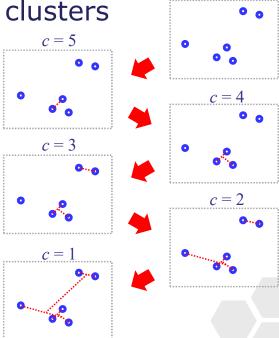
* Euclidean Distance is used

Initially each sample forms a cluster

Merge the nearest two clusters

until one cluster left

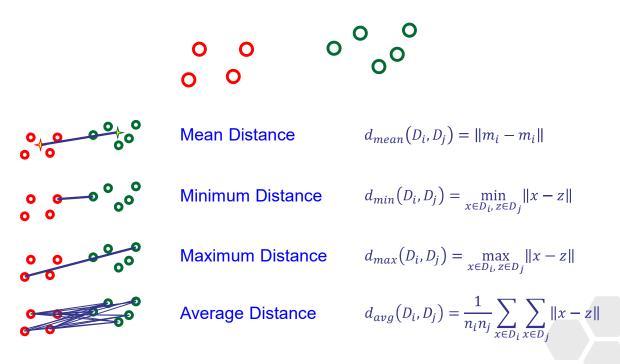




Dr. Patrick Chan @ SCUT

Clustering: Hierarchical Clustering Bottom Up Approach

How to calculate distance between clusters?



33 Dr. Patrick Chan @ SCUT

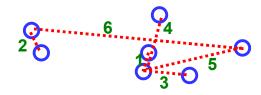
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering

Bottom Up Approach

- Single Linkage (Nearest-Neighbor)
 - Minimum Distance is used
 - Encourage growth of elongated clusters
- Complete Linkage (Farthest Neighbor)
 - Maximum Distance is used
 - Encourages compact clusters

Single Linkage
Min distance between points of each cluster

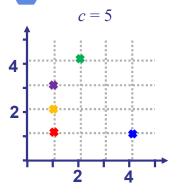


Complete Linkage

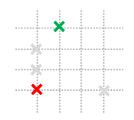
Max distance between points of each cluster

Single Linkage: Example 1/4

* Euclidean Distance is used



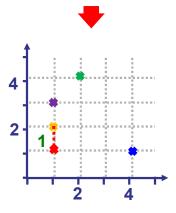
Example:



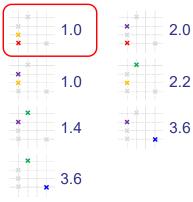
$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2}$$

= 3.2

$$min(3.2) = 3.2$$



More than one choices



35 D

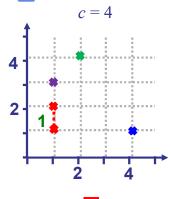
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

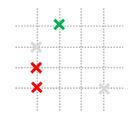
Clustering: Hierarchical Clustering: Bottom Up Approach

Single Linkage: Example 2/4

* Euclidean Distance is used



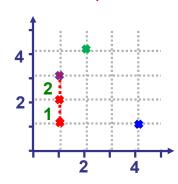
Example:



$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

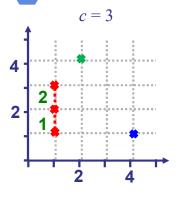
$$min(3.2, 2.2) = 2.2$$



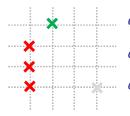
1.4

Single Linkage: Example 3/4

* Euclidean Distance is used



Example:

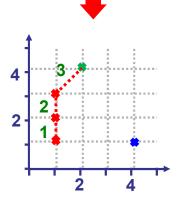


$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

$$d((1,3),(2,4)) = \sqrt{(1-2)^2 + (3-4)^2} = 1.4$$

$$min(3.2, 2.2, 1.4) = 1.4$$



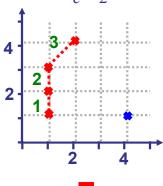
3.6

Dr. Patrick Chan @ SCUT 37

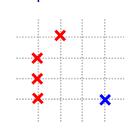
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering: Bottom Up Approach

Single Linkage: Example 4/4



Example:



$$d((1,1),(4,1)) = \sqrt{(1-4)^2 + (1-1)^2} = 3.0$$

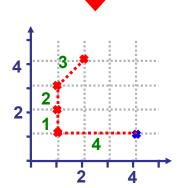
$$d((1,2),(4,1)) = \sqrt{(1-4)^2 + (2-1)^2} = 3.2$$

$$d((1,3),(4,1)) = \sqrt{(1-4)^2 + (3-1)^2} = 3.6$$

$$d((2,4),(4,1)) = \sqrt{(2-4)^2 + (4-1)^2} = 3.6$$

$$min(3.2, 2.2, 1.4) = 3.0$$

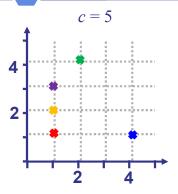
* Euclidean Distance is used



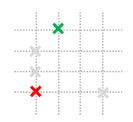
* This step is unnecessary as only one candidate

Complete Linkage: Example 1/4

* Euclidean Distance is used



Example:



$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2}$$

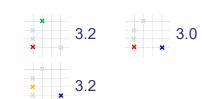
= 3.2

$$max(3.2) = 3.2$$

* This step is the same as Single Linkage since distance measure of clusters with one point is the same

4 2 1 2 4

More than one choices



39

Dr. Patrick Chan @ SCUT

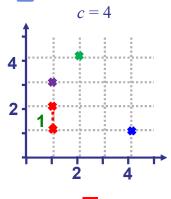
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering: Bottom Up Approach

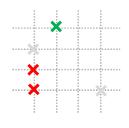
3.6

Complete Linkage: Example 2/4

* Euclidean Distance is used



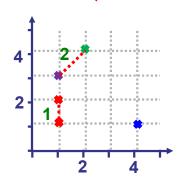
Example:



$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

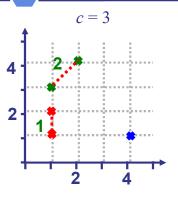
 $\max(3.2, 2.2) = 3.2$



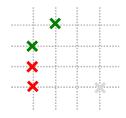
3.6

Complete Linkage: Example 3/4

* Euclidean Distance is used



Example:



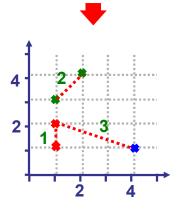
$$d((1,1),(1,3)) = \sqrt{(1-1)^2 + (1-3)^2} = 2.0$$

$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$$

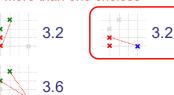
$$d((1,2),(1,3)) = \sqrt{(1-1)^2 + (2-3)^2} = 1.0$$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

$$\max(2.0, 3.2, 1.0, 2.2) = 3.2$$



More than one choices



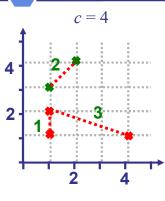
41

Dr. Patrick Chan @ SCUT

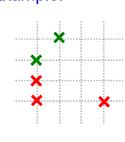
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering: Bottom Up Approach

Complete Linkage: Example 4/4



Example:



$$d((1,1),(1,3)) = \sqrt{(1-1)^2 + (1-3)^2} = 2.0$$

$$d((1,1),(2,4)) = \sqrt{(1-2)^2 + (1-4)^2} = 3.2$$

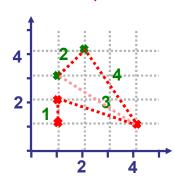
$$d((1,2),(1,3)) = \sqrt{(1-1)^2 + (2-3)^2} = 1.0$$

$$d((1,2),(2,4)) = \sqrt{(1-2)^2 + (2-4)^2} = 2.2$$

$$d((4,1),(1,3)) = \sqrt{(4-1)^2 + (1-3)^2} = 3.6$$

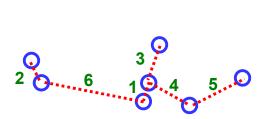
$$d((4,1),(2,4)) = \sqrt{(4-2)^2 + (1-4)^2} = 3.6$$

$$\max(2.0, 3.2, 1.0, 2.2, 3.6, 3.6) = 3.6$$



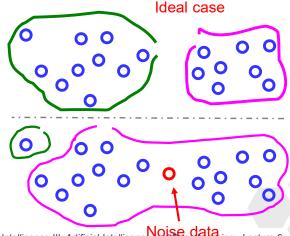
* This step is unnecessary as only one candidate

- Single Linkage (Nearest-Neighbor)
 - Minimum Distance is used
 - Encourage growth of elongated clusters
 - Disadvantage: Sensitive to noise



Min distance between points of each cluster

Dr. Patrick Chan @ SCUT



Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

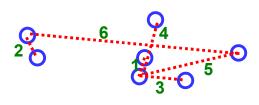
43

Clustering: Hierarchical Clustering

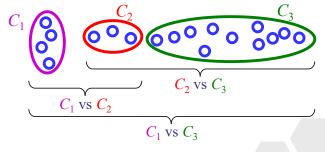
Bottom Up Approach

- Complete Linkage (Farthest Neighbor)
 - Maximum Distance is used
 - Encourages compact clusters
 - Disadvantage: Does not work well if elongated clusters present

Ideally, C₂ and C₃ should be merged



Max distance between points of each cluster



However, C₁ and C₂ will be merged

- Minimum and maximum distance are noise sensitive (especially, minimum)
- More robust result to outlier when average or mean are used

$$d_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{x \in D_j} ||x - z||$$

$$d_{mean}\big(D_i,D_j\big) = \|m_i - m_i\|$$

 Mean is less time consumed than Average distance

45

Dr. Patrick Chan @ SCUT

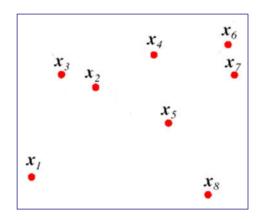
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Clustering: Hierarchical Clustering

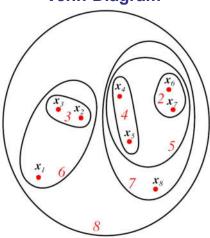
Venn

- Venn diagram can show hierarchical clustering
- No quantitative information is provided

Sample points

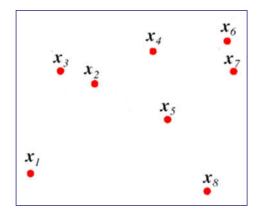


Venn Diagram

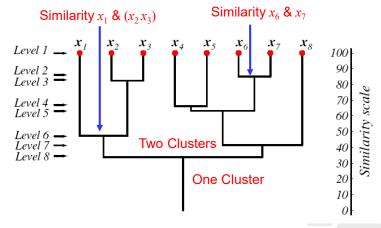


- Dendogram is another way to represent a hierarchical clustering
- Able to indicate the similarity value

Sample points



Dendogram



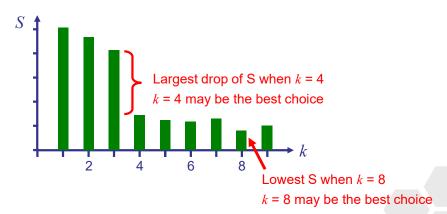
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

47

Dr. Patrick Chan @ SCUT

Number of Clusters

- How to decide the number of clusters?
- Possible solution:
 - Try a range of k and see which one has the lowest or largest drop criterion value (S)
 - Example:



Curse of Dimensionality

- Real data usually have plenty of features
 - E.g., documents, images...
- Huge number of features causes problems
 - Sparsity
 - Complexity (storage and process)

LQ.

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

50

Curse of Dimensionality

- Can the data be described with fewer dimensions, without losing much of its original meaning?
- Dimensionality Reduction
 - Not just reduce the amount of data
 - Often brings out the useful part of the data

Feature Reduction

For unsupervised learning, which feature is more useful to represent a dataset?

Feature B O O O O O O Values are similar

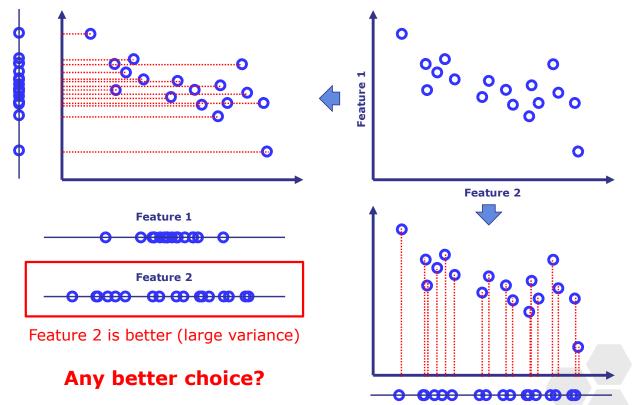
Values are very different

- A feature with different values provides more information
 - Variance is one of measures

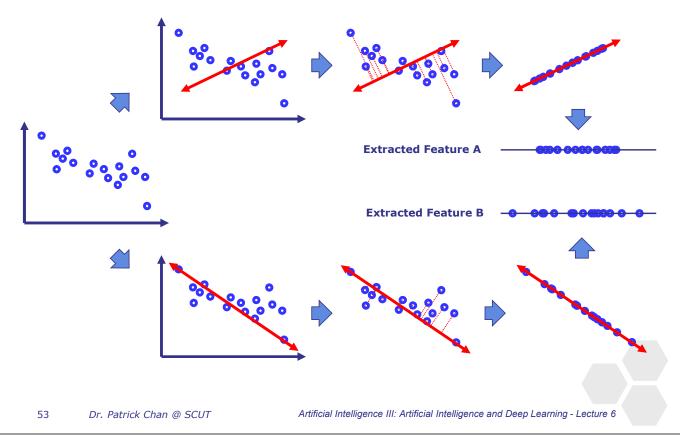
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

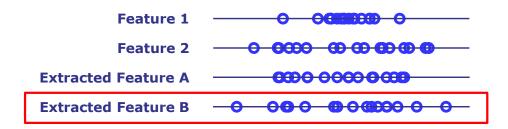
Feature Reduction



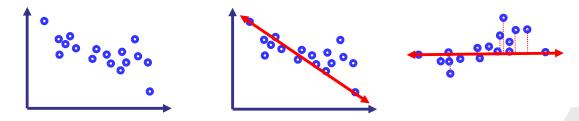
Feature Reduction



Feature Reduction



 Extracted Feature B is the best for representing the data



- PCA reduces data by geometrically projecting them onto lower dimensions called principal components (PCs)
- Project a dataset into a new set of features such that:
 - The features have zero covariance to each other (they are orthogonal)
 - Each feature captures the most remaining variance in the data, while orthogonal to the existing feature

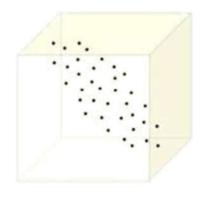
55

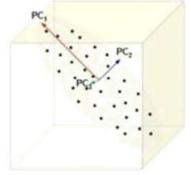
Dr. Patrick Chan @ SCUT

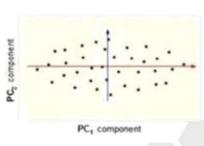
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Principal Components Analysis

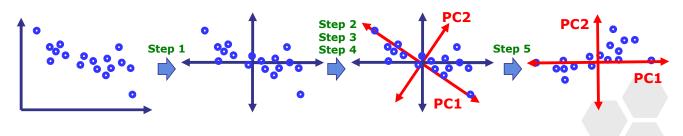
- First principal component (PC) is the direction of greatest variability (variance) in the data
- Second PC is the next orthogonal (uncorrelated) direction of greatest variability
- And so on...







- Standardize the dataset
- Calculate the covariance matrix for the features in the dataset
- Calculate the eigenvalues and eigenvectors for the covariance matrix.
- 4. **Pick top k eigenvalues** and form their eigenvectors
- 5. Transform the original matrix



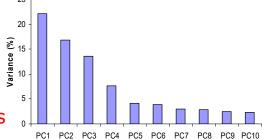
57 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

Principal Components Analysis

PC number Determination

- A feature with small eigenvalue contains small information
 - n dimensions in original data
 - Choose only the first p eigenvectors, based on their eigenvalues (p < n)
 - Final data has only p dimensions



How to determine k?

PC number Determination

Determine by projection error

$$\frac{\frac{1}{m}\sum_{i=1}^{n}\left(\boldsymbol{x}^{(i)}-\boldsymbol{z}_{k}\big(\boldsymbol{x}^{(i)}\big)\right)^{2}}{\frac{1}{m}\sum_{i=1}^{n}(\boldsymbol{x}^{(i)})^{2}} \leq \varepsilon \qquad \text{where:} \\ \boldsymbol{z}^{(i)} : \text{the ith sample} \\ \boldsymbol{z}_{k}(\boldsymbol{x}^{(i)}) : \text{the ith sample with k PCs} \\ \boldsymbol{\varepsilon} : \text{allowed error}$$

 ε : allowed error

Determine by variation ratio

$$\frac{\sum_{j=1}^{k} \sigma_j^2}{\sum_{j=1}^{n} \sigma_j^2} \approx r$$

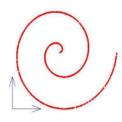
 σ_i : the jth variance in descending order

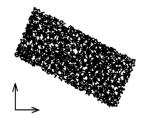
r: expected ratio (e.g. 85%)

Dr. Patrick Chan @ SCUT

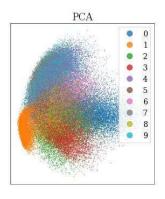
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

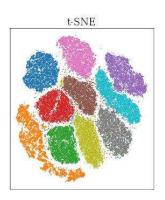
Principal Components Analysis Limitation

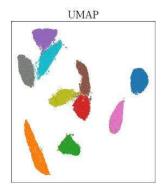


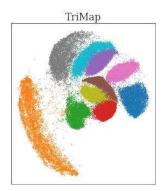


Other feature extraction methods









61

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 6

References

http://users.umiacs.umd.edu/~jbg/teaching/INST_414/