

Artificial Intelligence III: Artificial Intelligence and Deep Learning

### Lecture 5 **Ensemble**

Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China



# **Agenda**

- Why Ensemble
- Fusion
- Diversity
- Construction Method



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Reserve for evaluation



# Why Ensemble?

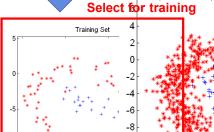
- How to choose the best model for a classification problem?
  - Trial and Error
  - Train many classifiers with different settings
  - Evaluate how good they are



# Why Ensemble?

- Banana Artificial Dataset
  - 2 class problem
- 2 features and 1000 samples 10% Training

90% Testing

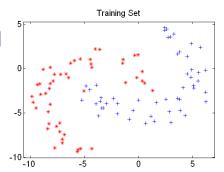


Banana (Full Set)



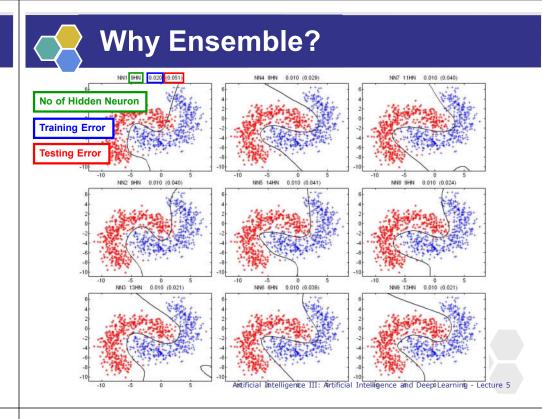
# Why Ensemble?

- Assume a simple MLPNN with one hidden layer is used
- No idea how many hidden neurons should be used
- Many 3-layer MLPNNs with different settings are trained

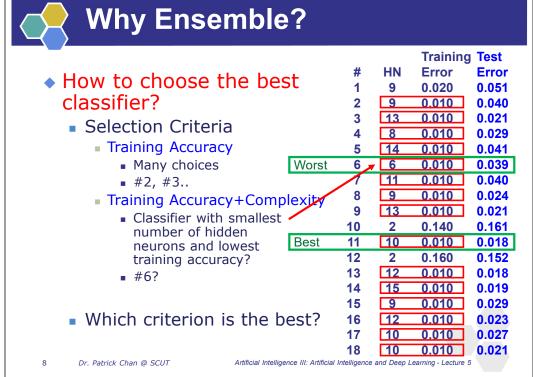


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5



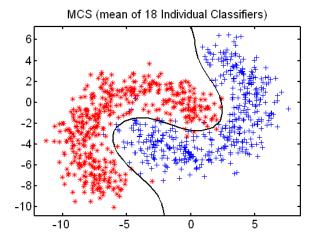
# Why Ensemble? NNIS 124N 0.140 (0.161) NNIS 124N 0.010 (0.023) NNIS 124N 0.010 (0.023) NNIS 104N 0.010 (0.023) NNIS 104N 0.010 (0.021) ARTIficial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5





### Why Ensemble?

How about combine all of them?



Training Error = 0.0100Testing Error = 0.0167

Its performance is better than the best individual classifier (0.018)

But no guarantee!

Artificial Intelligence III: Artificial Intelligence and Deen Learning - Lecture 5

# Why Ensemble?

- Drawbacks of selecting the BEST
  - Selecting a wrong one definitely leads to erroneous result
  - The "best" classifier is not necessarily the ideal choice
    - Different classifiers may contain different valuable information
    - Potentially valuable information may be lost by discarding results of less-successful classifiers
  - A single classifier may not be adequate to handle today's increasingly complex problems

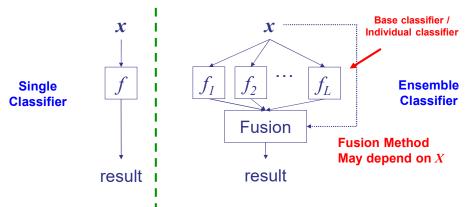
Dr. Patrick Chan @ SCUT 10

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5



### **Ensemble**

Dr. Patrick Chan @ SCUT



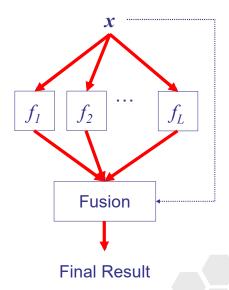
- Sometimes called Multiple Classifier System (MCS)
- Consists of a set of individual classifiers united by a fusion method



12

### Ensemble

- Sample x is fed into each base classifier
- Each base classifier makes it's own decision
- 3. Final decision is made by combining all individual decisions





### **Ensemble**

- Ensemble must be better than Single?
  - All cases: NO!
  - But practically, yes for many cases

)

# Ensemble

- Three factors affecting the performance (accuracy) of ensemble:
  - Accuracy of base classifiers
    - How good are the base classifiers?
  - Fusion Method
    - How to combine classifiers?
  - Diversity among base classifiers
    - How different are the decisions reached by the classifiers?

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

14

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture



Three Key Factors

# **Accuracy of Base Classifiers**

- Performance of a base classifier is affected by
  - Training Dataset (sample and feature)
  - Learning Model (type of classifier)
  - Parameters (e.g. neuron and layer # in a NN)
- If base classifiers are poor, ensemble cannot be good
  - But we still can hope it will be better than base classifiers

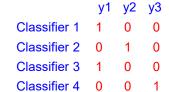


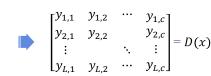
**Three Key Factors** 

### **Fusion Method**

- A method to arrive at a group decision
- ◆ Two categories based on classifier output:
  - Label output
    - Output is a class ID
    - E.g. [1 0 0] x is Class 1







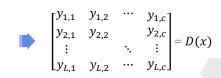


### Three Key Factors **Fusion Method**

- A method to arrive at a group decision
- Two categories based on classifier output:
  - Continuous-valued output
    - Output a real value (probability) for each class
    - E.g. [0.7 0.1 0.2] x is Class 1 is 0.7, Class 2 is 0.1, Class 3 is 0.2



y1 y2 y3 Classifier 1 0.7 0.1 0.2 Classifier 2 0.2 0.3 0.5 Classifier 3 0.8 0.1 0.1 Classifier 4 0.7 0.3 0.0



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture :



### Three Key Factors: Fusion Method **Decision Profile**

 Decision Profile (D) of a number of base classifier  $f_i$  (i = 1...L)

Row: Outputs of a base classifier on all classes

$$D(x) = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,c} \\ y_{2,1} & y_{2,2} & & y_{2,c} \\ \vdots & & \ddots & \vdots \\ y_{L,1} & y_{L,2} & \cdots & y_{L,c} \end{bmatrix}$$

Column: Outputs of all base

classifier on a class

L: the number of base classifiers

• c: the number of classes

y<sub>ii</sub>: the output of ith classifier on jth class

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture !



# Three Key Factors: Fusion Method

# **Label Output**

- Label output of a base classifier can be represented by one-hot
  - 1 indicate the class x belongs to
  - Other classes are 0
- For Example:

• 3-class problem  
• 4 base classifiers and their 
$$D(x) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

### Three Key Factors: Fusion Method **Label Output**









Also called the Plurality

■ The class with the most votes 
$$\max_{j=1...c} \sum_{i=1}^{L} d_{i,j}$$

For example:

$$D(x) = \begin{bmatrix} y_1 & y_2 & y_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Row: a classifier Column: a class

Class 2 is the majority



### Three Key Factors: Fusion Method

### Label Output

### Simple Majority



- A class has 50% + 1 votes  $(\max_{j=1...c} \sum_{i=1}^{L} d_{i,j} > L/2)$
- More strictive than Majority Vote
- Many unknown cases

$$D(x) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

No decision

### UnanimityUnanimity

- All base classifiers have the same decision
- Many unknown cases

$$D(x) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5



# Three Key Factors: Fusion Method Label Output

- Voting method assumes each base classifier has same classification ability
- However, in most cases, this is not true
- Weighted Majority Vote
  - Assign a weight  $(w_i)$  to the ith base classifier based on its ability
    - A large w indicates more accurate
    - E.g. Evaluated by accuracy on Training Set
  - The class is  $y_k$  if  $\sum_{i=1}^L w_i d_{i,k} = \max_{j=1...c} \sum_{i=1}^L w_i d_{i,j}$

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture



### **Three Key Factors: Fusion Method**

### **Label Output**

Example: 3 classes, 5 base classifiers

$$D(x) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Unanimity ? (all votes)

Simple Majority  $y_1$  (votes > 50%)

Majority Vote  $y_1$  (most votes)

$$w = \begin{bmatrix} 0.17 \\ 0.1 \\ 0.2 \\ 0.5 \\ 0.1 \end{bmatrix}$$

Weighted Majority Vote  $y_2$ 

Class 1 
$$0.1 \times 1 + 0.1 \times 1 + 0.2 \times 1 + 0.5 \times 0 + 0.1 \times 0 = 0.4$$
  
Class 2  $0.1 \times 0 + 0.1 \times 0 + 0.2 \times 0 + 0.5 \times 1 + 0.1 \times 0 = 0.5$   
Class 3  $0.1 \times 0 + 0.1 \times 0 + 0.2 \times 0 + 0.5 \times 0 + 0.1 \times 1 = 0.1$ 

### Three Key Factors: Fusion Method

# **Continuous-valued Output**

- Base classifier outputs a real value (not a label) for each class
- The values in D are a real number
- For Example:

3-class problem4 base classifiers

Row: a classifier Column: a class  $D(x) = \begin{bmatrix} 0.1 & 0.7 & 0.2 \\ 0.0 & 0.2 & 0.8 \\ 0.9 & 0.1 & 0.0 \\ 0.1 & 0.8 & 0.1 \end{bmatrix}$ 

• Based on D, fusion of Continuous-valued Output calculated a real value for each class  $(\mu_j, j = 1..c)$ 



### Three Key Factors: Fusion Method

# Continuous-valued Output

### Statistical Operator

- Product  $\mu_j(x) = \prod d_{i,j}(x)$
- Minimum

$$\mu_j(x) = \min_i \{d_{i,j}(x)\}$$

Simple Mean

Dr. Patrick Chan @ SCUT

$$\mu_j(x) = \frac{1}{L} \sum_{i=1}^{L} d_{i,j}(x)$$

### Median

$$\mu_j(x) = \underset{i}{\text{median}} \{d_{i,j}(x)\}$$

Maximum

$$\mu_j(x) = \max_i \{d_{i,j}(x)\}$$

### Trimmed Mean

- Values are sorted and K percent of the values are dropped on each side
- Find the mean of remaining values

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method

# Continuous-valued Output

- Weighted Average
  - L Weights
    - One weight per base classifier

$$\mu_j(x) = \sum_{i=1}^L w_i d_{i,j}(x)$$

- $c \times L$  Weights
  - Weights are specific for each class per base classifier

$$\mu_j(x) = \sum_{i=1}^{L} w_{ij} d_{i,j}(x)$$

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture !



### Three Key Factors: Fusion Method

### **Continuous-valued Output**

### Example:

- 3 classes
- 5 base classifiers

$$D(x) = \begin{bmatrix} 0.6 & 0.4 & 0.1 \\ 0.7 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.1 \\ 0.5 & 0.7 & 0.6 \\ 0.5 & 0.8 & 0.6 \end{bmatrix}$$

Maximum 
$$0.7 (0.8) 0.7$$
 y

Average 
$$0.560.460.42$$
  $y_1$ 

Trim 20% Average 
$$0.530.430.43$$
  $y_1$ 



### Three Key Factors: Fusion Method

### **Continuous-valued Output**

### Example:

$$y_1$$

$$D(x) = \begin{bmatrix} 0.7 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.1 \\ 0.5 & 0.7 & 0.6 \\ 0.5 & 0.8 & 0.6 \end{bmatrix}$$

 $0.1^{-}$ 

$$w = \begin{bmatrix} 0.4\\0.2\\0.1\\0.1\\0.2 \end{bmatrix}$$

Class 1 
$$0.4 \times 0.6 + 0.2 \times 0.7 + 0.1 \times 0.5 + 0.1 \times 0.5 + 0.2 \times 0.5 = 0.12$$

Class 2 
$$0.4 \times 0.4 + 0.2 \times 0.2 + 0.1 \times 0.2 + 0.1 \times 0.7 + 0.2 \times 0.8 = 0.09$$

Class 3 
$$0.4 \times 0.1 + 0.2 \times 0.7 + 0.1 \times 0.1 + 0.1 \times 0.6 + 0.2 \times 0.6 = 0.07$$



### Three Key Factors: Fusion Method

# Continuous-valued Output

| <ul><li>Example</li></ul> | e: |
|---------------------------|----|
|---------------------------|----|

Weight Average L x c Weight

$$D(x) = \begin{bmatrix} 0.6 & 0.4 & 0.1 \\ 0.7 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.1 \\ 0.5 & 0.7 & 0.6 \\ 0.5 & 0.8 & 0.6 \end{bmatrix}$$

$$w = \begin{vmatrix} 0.1 & 0.1 & 0.4 \\ 0.2 & 0.1 & 0.1 \\ 0.4 & 0.2 & 0.1 \end{vmatrix}$$

Class 1 
$$0.1 \times 0.6 + 0.1 \times 0.7 + 0.2 \times 0.5 + 0.4 \times 0.5 + 0.2 \times 0.5 = 0.11$$

Class 2 
$$0.2 \times 0.4 + 0.1 \times 0.2 + 0.1 \times 0.2 + 0.2 \times 0.7 + 0.4 \times 0.8 = 0.12$$

Class 3 
$$0.2 \times 0.1 + 0.4 \times 0.7 + 0.1 \times 0.1 + 0.1 \times 0.6 + 0.2 \times 0.6 = 0.10$$

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5



### Three Key Factors: Fusion Method

# **Diversity**

- If all base classifiers always have the same decision, no need to consider all of them
- Diversity is a measure of difference between base classifiers
  - An intuitive, key concept for ensemble
  - Many definitions
- Can be categorized according to output type: Label and Continuous-valued Output

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture



### Three Key Factors: Fusion Method: Diversity

### Label Output

- Pairwise Method Consider two base classifiers  $D_i$  and  $D_{\nu}$
- There are four different possibilities:

|                               | $D_k$ correct      | $D_k$ wrong |
|-------------------------------|--------------------|-------------|
| $D_i$ correct                 | $N^{11}$           | $N^{10}$    |
| $\stackrel{\cdot}{D_i}$ wrong | $\mathcal{N}^{01}$ | $N^{00}$    |

$$N = N^{00} + N^{01} + N^{10} + N^{11}$$

N<sup>11</sup>: Number of times when two base classifiers are correct

N<sup>10</sup>: Number of times when a classifier is correct and another is wrong N<sup>01</sup>: Number of times when a classifier is wrong and another is correct

N<sup>00</sup>: Number of times when two base classifiers are wrong

: Total Number of times

32

### Three Key Factors: Fusion Method: Diversity

# **Label Output**

- Disagreement Measure
  - Probability two classifiers disagree each other

$$\frac{N^{01} + N^{10}}{N}$$

- Range: 0 1 (most diverse, totally disagree)

- Double Fault Measure
  - Probability two classifiers being wrong together



■ Range: 0 - 1 (most diverse, both wrong all the time)



### Three Key Factors: Fusion Method: Diversity

# **Continuous-valued Output**

- Correlation Coefficient (CC)
  - CC between two classifiers' outputs (pairwise)
  - Diversity is the average of CCs of L(L-1)/2 pairs
    - 1: not diverse (identical)
    - 0: independent
    - -1: the most diverse
  - Definition:  $CC(f_i, f_j) = \frac{E[(f_i \mu_{f_i})(f_j \mu_{f_j})]}{\sigma_{f_i}\sigma_{f_j}}$ 
    - $f_i$ : the ith classifiers' outputs
    - $\mu_{f_i}$  and  $\sigma_{f_i}$ : mean and standard deviation of the ith classifiers' output on all samples

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5



### Three Key Factors: Fusion Method

# **Diversity**

- How to make base classifiers diversify?
  - Implicit Method
    - Using different Training Sets
      - Samples
      - Features
    - Using different Base Classifiers
      - Learning Models
      - Training Parameters
  - Explicit Method
    - Maximize diversity during training

34

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture



### **Ensemble Construction Method**

- The most well known MCS construction methods:
  - Bagging
  - Boosting
  - Negative Correlation



### Ensemble Construction Method

# Bagging

- Aim to aggregated different versions of a model generated by bootstrap training samples
  - Bootstrapping: use samples of the data with repetition

### Algorithm

- Random a replicate of training set with replacement
- Train a base classifier using the replicate
- Repeat until L number of base classifiers are trained
- Finally, voting or average fusion (no weighting) method can be used



### **Ensemble Construction Method: Bagging**

### Example

### Bagged Decision Trees

- Draw bootstrap samples to form sample sets
- Train trees on each sample set
- Average prediction of trees on unseen samples

### Random Forests (Bagged Trees++)

- Draw bootstrap samples to form sample sets
- Each set uses different feature subsets
- Train trees on each samples
- Average prediction of trees on unseen samples

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5



### **Ensemble Construction Method** Bagging

### Advantage:

- Simple, easy to understand
- Good for unstable classifier
  - If small changes in the training set causes large difference in the generated classifier
  - The algorithm has high variance
  - E.g. Decision Tree

### Disadvantage:

May not generating complementary base models

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture



### **Ensemble Construction Method**

### **Boosting**

- Actively generate complementary base models
  - Train the next base model based on mistakes made by previous models
- Generate a sequence of base models each focusing on previous one's errors



### **Ensemble Construction Method: Boosting**

# Example

### Adaptive Boosting (AdaBoost)

- Base models are trained by minimizing the weighted error
  - A larger weight is assigned to samples classified wrongly
- Weighted average is used as the fusion method
  - A model with a smaller error is assigned a larger weight; vice versa





# **Negative Correlation**

- For continuous-valued output base classifiers, e.g. MLPNN
- Explicitly consider diversity measure
- Objective Function per each base classifier:

Objective Function = Training Error + 
$$\lambda$$
 Diversity  $\lambda$  is the tradeoff parameter

$$\frac{1}{N} \sum_{i=1}^{N} \left( f_k(x_i) - f(x_i) \left[ \sum_{\substack{j=1 \ j \neq k}}^{L} (f_j(x_i) - f(x_i)) \right] \right) \quad \text{when}$$

where 
$$f(x_i) = \frac{1}{L} \sum_{j=1}^{L} f_j(x_i)$$

1 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5