

Artificial Intelligence III: Artificial Intelligence and Deep Learning

Ensemble

Dr. Patrick Chan patrickchan@ieee.org

South China University of Technology, China

Agenda

- Why Ensemble
- Fusion
- Diversity
- Construction Method

Why Ensemble?

- How to choose the best model for a classification problem?
 - Trial and Error
 - Train many classifiers with different settings
 - Evaluate how good they are

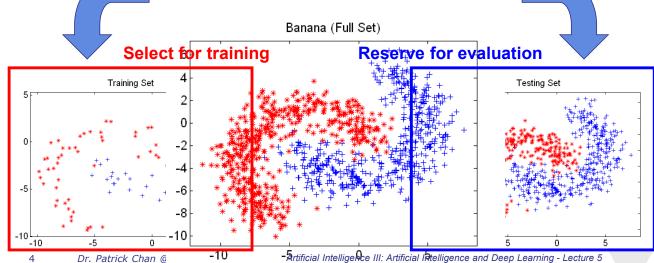
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Why Ensemble?

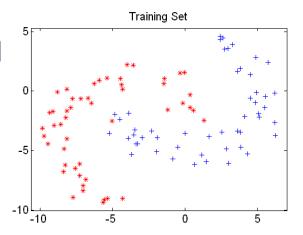
- Banana Artificial Dataset
 - 2 class problem
- 2 features and 1000 samples 10% Training

90% Testing



Why Ensemble?

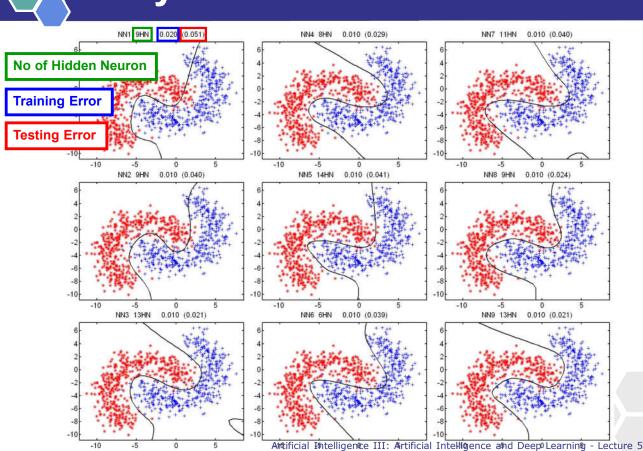
- Assume a simple MLPNN with one hidden layer is used
- No idea how many hidden neurons should be used
- Many 3-layer MLPNNs with different settings are trained



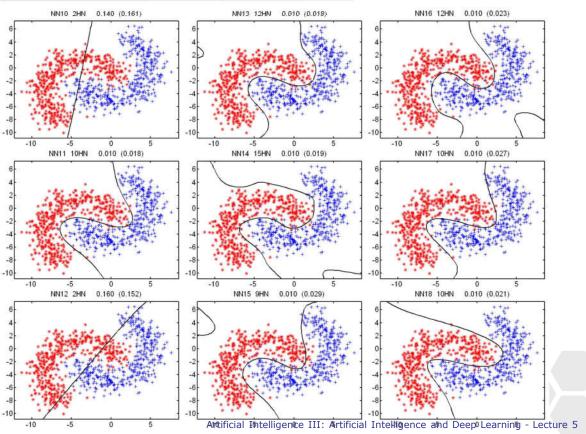
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Why Ensemble?



Why Ensemble?



Why Ensemble?

\	How	to	choose	the	best
	class	ifie	er?		

- Selection Criteria
 - Training Accuracy
 - Many choices
 - **42, #3..**
 - Training Accuracy+Complexity
 - Classifier with smallest number of hidden neurons and lowest training accuracy?
 - **#**6?
- Which criterion is the best?

#	HN	Error	Error
1	9	0.020	0.051
2	9	0.010	0.040
3	13	0.010	0.021
4	8	0.010	0.029
5	14	0.010	0.041
6 🗾	6	0.010	0.039
1	11	0.010	0.040
8	9	0.010 0.010	0.040 0.024
8 9			
_	9	0.010	0.024
9	9	0.010 0.010	0.024 0.021
9 10	9 13 2	0.010 0.010 0.140	0.024 0.021 0.161

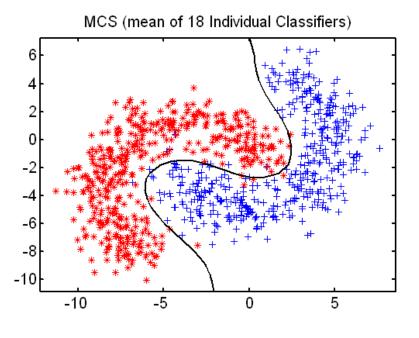
Training Test

13	12	0.010	0.018
14	15	0.010	0.019
15	9	0.010	0.029
16	12	0.010	0.023
17	10	0.010	0.027

Worst

Best

How about combine all of them?



Training Error = 0.0100 Testing Error = 0.0167

Its performance is better than the best individual classifier (0.018)

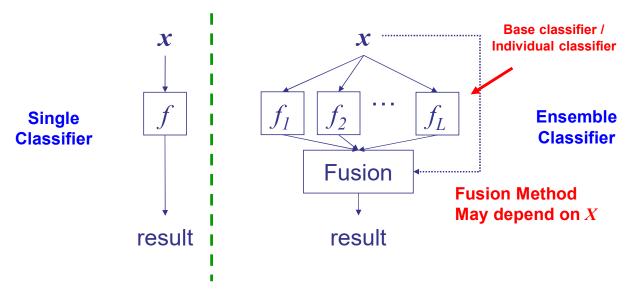
But no guarantee!

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Why Ensemble?

- Drawbacks of selecting the BEST
 - Selecting a wrong one definitely leads to erroneous result
 - The "best" classifier is not necessarily the ideal choice
 - Different classifiers may contain different valuable information
 - Potentially valuable information may be lost by discarding results of less-successful classifiers
 - A single classifier may not be adequate to handle today's increasingly complex problems



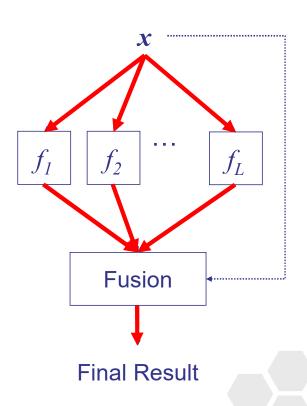
- Sometimes called Multiple Classifier System (MCS)
- Consists of a set of individual classifiers united by a fusion method

11 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Ensemble

- Sample x is fed into each base classifier
- Each base classifier makes it's own decision
- 3. Final decision is made by combining all individual decisions



- Ensemble must be better than Single?
 - All cases: NO!
 - But practically, yes for many cases

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

13

Dr. Patrick Chan @ SCUT

Ensemble

- Three factors affecting the performance (accuracy) of ensemble:
 - Accuracy of base classifiers
 - How good are the base classifiers?
 - Fusion Method
 - How to combine classifiers?
 - Diversity among base classifiers
 - How different are the decisions reached by the classifiers?

Accuracy of Base Classifiers

- Performance of a base classifier is affected by
 - Training Dataset (sample and feature)
 - Learning Model (type of classifier)
 - Parameters (e.g. neuron and layer # in a NN)
- If base classifiers are poor, ensemble cannot be good
 - But we still can hope it will be better than base classifiers

15

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors Fusion Method

- A method to arrive at a group decision
- Two categories based on classifier output:
 - Label output
 - Output is a class ID
 - E.g. [1 0 0]x is Class 1

V1 y2 y3

Classifier 1 1 0 0

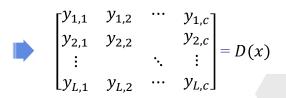
Classifier 2 0 1 0

Classifier 3 1 0 0

Classifier 4 0 0 1

$$\begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,c} \\ y_{2,1} & y_{2,2} & & y_{2,c} \\ \vdots & & \ddots & \vdots \\ y_{L,1} & y_{L,2} & \cdots & y_{L,c} \end{bmatrix} = D(x)$$

- A method to arrive at a group decision
- Two categories based on classifier output:
 - Continuous-valued output
 - Output a real value (probability) for each class



17 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method Decision Profile

• Decision Profile (*D*) of a number of base classifier f_i (i = 1...L)

Row: Outputs of a base classifier on all classes

$$D(x) = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,c} \\ y_{2,1} & y_{2,2} & & y_{2,c} \\ \vdots & \ddots & \vdots \\ y_{L,1} & y_{L,2} & \cdots & y_{L,c} \end{bmatrix}$$

Column: Outputs of all base

classifier on a class

• c: the number of classes

L: the number of base classifiers

• $y_{i,j}$: the output of ith classifier on jth class

- Label output of a base classifier can be represented by one-hot
 - 1 indicate the class x belongs to
 - Other classes are 0
- For Example:

3-class problem

decisions are class 2,

class 3, class 1 and class 2

For Example:

Row: a classifier Column: a class

Column: a class

Output

D(x) =

$$\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

decisions are class 2,

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method Label Output

- Majority Vote
- Also called the Plurality
- The class with the most votes $\max_{i=1}^{L} \sum_{j=1}^{L} d_{i,j}$
- For example:

Row: a classifier Column: a class

Class 2 is the majority

- A class has 50% + 1 votes $(\max_{j=1...c} \sum_{i=1}^{L} d_{i,j} > L/2)$
- More strictive than Majority Vote
- Many unknown cases

$$D(x) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

No decision

- All base classifiers have the same decision
- $\max_{i=1...c} \sum_{i=1}^{L} d_{i,j} = L$
- Many unknown cases

$$D(x) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
No decision

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method Label Output

Voting method assumes each base classifier has same classification ability

- However, in most cases, this is not true
- Weighted Majority Vote
 - Assign a weight (w_i) to the ith base classifier based on its ability
 - A large w indicates more accurate
 - E.g. Evaluated by accuracy on Training Set
 - The class is y_k if $\sum_{i=1}^L w_i d_{i,k} = \max_{i=1...c} \sum_{i=1}^L w_i d_{i,j}$

Three Key Factors: Fusion Method Label Output

Example: 3 classes, 5 base classifiers

$$D(x) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Unanimity ? (all votes)
$$3 \quad 1 \quad 1$$
 Simple Majority y_1 (votes > 50%)
$$w = \begin{bmatrix} 0.1 \\ 0.1 \\ 0.2 \\ 0.5 \\ 0.1 \end{bmatrix}$$
 Weighted Majority Vote y_2

$$\begin{bmatrix} 0.1 \\ 0.1 \\ 0.2 \\ 0.5 \\ 0.1 \end{bmatrix}$$
 Class 1 $0.1 \times 1 + 0.1 \times 1 + 0.2 \times 1 + 0.5 \times 0 + 0.1 \times 0 = 0.4$ Class 2 $0.1 \times 0 + 0.1 \times 0 + 0.2 \times 0 + 0.5 \times 1 + 0.1 \times 0 = 0.5$ Class 3 $0.1 \times 0 + 0.1 \times 0 + 0.2 \times 0 + 0.5 \times 0 + 0.1 \times 1 = 0.1$

B Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method

Continuous-valued Output

- Base classifier outputs a real value (not a label) for each class
- ◆ The values in D are a real number

◆ For Example:

■ 3-class problem

■ 4 base classifiers

$$D(x) = \begin{bmatrix} 0.1 & 0.7 & 0.2 \\ 0.0 & 0.2 & 0.8 \\ 0.9 & 0.1 & 0.0 \\ 0.1 & 0.8 & 0.1 \end{bmatrix}$$

• Based on D, fusion of Continuous-valued Output calculated a real value for each class $(\mu_i, j = 1..c)$

Continuous-valued Output

- Statistical Operator
 - Product $\mu_j(x) = \prod_{i=1}^L d_{i,j}(x)$
 - Minimum

$$\mu_j(x) = \min_i \{d_{i,j}(x)\}$$

Simple Mean

$$\mu_j(x) = \frac{1}{L} \sum_{i=1}^{L} d_{i,j}(x)$$

Median

$$\mu_j(x) = \underset{i}{\text{median}} \{d_{i,j}(x)\}$$

Maximum

$$\mu_j(x) = \max_i \{d_{i,j}(x)\}$$

- Trimmed Mean
 - Values are sorted and K percent of the values are dropped on each side
 - Find the mean of remaining values

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method

Continuous-valued Output

- Weighted Average
 - L Weights
 - One weight per base classifier

$$\mu_j(x) = \sum_{i=1}^L w_i d_{i,j}(x)$$

- $c \times L$ Weights
 - Weights are specific for each class per base classifier

$$\mu_j(x) = \sum_{i=1}^{L} w_{ij} d_{i,j}(x)$$

Three Key Factors: Fusion Method

Continuous-valued Output

- Example:
 - 3 classes
 - 5 base classifiers

$$D(x) = \begin{bmatrix} 0.6 & 0.4 & 0.1 \\ 0.7 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.1 \\ 0.5 & 0.7 & 0.6 \\ 0.5 & 0.8 & 0.6 \end{bmatrix}$$

Median
$$0.5 \ 0.4 \ 0.6 \ y_3$$

Maximum
$$0.7 \ 0.8 \ 0.7 \ y_2$$

Minimum
$$(0.5)$$
 0.2 0.1 y_1

Average
$$0.560.460.42$$
 y_1

Trim 20% Average
$$0.530.430.43$$
 y_1

27

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method

Continuous-valued Output

- Example:
 - 3 classes
 - 5 base classifiers

Dr. Patrick Chan @ SCUT

 y_1

$$D(x) = \begin{bmatrix} 0.6 & 0.4 & 0.1 \\ 0.7 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.1 \\ 0.5 & 0.7 & 0.6 \\ 0.5 & 0.8 & 0.6 \end{bmatrix}$$

$$w = \begin{bmatrix} 0.47 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \end{bmatrix}$$

Class 1
$$0.4 \times 0.6 + 0.2 \times 0.7 + 0.1 \times 0.5 + 0.1 \times 0.5 + 0.2 \times 0.5 = 0.12$$

Class 2
$$0.4 \times 0.4 + 0.2 \times 0.2 + 0.1 \times 0.2 + 0.1 \times 0.7 + 0.2 \times 0.8 = 0.09$$

Class 3
$$0.4 \times 0.1 + 0.2 \times 0.7 + 0.1 \times 0.1 + 0.1 \times 0.6 + 0.2 \times 0.6 = 0.07$$

Three Key Factors: Fusion Method

Continuous-valued Output

- Example:
 - 3 classes
 - 5 base classifiers

Weight Average L x c Weight

*y*₂

$$D(x) = \begin{bmatrix} 0.6 & 0.4 & 0.1 \\ 0.7 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.1 \\ 0.5 & 0.7 & 0.6 \\ 0.5 & 0.8 & 0.6 \end{bmatrix}$$
$$w = \begin{bmatrix} 0.1 & 0.2 & 0.2 \\ 0.1 & 0.1 & 0.4 \\ 0.2 & 0.1 & 0.1 \\ 0.4 & 0.2 & 0.1 \\ 0.2 & 0.4 & 0.2 \end{bmatrix}$$

Class 1
$$0.1 \times 0.6 + 0.1 \times 0.7 + 0.2 \times 0.5 + 0.4 \times 0.5 + 0.2 \times 0.5 = 0.11$$

Class 2
$$0.2 \times 0.4 + 0.1 \times 0.2 + 0.1 \times 0.2 + 0.2 \times 0.7 + 0.4 \times 0.8 = 0.12$$

Class 3
$$0.2 \times 0.1 + 0.4 \times 0.7 + 0.1 \times 0.1 + 0.1 \times 0.6 + 0.2 \times 0.6 = 0.10$$

9 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method **Diversity**

- If all base classifiers always have the same decision, no need to consider all of them
- Diversity is a measure of difference between base classifiers
 - An intuitive, key concept for ensemble
 - Many definitions
- Can be categorized according to output type: Label and Continuous-valued Output

- Pairwise Method Consider two base classifiers D_i and D_k
- There are four different possibilities:

	D_k correct	D_k wrong
D_i correct	N^{11}	N^{10}
$\stackrel{\cdot}{D_i}$ wrong	N^{01}	N^{00}

$$N = N^{00} + N^{01} + N^{10} + N^{11}$$

N¹¹: Number of times when two base classifiers are correct

 $\mathsf{N}^{10}\,$: Number of times when a classifier is correct and another is wrong $\mathsf{N}^{01}\,$: Number of times when a classifier is wrong and another is correct

N⁰⁰: Number of times when two base classifiers are wrong

N : Total Number of times

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method: Diversity Label Output

- Disagreement Measure
 - Probability two classifiers disagree each other
 - Range: 0 1 (most diverse, totally disagree)

$$\frac{N^{01}+N^{10}}{N}$$

- Double Fault Measure
 - Probability two classifiers being wrong together
 - Range: 0 1 (most diverse, both wrong all the time)

$$\frac{N^{00}}{N}$$

- Correlation Coefficient (CC)
 - CC between two classifiers' outputs (pairwise)
 - Diversity is the average of CCs of L(L-1)/2 pairs
 - 1: not diverse (identical)
 - 0: independent
 - -1: the most diverse
 - Definition: $CC(f_i, f_j) = \frac{E[(f_i \mu_{f_i})(f_j \mu_{f_j})]}{\sigma_{f_i} \sigma_{f_j}}$
 - $ullet f_i$: the ith classifiers' outputs
 - μ_{f_i} and σ_{f_i} : mean and standard deviation of the ith classifiers' output on all samples

3 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Three Key Factors: Fusion Method **Diversity**

- How to make base classifiers diversify?
 - Implicit Method
 - Using different Training Sets
 - Samples
 - Features
 - Using different Base Classifiers
 - Learning Models
 - Training Parameters
 - Explicit Method
 - Maximize diversity during training

Ensemble Construction Method

- The most well known MCS construction methods:
 - Bagging
 - Boosting
 - Negative Correlation

35

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Ensemble Construction Method Bagging

- Aim to aggregated different versions of a model generated by bootstrap training samples
 - Bootstrapping: use samples of the data with repetition

Algorithm

- Random a replicate of training set with replacement
- Train a base classifier using the replicate
- Repeat until L number of base classifiers are trained
- Finally, voting or average fusion (no weighting)
 method can be used

Bagged Decision Trees

- Draw bootstrap samples to form sample sets
- Train trees on each sample set
- Average prediction of trees on unseen samples

Random Forests (Bagged Trees++)

- Draw bootstrap samples to form sample sets
- Each set uses different feature subsets
- Train trees on each samples
- Average prediction of trees on unseen samples

37

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

Ensemble Construction Method

Bagging

Advantage:

- Simple, easy to understand
- Good for unstable classifier
 - If small changes in the training set causes large difference in the generated classifier
 - The algorithm has high variance
 - E.g. Decision Tree

Disadvantage:

 May not generating complementary base models

- Actively generate complementary base models
 - Train the next base model based on mistakes made by previous models
- Generate a sequence of base models each focusing on previous one's errors

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5

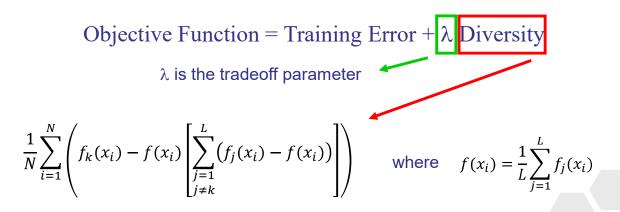
39

Dr. Patrick Chan @ SCUT

Ensemble Construction Method: Boosting **Example**

- Adaptive Boosting (AdaBoost)
 - Base models are trained by minimizing the weighted error
 - A larger weight is assigned to samples classified wrongly
 - Weighted average is used as the fusion method
 - A model with a smaller error is assigned a larger weight; vice versa

- For continuous-valued output base classifiers, e.g. MLPNN
- Explicitly consider diversity measure
- Objective Function per each base classifier:



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 5