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Agenda

 Linear Discriminant Function (LDF)

 Decision Tree (DT)

 K nearest neighbour (k-NN)

 Support Vector Machine (SVM)

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 42



Dr. Patrick Chan @ SCUT

Classifier

 Generally, a classifier f(x) return a class label

 Some classifiers estimate the probability of x 
belongs to a class
 Contains a set of discriminant functions gi(x), i = 1, ..., c 

indicates how likely x belongs to yi

 x is assigned to class yi if gi(x) is max for i = 1…c
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Linear Discriminant Function

 LDF: a linear combination of x

g(x) = θTx

w : is the weight vector

* the last feature of x can be set as 1 if bias term 
is needed

 One feature value in x can be fixed when a 
constant term is needed



 g(x) = θTx + θ0
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Linear Discriminant Function

 For each class
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Linear Discriminant Function

 For a 2-class problem
 Only one classifier is needed

 � �

 If g(x) > 0, decide y1

 If g(x) < 0, decide y2

 If g(x) = 0, ambiguity 

 All training samples are used,
y = {1, -1}
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Linear Discriminant Function

 For a multi-class problem
 x is yi if gi(x) is maximum for i = 1...c

 c classifiers are required

 gi(x) represents the probability 
that x belongs to class i

 We will discuss this later

 For gi(x), class i = 1, 
the rest = 0 
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Linear Discriminant Function

 How to train g(x)?

 LMS discussed in Regression previously can be 
used

 Cost Function: 

 Minimize by 

 Pseudoinverse

 Gradient descent
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Linear Discriminant Function

Mapping

 Practically, a problem is seldom linearly separable

 How can LDF handle a non-linearly separable 
problem?
 Map nonlinearly to linearly separable problem

 Usually high-dimensional space is required
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Linear Discriminant Function

Mapping

 XOR Example
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Linear Discriminant Function

Mapping

 Another Example
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Linear Discriminant Function

Mapping

 Generalized Linear Discriminant Function

 z is a mapping from x to z(x)

 g is not linear in x, but linear in z

 For example
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Linear Discriminant Function

Mapping

 How to determine the feature space?

 How to design a proper high dimensional space 
automatically by learning?

 ANN, SVM…
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Multi-Layer Perceptron

Introduction

 Recall, Linear Discriminant Functions:

 Limited generalization capability

 Cannot handle the non-linearly separable 
problem
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Multi-Layer Perceptron

Introduction

 Solution 1: Mapping Function φ(x)

 Pro: Simple structure (still using LDF)

 Cons: Selection of z(x) and its parameters
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Multi-Layer Perceptron

Introduction

 Solution 2: Multi-Layer Neural Network

 Standard structure

 Hidden layers serve as mapping

 No prior knowledge is required 
(no need to choose z(x))
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Multi-Layer Perceptron

Artificial Neural Network

 ANN is inspired biologically by human brain

input output

input output

Human Brain

Artificial NN
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Decision Tree (DT)

 Most classifiers are black-box

 DT provides explanation on decisions

 One of the most widely used and practical 
methods for inductive inference

 Approximates discrete-valued functions 
(including disjunctions)
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DT: Example

 Do we go to play tennis today?

If Outlook is Sunny AND 
Humidity is Normal

If Outlook is Overcast

If Outlook is Rain AND
Wind is Weak

Yes

Yes

Yes

Other situation? No
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DT: Classification

x2

x1

 Decision Region:
 Internal nodes can be univariate

 (Only one feature is used)

a

b

x1 > a

No Yes

x2 > b

No Yes
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DT: Classification

x2

x1

 Internal nodes can be multivariate
 More than one features are used
 Shape of Decision Region is irregular

ax1 + bx2 + c > 0

No Yes
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DT: Learning Algorithm

 LOOP:
1. Select the best feature (A)

2. For each value of A, 
create new descendant of 
node

3. Sort training samples to 
leaf nodes

 STOP when training 
samples perfectly 
classified

#   x1 x2 x3

1 1   3   5
2 1   4   2
3 3   1   5
4 3   5   6
5 3   3   4
6 4   5   7

x1 > 2
No Yes

STOP x2 > 2
No Yes

STOP STOP
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DT: Learning Algorithm

 Observation

 Many trees may code a training set without any 
error

 Finding the smallest tree is a NP-hard problem

 Local search algorithm to find reasonable 
solutions

 What is the best feature?
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DT: Feature Measurement

 Entropy is used to evaluate features

 Measure of uncertainty

 Range: 0 - 1

 Smaller value, less uncertainty

 If all samples belongs to xi, then p(xi) = 1, and 
other p(xj) = 0, i ≠ j

 Thus, H(X) = 0 (no uncertainty)

X: a random variable with n outcomes, X = {xi | i = 1,2,…,n}

where

p(x): the probability mass function of outcome x.
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DT: Feature Measurement

 Information Gain

 Reduction in entropy (reduce uncertainty) due 
to sorting on a feature A

Current 
entropy

Entropy after 
using feature A
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DT: Example

 Which feature is the best?

� � �

�

���

� �

� � �

�

���

Current:

Uncertainty is high without 
considering any feature 

x1 = yes x2 = No

yes no
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DT: Example

Outlook

Sunny
Rain Overcast

No:
Yes:

3
2

No:
Yes:

2
3

No:
Yes:

0
4

Let A = Outlook
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)()|(

)()|(

overcastAPovercastAXH

RainAPRainAXH

sunnyAPsunnyAXH





)|( AXHRecall:

)|()(),( AXHXHAXGain 
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Outlook
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DT: Example

Let A = Outlook
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DT: Example

0.941)( XHCurrent:

694.0)|( OutlookXH

Similarly, for each feature

0.911)|( eTemperaturXH

0.789)|( HumidityXH

0.892)|( WindXH

Recall:

)|()(),( AXHXHAXGain 

Information Gain is:

247.0),( OutlookXGain

030.0),( eTemperaturXGain

152.0),( HumidityXGain

049.0),( WindXGain

Outlook is the best feature and
Should be used as the first node
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DT: Example

 Next Step

 Repeat the steps for each sub-branch

 Until there is no ambiguity 
(all samples are of the same class) 

Outlook

Sunny
Rain Overcast

No:
Yes:

3
2

No:
Yes:

2
3

No:
Yes:

0
4

Done
Continues to select next features
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DT: Continuous-Valued Feature

 So far, we handle features with categorial 
values

 How to build a decision tree whose 
features are numerical? 

29.9
28.2
35.2
26.4
18.9
21.2
20.4
24.4
17.0
25.1
24.0
24.5
27.7
25.5
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DT: Continuous-Valued Feature

 Accomplished by partitioning the continuous 
attribute value into a discrete set of intervals

 A new Boolean feature Ac (A < c) can be created, 
c is the threshold

 How to select the best value for c?

17.0   18.9   20.4   21.2   24.0   24.4   24.5   25.1   25.5   26.4   27.7   28.2   29.9   35.2 
Yes Yes Yes No     Yes     No    Yes Yes No    Yes Yes No No Yes

? ??
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DT: Continuous-Valued Feature

 Objective is to minimize the entropy 
(or maximize the information gain)

 Entropy only needs to be evaluated 
between points of different classes

 Best c is:

c1 c2 c3 c4 c5 c6 c7 c8

17.0   18.9   20.4   21.2   24.0   24.4   24.5   25.1   25.5   26.4   27.7   28.2   29.9   35.2 
Yes Yes Yes No     Yes     No    Yes Yes No    Yes Yes No No Yes
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K-Nearest Neighbor (K-NN)

 A new pattern is classified by a majority 
vote of its k nearest neighbors (training 
samples)

 n distances are 
calculated for each 
new sample

 n: the number of 
training samples

k = 1
Triangle

k = 3
Circle Triangle

Unseen Sample

k = 5
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K-Nearest Neighbor (K-NN)

 Target function for the entire space may 
be described as a combination of less 
complex local approximations
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K-Nearest Neighbor (K-NN)

 How to determine k?

 Small k

 Noise Sensitive

 Large k

 Neighbours may be 
too far away from 
the unseen sample

 Less representative
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CircleTriangle
k = 1

CircleTriangle
k = 5k = 19

k = 3
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K-NN: Characteristic

 Advantages:
 Very simple

 No training is needed

 All computations deferred until classification

 Disadvantages:
 Difficult to determine k

 Affected by noisy training data

 Classification is time consuming

 Need to calculate the distance between the 
unseen sample and each training sample
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K-NN: Advanced Discussion

 No need for training is a significant 
advantage

 Which applications need it?

 Classes update frequently

 E.g. Face Recognition

 When face images of a new user is added, will 
the system be re-trained?

 How can adding a new class without retraining 
be possible?
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K-NN: Advanced Discussion
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Add 
new class

No 
training

No 
training

Training

Training
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K-NN: Advanced Discussion

Query-based Framework

 Query-based framework

 K-nn mechanism

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 440

Gallery: reference samples, which 
are few good quality 
samples representing a 
class

Query: unseen sample
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K-NN: Advanced Discussion

Space

 However, in the original feature space, are 
samples that are more similar to each other more
likely to belong to the same class?

 K-NN may not be useful in the original feature 
space
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K-NN: Advanced Discussion

Metric Learning

 Metric Learning: Aim to obtain a space 
which fulfills a certain measure

 E.g. get closer > higher change to be the same 
class 
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Mapping by 
Metric Learning 

model
Original (input) 

Space
• K-NN may not 

work well here

Feature Space
• Good for K-NN
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Support Vector Machine (SVM)

 Which one is the best linear separator?
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A clever sheep dog 
who was herding his 
sheep…

It runs between the 
sheep and tries to 
separate the black 
sheep and white 
sheep

Clever 
Sheep dog

White
Sheep

Black
Sheep

Support Vector Machine (SVM)
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Support Vector Machine (SVM)

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 445

The sheep dog keeps 
running…

The sheep start to 
grow wools…

The dog feel the gap 
between black sheep 
and white sheep is 
narrower…
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Support Vector Machine (SVM)
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The wools become 
bigger and bigger…

Finally, only one path 
is left..



Dr. Patrick Chan @ SCUT

Support Vector Machine (SVM)

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 447
From: Learning with Kernels, Schölkopf & Smola

The sheep found out 
that the single path 
relies only on the 
some sheep. 

These sheep are 
“sheep vectors” 

* “Support vector” in 
SVM

Largest Margin

Sheep Vectors
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Support Vector Machine (SVM)

 Similar to the sheep, if a sample is 
growing…

This should be the best classifier
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Support Vector Machine (SVM)

 A classifier with the largest margin

 The concept is the same
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Support Vector Machine (SVM)

 Maximum Margin Classifier ONLY depends 
on few samples, called Support Vectors

Support Vectors
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Support Vector Machine (SVM)

 SVM has a solid and strong mathematics 
background

 Only the concept of SVM is focused in this 
course
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SVM: Linearly Separable

 Problem can be formulated as Quadratic 
Optimization Problem and solve for w and b

subject to

minimize
w, b

Margin width =

where

y(x) = wx+b

y(x) = 1

y(x) = -1

and
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Margin Width

All samples should be behind the margin
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SVM: Linearly Separable

 This optimization problem 
can be formulated as 
Dual Problem using 
Lagrangian method:

 Weight is determined by:

�subject to

Maximum
α

� �

�

���

and
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�

�
�

�subject to

minimize
w, b

where and
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SVM: Linearly Separable

 Many αi are zero

 xi with non-zero αi are 
support vectors (SV)
 The decision boundary is 

determined only by the SV

 Let tj (i = 1, ..., l) be the 
indices of the support 
vectors. 

α1=0.6 α2=0.8

α3=1.4

α4=0
α5=0

α7=0

α8=0

α9=0

α10=0

Non-SV αi=0

α6=0
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SVM: Non-Linearly Separable

 How about Non-Linearly Separable Case?
 The margin cannot be defined anymore

 Two approaches:
 Add a slack variables

 Use a kernel (Non-Linear SVM)
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SVM: Non-Linearly Separable

Slack Variable

 Slack Variable (ξ) is 
added as a punishment
to allow a sample in / 
far away from the 
margin

 Optimalization:

�
�

�

���

�
�

� �subject to

Minimize
w, b

�

ξ1 Error> 1

ξ2 Error> 1

ξ3 Correct< 1

ξ1

ξ2

ξ3

ξ4 Error> 1

ξ5 Correct< 1

ξ5

ξ4

ξ of other samples are 0
C : tradeoff parameter between error 
and margin

where
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Margin Width

Punishment allow a 
sample not behind the 
margin

Punishment
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SVM: Non-Linearly Separable

Kernel Method

 Kernel is a function which maps input 
space into feature space (high dimension)

 Construct linear SVM in feature space

Input Space Feature Space


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SVM: Non-Linearly Separable

Kernel Method

 Similar to the linearly separable case but change 
all inner products to kernel functions

�

�
�

�subject to

minimize
w, b

�

�

���

� � � � � �

�

���

�

���

�subject to

maximum
α

� �

�

���

and
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SVM: Multi-Class Problem

 SVM is a binary classifier

 How to handle multi-class problem?

 g in LDF can be formulated as the estimation 
on posterior probability to a class

 However, SVM must considers two classes

 Do not estimate the probability of a class

 Max method cannot be applied to SVM
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SVM: Multi-Class Problem

 How to handle multi-class problem?

 1-against-All 

 4-class example
 C1 vs Non-C1, C2 vs Non-C2,

C3 vs Non-C3, C4 vs Non-C4

 c classifiers

 1-against-1

 4-class example
 C1 vs C2, C1 vs C3, C1 vs C4,

C2 vs C3, C2 vs C4, C3 vs C4

 c(c-1)/2 classifiers

1-against-All

y3

y1

y2

y4

1-against-1

y3

y1

y2

y4
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SVM: Characteristic

 Advantages
 Training is relatively easy 

 No local optimal

 It scales relatively well to high dimensional 
data (inner product)

 Tradeoff between classifier complexity and 
error can be controlled explicitly

 Disadvantage
 Slow when the number of samples is large

 Need to choose a “good” kernel function
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