

Artificial Intelligence III: Artificial Intelligence and Deep Learning

Lecture 3 Regression & Classification

> Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China

Agenda

- Supervised Learning
 - Regression
 - Least Mean Square
 - Classification
 - Probability

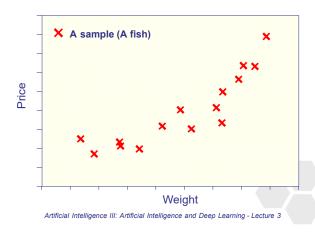
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Regression

- Given 15 fishes: weight and prices
- Objective: Predict the price of a fish

Weight (kg)	Price (\$)
2.2	20
2.6	31
1.2	16.5
0.7	10



Regression

- The ith training sample: $(x^{(i)}, y^{(i)})$
 - $x^{(i)} = \left[x_1^{(i)}, x_2^{(i)}, \dots, x_d^{(i)}\right]^T \in X$: Feature vector
 - $x_i^{(i)}$: the jth feature
 - *X* : the input space
 - $y^{(i)} \in Y$: Target Value
 - *Y* : the output space

	Weight (kg)	Price (\$)
$(x^{(1)}, y^{(1)})$	2.2	20
$(x^{(2)}, y^{(2)})$	2.6	31
$(x^{(3)}, y^{(3)})$	1.2	16.5
$(x^{(4)}, y^{(4)})$	0.7	10
	•	

- **◆ Training set:** $\{(x^{(i)}, y^{(i)}) | i = 1...n\}$
 - n is the number of training samples

Regression

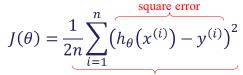
- Train a function $h_{\theta}(x)$ to predict y
 - ullet θ is the parameter vectors of the model
 - Different parameters yields different predictions (different h)
 - Example: weight
 - $h_{\theta}: X \to Y$, mapping from X to Y
 - h_{θ} is called a predictor or hypothesis
- Objective: Build a "good" h_{θ}
 - What does "good" mean?

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Objective Function

- Objective: the predicted value on a training sample closer to the real one
 - Smaller difference between $h_{\theta}(x^{(i)})$ and $y^{(i)}$
- Cost function (objective function)
 - May contains other terms besides Error
 - Mean Square Error is a classic measure



mean square error

- Error is a distance measure
- Square avoids the cancellation of positive and negative error
- Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

LMS Algorithm

• Least Mean Squares (LMS) aims to minimize $I(\theta)$ by adjusting θ

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

- ML is closely related to Optimization problem
 - Usually, the optimization is quite complicated
 - Since each parameter is a variable
 - Iterative method is used

LMS Algorithm Gradient Descent

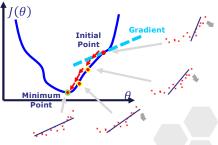
• When h_{θ} is differentiable, gradient descent can be used to minimize $J(\theta)$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

• Influence on $J(\theta)$ by changing the parameter (θ) slightly

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \frac{\partial J(\theta^{(t)})}{\partial \theta}$$

- lacksquare α : the learning rate
- $\theta^{(t)}$: the parameter at the time t



LMS Algorithm

Gradient Descent

Algorithm

- Start with an arbitrarily chosen weight $\theta^{(1)}$
- Let t = 0
- Loop
 - t = t + 1
 - Compute gradient vector $\partial J(\theta^{(t)})/\partial \theta$
 - Next value $\theta^{(t+1)}$ determined by moving some distance from $\theta^{(t)}$ in the direction of the steepest descent

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \frac{\partial}{\partial \theta} J(\theta^{(t)})$$

- i.e., along the negative of the gradient
- Until Finish Training

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

LMS Algorithm Gradient Descent

- Recall, $\theta = [\theta_1, \theta_2, \dots, \theta_m]$
- ◆ Updated Rule for the jth parameter

$$\theta_{j}^{(t+1)} = \theta_{j}^{(t)} - \alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta_{j}^{(t)}\right)$$

 All parameters should be updated at the same time

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

LMS Algorithm

Gradient Descent

• How to calculate $\frac{\partial}{\partial \theta_i} J(\theta)$?

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

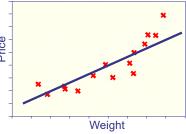
$$= \frac{1}{2n} \sum_{i=1}^{n} 2 \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_{j}} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$= \frac{1}{2n} \sum_{i=1}^{n} 2 \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_{j}} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$
Depend on a model

LMS Algorithm Gradient Descent

Example: Linear Function

$$h_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$
$$= \sum_{i=1}^d \theta_i x_i$$



$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{2n} \sum_{i=1}^n 2 \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial h_{\theta}(x^{(i)})}{\partial \theta_j}$$

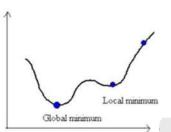
$$= \frac{1}{2n} \sum_{i=1}^n 2 \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_j} \left(\sum_{k=1}^d \theta_k x_k^{(i)} \right)$$

$$= \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

LMS Algorithm

Gradient Descent

- Related Issues:
 - Size of Learning Rate (α)
 - Too small, convergence is needlessly slow
 - Too large, the correction process will overshoot and cannot even diverge
 - Sub-optimal Solution
 - Trapped by local minimum
 - We will study Gradient Descent again in Artificial Neural Network

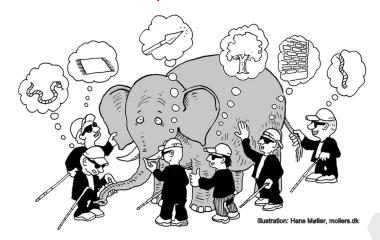


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Classification

 Objective: output a class based on the features of a sample



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

Classification

Prior Probability

Peter went to body check to see if he is ok

$$y = (ill, healthy)$$

According to the previous records,

the doctor concluded

85% of people was healthy P(y = healthy) = 0.85

■ 15% of people was ill P(v = ill) = 0.15

Therefore, Peter was healthy P(y = healthy) > P(y = ill)

	•
Person	Status
Α	III
В	Healthy
С	Healthy
D	III
ВС	Healthy Healthy

Should Peter be satisfied with this diagnosis?

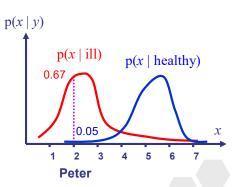
• This decision is based on **Prior Probability** P(y)

Classification Likelihood

- Physical condition of persons should be considered
 - Quantify the characteristics (features), denoted by x
 - E.g. red blood cell #, white blood cell #, temperature
- Assume only "white blood cell #" is measured

	~	<i>y</i>
Person	White Blood Cell #	Status (y)
Α	50	III
В	42	Healthy
С	39	Healthy
D	62	III

- Assume the white blood cell # (x) of Peter is 2
- A probability density function (pdf) of persons is considered
- The Doctor said
 - p(x=2 | ill) = 0.67
 - p(x=2 | healthy) = 0.05
 - Therefore, Peter is ill
- Should we be satisfied?
 - This decision is based on **Likelihood** p(x|y)



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Classification **Posterior Probability**

- ◆ Using Prior Probability (P(y)) or Likelihood (p(x|y)) is not suitable
- Posterior Probability is a better choice P(y|x): given x, the probability of y
- Bayes Decision Rule (Bayes Classifier)
 - When $P(y_1|x) > P(y_2|x)$, x is y_1
 - When $P(y_2|x) > P(y_1|x)$, x is y_2
 - When $P(y_1|x) = P(y_2|x)$, no decision
- How to obtain P(y|x)?
 - Obtaining from data is difficult as x is usually a continuous value

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

Classification

Bayes Formula

Bayes Formula

$$P(y|x) = \frac{p(x|y)P(y)}{p(x)}$$

$$P(y|x) = \frac{p(x|y)P(y)}{p(x)}$$
evidence

- Likelihood and prior probability may be estimated by using a dataset (Discuss it later in the lecture)
- How about evidence p(x)?

Classification

Bayes Decision Rule

- \bullet p(x) is difficult to be obtained relatively
 - p(x) contain all kinds of samples, which is more complicated than p(x|y)
 - It can be neglected in decision making
- x is classified as y_1 if

$$P(y|x) = \frac{p(x|y)P(y)}{p(x)}$$

$$p(y_1|x) > p(y_2|x)$$

$$\frac{p(x|y_1)P(y_1)}{p(x)} > \frac{p(x|y_2)P(y_2)}{p(x)}$$

$$p(x|y_1)P(y_1) > p(x|y_2)P(y_2)$$

Classification

Bayes Decision Rule

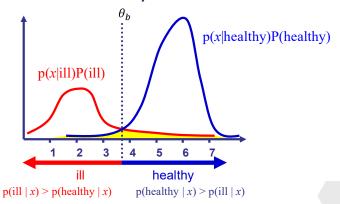
- Given: p(x=2 | ill) = 0.67 p(x=2 | healthy) = 0.05 P(ill) = 0.15 P(healthy) = 0.85
- Recall, Bayes Decision Rule
 - Decide y_1 if $P(y_1|x) > P(y_2|x)$
 - Decide y_2 if $P(y_2|x) > P(y_1|x)$
- P(healthy | x = 2) \propto p(x=2 | healthy) \times P(healthy) = 0.05 x 0.85 = 0.0425
- ♦ P(ill | x = 2) \propto $p(x=2 | ill) \times P(ill)$ * Note that if p(x) is considered, then $P(y_1|x) + P(y_2|x) = 1$.
- ◆ 0.1005 > 0.0425, therefore, **Peter is ill**

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Classification: Bayes Decision Rule Decision Boundary

- Recall, Bayes Decision Rule:
 - if $P(y_1|x) > P(y_2|x)$, decide y_1 ; otherwise decide y_2
- ◆ Its Decision Boundary:



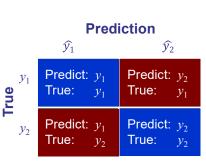
2 Dr. Patrick Chan @ SCUT

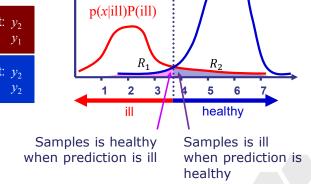
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Classification: Bayes Decision Rule

Decision Boundary

Error of Bayes Decision Rule

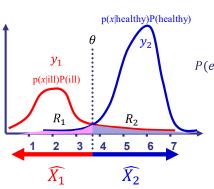


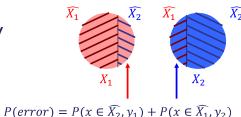


Classification: Bayes Decision Rule

Error

Error Probability





$$= P(x \in \widehat{X_2}|y_1)P(y_1) + P(x \in \widehat{X_2}|y_2)P(y_2)$$

$$= \int_{\widehat{X_2}} p(x|y_1)P(y_1)dx + \int_{\widehat{X_2}} p(x|y_2)P(y_2)dx$$

$$\widehat{X_1} = \{x \mid x \text{ is classified as } y_1\}$$
 $\widehat{X_2} = \{x \mid x \text{ is classified as } y_2\}$

Prediction

$$X_1 = \{x \mid x \text{ belongs to } y_1\}$$

 $X_2 = \{x \mid x \text{ belongs to } y_2\}$
True

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Correct

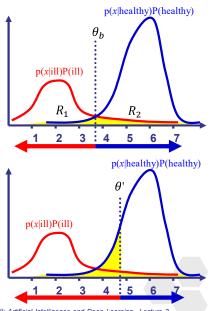
Wrong

p(x|healthy)P(healthy)

Classification: Bayes Decision Rule

Error

- θ_h or θ' is better?
 - Error of $\theta_h < \theta'$
 - θ_h is better
- ◆ Is any boundary better than Bayes Decision Rule (θ_h) ?
 - Bayes Rule is optimal (minimal classification error)

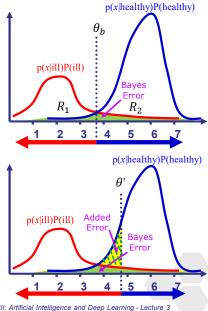


Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Classification: Bayes Decision Rule Error

- Error = Bayes Error + **Added Error**
- Bayes Error Error of Bayes Rule
 - Cannot be reduced
 - Depend on the input space and application
- Added Error Additional error made by other classifiers
 - Can be reduced by selecting better parameters



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Classification: Bayes Decision Rule

Extension to Multi-Class

Extend to multi-class problem (c classes)

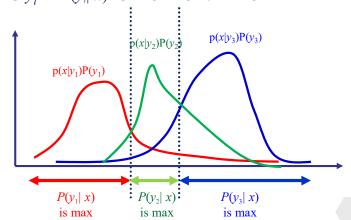
$$y = (y_1, y_2, ..., y_c)$$

- Bayes Decision Rule
 - x is y_i if $P(y_i|x)$ is maximum for i = 1...c
- Error for Bayes Decision Rule

$$P(error \mid x) = 1 - \max[P(y_1 \mid x), P(y_2 \mid x), ..., P(y_c \mid x)]$$

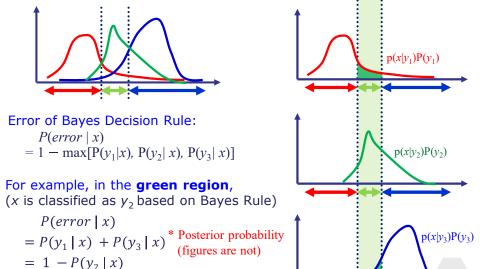
Classification: Bayes Decision Rule **Extension to Multi-Class**

- Three-class example
 - Bayes Decision Rule
 - x is y_i if $P(y_i|x)$ is max for i = 1...3



Classification: Bayes Decision Rule

Extension to Multi-Class

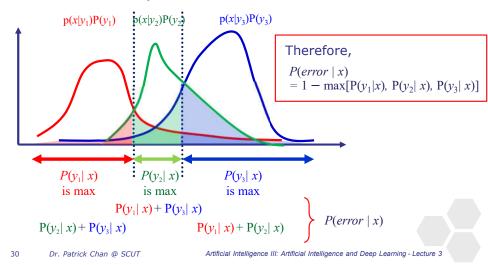


Classification: Bayes Decision Rule

Extension to Multi-Class

Three-class example

Error of Bayes Decision Rule



How to apply Bayes Rules?

Bayes Rules:

Dr. Patrick Chan @ SCUT

If
$$p(x|y_1)P(y_1) > p(x|y_2)P(y_2)$$
, x is classified as y_1 Otherwise, it is y_2

- How to learn $p(x \mid y_i)$ and $P(y_i)$ in an application?
 - $P(v_i)$: Ratio of the class i
 - v_i is discrete, easy to estimate

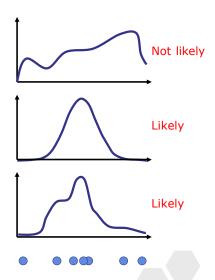
 $= 1 - \max_{i=1,2,3} P(y_i \mid x) * \text{Must not be } P(y_2 \mid x)$

- $p(x \mid y_i)$: Distribution of samples in the class i
 - x is usually continues and has many dimensions, different to estimate

How to apply Bayes Rules?

$p(x \mid y_i)$ and $P(y_i)$ Estimation

- $p(x \mid y_i)$ means p(x) and x is from y_i
- Given samples of a class (x is from y_i), how can we know its real distribution p(x)?
 - By estimation

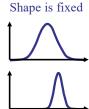


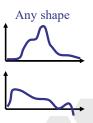
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

$p(x \mid y_i)$ Estimation

Type of Learning

- How to estimate $P(x \mid y_i)$?
 - Parametric Methods (Briefly Introduce here)
 - Model-based Method Assume form of sample distribution (pdf) is known
 - Estimate distribution parameters
 - Bias (Great if the assumptions are correct)
 - Non-Parametric Methods (Part 2, NN)
 - Model Free Method No assumption on pdf
 - A proper form for discriminant function is assumed
 - Usually sub-optimal, but good results generally





Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Parametric Methods

Normal Distribution

 Assume samples in each class follow normal distribution (Gaussian distribution),

$$D \sim N(\mu, \sigma^2)$$

- 1-dimension: $p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right]$
- d-dimension: $p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x \mu)^t \Sigma^{-1} (x \mu) \right]$

$$x = (x_1, x_2, ..., x_d)^t$$
: sample vector

$$\mu = (\mu_1, \, \mu_2, \, ..., \, \mu_d)^t$$
: mean vector

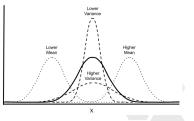
$$\Sigma = d \times d$$
: covariance matrix

 σ : variance (d=1 of covariance matrix)

 $|\Sigma|$ and $\Sigma^{\text{-}1}$: determinant and inverse

t : transpose

Dr. Patrick Chan @ SCUT



Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

Discriminant Functions for the Normal Density

 To simplify calculations by transforming multiplication into addition

$$p(x|y)P(y)$$
 and $p(x|y) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right]$

 The natural log function is a monotonic increasing function

$$p(x|y)P(y) \propto \ln(p(x|y)P(y))$$

= \ln(p(x|y)) + \ln(P(y))

g(x) is used for comparison

$$g(x) = \ln(p(x|y)) + \ln(P(y))$$

Discriminant Functions for the Normal Density

• Substitute p(x|y) to g(x)

$$g(x) = \ln(p(x|y)) + \ln(P(y))$$

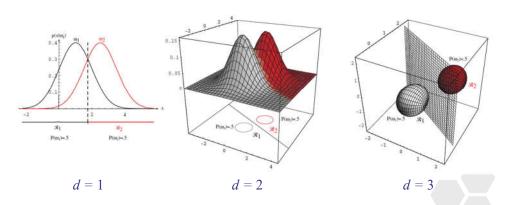
$$p(x|y) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right]$$

Therefore:

$$g(x) = -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln|\Sigma| - \frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu) + \ln P(y)$$

Normal Distribution ($\Sigma_i = \sigma^2 I$)

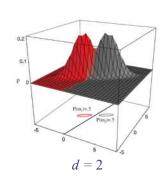
 Assume the covariance matrices are the identity matrix, the distributions are spherical

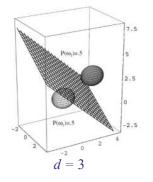


Parametric Methods

Normal Distribution ($\Sigma_i = \sigma^2 I$)

 Assume each class has the same covariance matric, the distributions is in ellipse sharp





Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

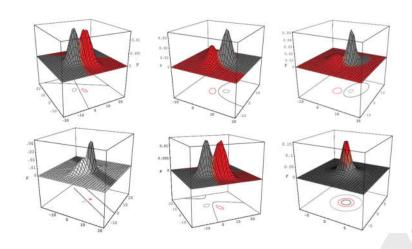
Parametric Methods

Dr. Patrick Chan @ SCUT

Normal Distribution ($\Sigma_i = \sigma^2 I$)

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3

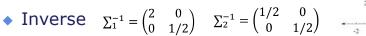
The covariance matric can be anything

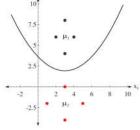


Discriminant Functions for Multivariate Normal Density

$$\mu_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix} \qquad \mu_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\Sigma_1 = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix} \qquad \Sigma_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$





• Assume
$$P(y_1) = P(y_2) = 0.5$$

• Decision Boundary
$$g_1(x) = -(x_1 - 3)^2 - \frac{1}{4}(x_2 - 6)^2 - \ln(4\pi)$$

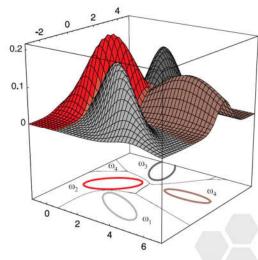
$$g_2(x) = -\frac{1}{4}(x_1 - 3)^2 - \frac{1}{4}(x_2 + 2)^2 - \ln(8\pi)$$

$$g_1(x) - g_2(x) = -\frac{3}{4}(x_1 - 3)^2 - \frac{1}{2}(x_2 - 2)^2 - \ln(2) = 0$$

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

Multi-class problem

 Even with small number of classes, the shapes of the boundary regions is complex



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 3