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O Regression O Regression
+ Given 15 fishes: weight and prices ¢ The ith training sample: (x®, y®)
+ Objective: Predict the price of a fish " x® = [x(l)’xgl),___,xg)] € ¥ : Feature vector
xj(i) : the jth feature X Y
. rice ($)
- X A sample (A fish) % X : the Input space (x(l),y(l))w
. . i . @ 4@
] o = y@ ey: Target Value ((;(3):;/(3); sl s
e i g . Y : the output space  «®.y®) 07w
1.2 16.5 a % X :
0.7 10 4 X & X . ; Ay
- ¢ Training set: {(x®, y®)|i=1..n}
1 = n is the number of training samples

T T

Weight
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O Regression

+ Train a function hy(x) to predict y
= 0 is the parameter vectors of the model

Different parameters yields different
predictions (different h)

Example: weight
= hg:X - Y, mapping from Xto Y
= hg is called a predictor or hypothesis

# Objective: Build a “good” hy

= What does “good” mean?
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Regression

& Objective Function
¢ Objective: the predicted value on a training
sample closer to the real one

= Smaller difference between hy(x®) and y®

+ Cost function (objective function)
= May contains other terms besides Error

= Mean Square Error is a classic measure
square error

J©) = Z(h@(x@) y®)°

mean square error
Error is a distance measure

Square avoids the cancellation of positive and negative
error
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O LMS Algorithm

¢ Least Mean Squares (LMS) aims to
minimize J(6#) by adjusting 0

1 v . .
J©) = 5= (o (x®) = y©)’
i=1

¢ ML is closely related to Optimization
problem
= Usually, the optimization is quite complicated
Since each parameter is a variable
Iterative method is used
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LMS Algorithm
0. Gradient Descent

¢ When hy is differentiable, gradient descent can be
used to minimize J(0)

1< . .
J1(0) = %Z(he(x(‘)) _ y(l))z
i=1

¢ Influence on J(0) by changing the parameter (8)

slightly 4060)
(t+1) = g(t) _ o 2100) T
9 9 a 69 Point
a : the learning rate

6® : the parameter at
the time t

Minimum ' a et

Point
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LMS Algorithm
0. Gradient Descent

+ Algorithm
= Start with an arbitrarily chosen weight 6%

- lett=0 /6

= Loop -
t=t+1 -
Compute gradient vector 9/(6®)/a6 : 4

Next value #¢+1) determined by moving some
distance from 8® in the direction of the steepest
descent

0
g+ — ) _ o —1(9®
“ 597 (0)

= i.e., along the negative of the gradient
= Until Finish Training
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LMS Algorithm
0. Gradient Descent

¢ Recall, 6 = [64,0,, ... Hm]
¢ Updated Rule for the ;!

h parameter

EPLOR 6?9](9(@)

+ All parameters should be updated at the
same time

(t+1)
9
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LMS Algorithm
0. Gradient Descent

a

¢ How to calculate —](9)?

n
1 . .
J®) = ZZ(he(x(’)) -0y’
_]( )_ﬁz_ _1(he(x(’)) y®)’
n
1 0 . .
=5n ) g (he () =y©)’
?11
z (ho(x®) - y(L))—(he(x(‘)) y®)
1 :11 dh
= Z_Z 2(hg(x®@) —y€ 9hg (V) Depend on a model
i=1 J
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LMS Algorithm
0. Gradient Descent

¢ Example: Linear Function

ho(x) = 01x1 + 0,x, + -+ O,4x4

da
i=1

a 6h

=%Zn: 2(ho(x®) — y(t))_<z Ox (z))

n
1 . ; i
== E (ho(x@) - y(l))xjm
i=1
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LMS Algorithm
0. Gradient Descent

+ Related Issues:
= Size of Learning Rate (a)
Too small, convergence is needlessly slow

Too large, the correction process will
overshoot and cannot even diverge

= Sub-optimal Solution

Trapped by
local minimum

= We will study
Gradient Descent again
in Artificial Neural Network

Global muremum
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Classification

¢ Objective: output a class based on the
features of a sample
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Classification

&S Prior Probability

¢ Peter went to body check to see if he is ok

y = (ill, healthy)

¢ According to the previous records,
the doctor concluded J

= 85% of people was healthy wm
P(y = healthy) = 0.85 A Il
= 15% of people was ill B Healthy
P(y=ill)=0.15 C Healthy
D Il

= Therefore, Peter was healthy
P(y = healthy) > P(y = ill)

¢ Should Peter be satisfied with this diagnosis?
= This decision is based on Prior Probability P(y)
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Classification
Q. Likelihood

+ Physical condition of persons should be
considered
= Quantify the characteristics (features), denoted by x
= E.g. red blood cell #, white blood cell #, temperature

X y
“white blood cell #” Cell #
is measured A 50 1l
B 42 Healthy
© 39 Healthy
D 62 IIl
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Classification
Q. Likelihood

+ Assume the white blood cell # (x) of Peter is 2

¢ A probability density function (pdf) of persons
is considered

¢ The Doctor said
. p(x[y)
= p(x=2 | ill) = 0.67 A
= p(x=2 | healthy) = 0.05
= Therefore, Peter is ill

¢ Should we be satisfied?

= This decision is based :
on Likelihood p(x]y) 1 2 3 4 5 & 7

Peter

p(x | ill)
0.67 /

p(x | healthy)
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Classification

& Posterior Probability
+ Using Prior Probability ( P(y) ) or
Likelihood ( p(x]|y) ) is not suitable

¢ Posterior Probability is a better choice
P(y|x) : given x, the probability of y

+ Bayes Decision Rule (Bayes Classifier)
= When P(y,[x)>P(y,|x), x is y,
= When P(y,[x)>P(y|x), x is y,
= When P(y,|x)=P(y,|x), no decision

¢ How to obtain P(y|x)?
= Obtaining from data is difficult as x is usually a
continuous value
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Classification
& Bayes Formula

+ Bayes Formula

likelihood prior
posterior
p(x|y)P(y)
P(y|x) =
q p(x)
evidence

+ Likelihood and prior probability may be estimated
by using a dataset (Discuss it later in the lecture)

+ How about evidence p(x)?
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Classification
& Bayes Decision Rule

+ p(x) is difficult to be obtained relatively

= p(x) contain all kinds of samples, which is more
complicated than p(x|y)

= It can be neglected in decision making

p(x|y)P(y)

¢ x is classified as y, if (%)

p(y1lx) > p(y2|x)

p(x|y)P(y1) _ p(x|y2)P(y2)
p(x) p(x)

p(x|y1)P(y1) > p(x|y2)P(y,)
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P(ylx) =
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Classification

& Bayes Decision Rule

Classification: Bayes Decision Rule

Decision Boundary

¢ Given: pe=2]il)=0.67  p(x=2 | healthy) = 0.05 + Recall, Bayes Decision Rule:
P(ill) = 0.15 P(healthy) = 0.85 = if P(y,| x) > P(y,| x), decide y,; otherwise decide y,

¢ Recall, Bayes Decision Rule .. ]
- Decide y, if P(y,]x)> P(yy|x) + Its Decision Boundary:

= Decide y, if P(y,|x)>P(y,|x) s Op

p(x|healthy)P(healthy)
¢ P(healthy |x=2) oc p(x=2 | healthy) x P(healthy)
= 0.05x0.85=0.0425

¢ P(ill | X = 2) o p(x=2 | 111) X P(lll) * Note that if p(x) is considered,
= 0.67x0.15=0.1005 then P(y ) + P(yylx) = 1.

p(xillP(ill)

P — :- T T ——
1 2 3:4 5 6 17

ill healthy
p(ill | x) > p(healthy | x) p(healthy | x) > p(ill | x)

¢ 0.1005>0.0425, therefore, Peter is ill
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Classification: Bayes Decision Rule

Decision Boundary

Classification: Bayes Decision Rule

L. Xq X, X X,
+ Error of Bayes Decision Rule + Error Probability
p(x|/healthy)P(healthy)
4 . b p(x/healthy)P(healthy)
Prediction 1 0 X, | [ X
51\1 5]\2 V4 E — —
' ) p(x|111)P(1]1) ‘ ‘ E P(eT‘T‘OT‘) = P(x € Xz,yl) + P(x € Xl,yz)
Predict: y, | Predict: y, PGP
True: y, | True: y, : =P(x € X3|y1))P(y1) + P(x € X2]y2)P(¥2)
Predict: y, | Predict: y, e e N T = f p(x|y)P(y:)dx + f p(x|y2)P(y;)dx
True: y, | True: y, —2 W 5 6 7 -iiis sy % %
ill / \ healthy X; X,
B Correct . . .
B won Samples is healthy Samples is ill X, = {x|xisclassified as y,}  X; = {x|x belongs to y,}
9 when prediction is ill when prediction is

X, = {x|xisclassified as y,} X, = {x | x belongs to Vot

health
Y Prediction True

23 Dr. Patrick Chan @ SCUT Artificial Intelligence Il Artificial Intelligence and Deep Learning - Lecture 3 24 Dr. Patrick Chan @ SCUT Artificial Intelligence IlI: Artificial Intelligence and Deep Learning - Lecture 3




Classification: Bayes Decision Rule

Error

L
* 6, or 0" is better?

= Error of 6, < 0’
= 0, is better

p(xjhealthy)P(healthy)

¢ Is any boundary
better than Bayes
Decision Rule (6,)?

= Bayes Rule is optimal
(minimal classification

p(x|healthy)P(healthy)

p(fill)P(ill)

P—— T -y T
¢ 1 2 3 4:5 6 ‘
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Classification: Bayes Decision Rule

Error

¢ Error =Bayes Error +
Added Error

p(xfhealthy)P(healthy)

¢ Bayes Error
Error of Bayes Rule
= Cannot be reduced

. 1 2 3:4 5 6 .7
= Depend on the input space < >
and application N p(x|healthy)P(healthy)

+ Added Error o
Additional error made by :
other classifiers

= Can be reduced by
selecting better parameters

p(x[ill)P(ill) Added
Error,

'-1234256‘

Artificial Intelligence IlI: Artificial Intelligence and Deep Learning - Lecture 3
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Classification: Bayes Decision Rule

Extension to Multi-Class

'
¢ Extend to multi-class problem (¢ classes)
y= (ylayza °"7yc)

+ Bayes Decision Rule
= x ISy, if P(y,|x) is maximum for i=1...c

¢ Error for Bayes Decision Rule
P(error | x) = 1 - max[ P(y,|x), P(y,| x), ..., P(v.| x) ]
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Classification: Bayes Decision Rule

Extension to Multi-Class

¢ Three-class example

= Bayes Decision Rule
x is y, if P(y| x) is max fori=1..3

;(XWZ)P(VZE) pOls)P(3)

pGy)PG)

———p ‘€ >

P(y,| x) * P(ys| x)* P(y,| x)
1S max 1S max 1S max
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Classification: Bayes Decision Rule
& Extension to Multi-Class

A

{ p(e)P(,)

Error of Bayes Decision Rule: 1
P(error | x)

=1 = max[P(y,|x), P(y,| x), P(y3| x)]

For example, in the green region,
(x is classified as y, based on Bayes Rule)
P(error | x) 1

* Posteri babilit
=POLIX) FPOs 1) ol
=1=P,|x)

=1- lgiazxg P(yi [ X) * Must not be P(y,)x)
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Classification: Bayes Decision Rule

Extension to Multi-Class

¢ Three-class example
= Error of Bayes Decision Rule

POLOPOY  PabIPGY  PEDIPOY)

Therefore,

P(error | x)

=1 —max[P(y,|x), P(y,| x), P(y3]| x)]

s
i

P(y,| x) PPy )¢ P(y,| x)
is max is max is max

P(| x)+ P x)
P(y,| x)+P(y;| x) P(y,| x)+ P(y,| x) P(error | x)
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.. How to apply Bayes Rules?

¢+ Bayes Rules:

If p(x|y1)P(y1) > p(x]|y2)P(y2), x is classified as y,
Otherwise, it is y,

¢ How to learn p(x|y) and P(y,) in an application?
= P(y) : Ratio of the class i
y, is discrete, easy to estimate

= p(x|y) : Distribution of samples in the class i

x is usually continues and has many dimensions,
different to estimate
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How to apply Bayes Rules?

&S p(x | y) and P(y) Estimation

¢ p(x|y) means
p(x) and x is from y, Not likely

+ Given samples of a
class (x is from y), Hkely
how can we know its
real distribution p(x)?
= By estimation Likely
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p(x | y;) Estimation

& Type of Learning

¢ How to estimate P(x|y)?
= Parametric Methods (Briefly Introduce here)

Model-based Method Assume form of
sample distribution (pdf) is known

Estimate distribution parameters

Bias (Great if the assumptions are
correct)

= Non-Parametric Methods (Part 2, NN)
Model Free Method no assumption on pdf
A proper form for discriminant
function is assumed
Usually sub-optimal, but good results
generally

Shape is fixed

P

Any shape

/

33 Dr. Patrick Chan @ SCUT Artificial Intelligence Ill: Artificial Intelligence and Deep Learning - Lecture 3

Parametric Methods

Q. Normal Distribution

¢ Assume samples in each class follow
normal distribution (Gaussian distribution),

DNN(,U:O'Z) d=2
. . 1 Clx—py? =
+ 1-dimension: p()=—— exp [ 2( = )] 0

LLLLL

X =(x, x,, ..., x,)": sample vector e
1= (1, 1, ..., ;) : mean vector A
Y =dxd : covariance matrix

o : variance (d=1 of covariance matrix)
|~] and X! : determinant and inverse

t : transpose
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Discriminant Functions
.. for the Normal Density

+ To simplify calculations by transforming
multiplication into addition

p(x|y)P(¥) and p(xly) N SEERE

_1 — I 1(x —
exp|—o (x =) 2 (x — )

+ The natural log function is a monotonic increasing

function
p(x|y)P(y) «< In(p(x|y)P(y))
=In(p(x|y)) + In(P(y))

¢ g(x) is used for comparison
g(x) = In(p(x|y)) + In(P(y))
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Discriminant Functions
.. for the Normal Density

+ Substitute p(x|y) to g(x)

g(x) =In(p(x|y)) + In(P(y))

1 1
POIY) = Gryargz P |~ @ - W = W)

| J
Y

¢ Therefore:
K_Hr_Mr A N\ A N\

d 1 1
g(x)=—gn2m—hZ -2 (x - W x—p +InP (y)
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Parametric Methods

& Normal Distribution (2= o’ 1)

¢ Assume the covariance matrices are the
identity matrix, the distributions are
spherical
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Parametric Methods

& Normal Distribution (2, =0’ 1)

¢ Assume each class has the same
covariance matric, the distributions is in
ellipse sharp
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Parametric Methods

Normal Distribution (2. = o’ ')

Artificial Intelligence IlI: Artificial Intelligence and Deep Learning - Lecture 3
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Discriminant Functions for
.. Multivariate Normal Density

¢ Given o= [g] bz = [_32]
n=(9 g 2o

o Inverse 3i=(5 ) ==(0" 1) - e

¢ Assume P(y,)=P(»,) =05
¢ Decision Boundary g,(x)=-(x —3)*- %(xz - 6)* — In(4m)

g,(x) = —%(x1 —3)? —%(x2 +2)? — In(8m)

3 1
9100 = 9200 = =3 (6 =32 =5 (1, — 2)* = [n(2) = 0

1 o d 1
gi(x) = _E(x —u)' T (e — ) —EIHZﬂ—Ehﬂzﬂ +InP (w;)
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Parametric Methods

= Even with small
the shapes of the

boundary regions
complex
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Normal Distribution

number of classes,

¢ Multi-class problem

0.2

is
0.1
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