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¢ Supervised Learning
= Regression
Least Mean Square
= Classification
Probability
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O Regression

¢ Given 15 fishes: weight and prices
+ Objective: Predict the price of a fish

- X Asample (A fish) X
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O Regression

¢ The ith training sample: (x®, y®)

_ . . T
s x® =[x ) ...,xg)] € X : Feature vector

x].(i) : the jth feature X Y
:
X : the input space (x@, y(@)y 2.2 20
. 2 (@
- y© ev: Target Value o)) IS =

Y : the output space ®.y®¥) o7 10

¢ Training set: {(x®©, y®O)|i=1..n}
= n is the number of training samples
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O Regression

¢ Train a function hy(x) to predict y
= 0 is the parameter vectors of the model

Different parameters yields different
predictions (different h)

Example: weight
= hg:X - Y, mapping from Xto Y
= hy is called a predictor or hypothesis

¢ Objective: Build a “"good” hg
= What does “"good” mean?
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Regression

& Objective Function

¢ Objective: the predicted value on a training
sample closer to the real one

= Smaller difference between hy(x®) and y®

# Cost function (objective function)
= May contains other terms besides Error

= Mean Square Error is a classic measure
square error

n .
1 . .
J(0) = %Z(he(x(”) —y®)?
N l= J
mean Sglfuare CcITror

Error is a distance measure

Square avoids the cancellation of positive and negative
error
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O LMS Algorithm

¢ Least Mean Squares (LMS) aims to
minimize J(8) by adjusting 6

1~ | |
J(6) = %Z(he(x(l)) _ y(l))z
i=1

¢ ML is closely related to Optimization
problem
= Usually, the optimization is quite complicated
Since each parameter is a variable
Iterative method is used
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LMS Algorithm
0. Gradient Descent

¢ When hy is differentiable, gradient descent can be
used to minimize J(6)

1 v . |
10) = 5. ) (he () =y©)’
i=1

¢ Influence on J(6) by changing the parameter ()

slightly t0)
aJ(6® radient | "‘
gt+1) — g(t) _ 4 ](69 ) I:c:f:‘atl Crpdient ,,
a : the learning rate
6® : the parameter at | i
the t|me t — Point _
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LMS Algorithm
0. Gradient Descent

+ Algorithm
= Start with an arbitrarily chosen weight 6

= Lett=0 /()

= Loop -
t=t+1 -
Compute gradient vector 9/(6®)/96 0

Next value 6*+1) determined by moving some
distance from 6® in the direction of the steepest
descent

d
g+ — g(&) _ o —7(9®
“ 3¢/ (0)

= i.e., along the negative of the gradient
= Until Finish Training
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LMS Algorithm
0. Gradient Descent

¢ Recall, 6 =[6,,6,, ..., 0,,]
¢ Updated Rule for the ;" parameter

0
(t+1) _ @) _ (t)
Hj = Hj a—aej] (Hj )

¢ All parameters should be updated at the
same time
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LMS Algorithm

0. Gradient Descent

) ]
¢ How to calculate at9]_](49). 6, =0, “aej](g)

0= 50 () -0
a%/( )= ﬁz—Z(ha(xm) y®)’
=ﬂza—6j(he(x<f>>—y@>f
=%Zn: 2(he(x®) - y(o)_(hg(xo)) y®)

2(hg(x®) — y(i Depend on a model
J
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i=

=

LMS Algorithm

0. Gradient Descent

¢ Example: Linear Function

hg (X) = 91X1 + Hzxz + -+ ded

a
i=1

0 oh
S = 3 2lon(s) -y0) P

iz(he(x@) )55 <Z ekx@)

I_=
n

Z (ho(x®) — y(i))xj(i)
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LMS Algorithm
0. Gradient Descent

+ Related Issues:
= Size of Learning Rate («)
Too small, convergence is needlessly slow

Too large, the correction process will
overshoot and cannot even diverge

= Sub-optimal Solution 3

Trapped by
local minimum

= We will study “ Local mimmum
Gradient Descent again i sncen
in Artificial Neural Network
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Classification
@ Classification

¢ Objective: output a class based on the
features of a sample
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Classification

& Prior Probability

¢ Peter went to body check to see if he is ok
y = (ill, healthy)

¢ According to the previous records,
the doctor concluded Y

= 85% of people was healthy |_Person | Status _

P(y = healthy) = 0.85 Il

= 15% of people wasill Healthy
P(y =ill)=0.15 Healthy

= Therefore, Peter was healthy Ill
P(y = healthy) > P(y = ill)

O 0O wm >

¢ Should Peter be satisfied with this diagnosis?
= This decision is based on Prior Probability P(y)
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Classification

0. Likelihood

¢ Physical condition of persons should be
considered
= Quantify the characteristics (features), denoted by x
= E.qg. red blood cell #, white blood cell #, temperature

X y

* white blood =l
“white blood cell #” Cell #

IS measured A 50 Il
B 42 Healthy
C 39 Healthy
D 62 Il
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Classification
.. Likelihood

¢ Assume the white blood cell # (x) of Peter is 2

¢ A probability density function (pdf) of persons
is considered

¢ The Doctor said
. p(x|y)
= p(x=2 | ill) = 0.67 4
= p(x=2 | healthy) = 0.05 PO | healthy)
= Therefore, Peter is ill 0-67
¢ Should we be satisfied?
= This decision is based

on Likelihood p(x|y) 1 2 3 4 5 6 7
Peter
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Classification

& Posterior Probability

+ Using Prior Probability ( P(y) ) or
Likelihood ( p(x]|y)) is not suitable

¢ Posterior Probability is a better choice
P(y|x) : given x, the probability of y

¢ Bayes Decision Rule (Bayes Classifier)
= When P(y,[x)>P(y,]x), xis y,
= When P(y,|x)>P(y[x), x IS y,
= When P(y,|x)=P(y,|x), no decision

¢ How to obtain P(y|x)?

= Obtaining from data is difficult as x is usually a
continuous value

18 Dr. Patrick Chan @ SCUT Atrtificial Intelligence llI: Artificial Intelligence and Deep Learning - Lecture 3



Classification
& Bayes Formula

¢ Bayes Formula

likelihood prior

posterior B p(xly)P(:V)

evidence

¢ Likelihood and prior probability may be estimated
by using a dataset (Discuss it later in the lecture)

+ How about evidence p(x)?
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Classification

& Bayes Decision Rule

¢ p(x) is difficult to be obtained relatively

= p(x) contain all kinds of samples, which is more
complicated than p(x|y)

= It can be neglected in decision making

¢ x is classified as y, if P(ylx) =_P(x2|ay(i’;<y)
p(y1lx) > p(y2|x)

p(x|y1)P(y1)  p(x|y2)P(y3)
>
p(x) p(x)

p(x|y1)P(y1) > p(x|y2)P(y2)
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Classification

& Bayes Decision Rule

¢ Given: p(G=2|ill)=0.67 p(x=2 | healthy) = 0.05
P(@ll) =0.15 P(healthy) = 0.85

+ Recall, Bayes Decision Rule
= Decide y, if P(y,|x)>P(y,|x)
= Decide y, if P(y,|x)>P(y,|x)

¢ P(healthy | x =2) oc p(x=2 | healthy) x P(healthy)
= 0.05x0.85=0.0425

¢ P(@ll | x=2) o« p(x=2 | ill) x P(ill) * Note that if p(x) is considered,
= 0.67x0.15=0.1005 then P(yifx) + POh) = 1.

¢ 0.1005>0.0425, therefore, Peter is ill
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Classification: Bayes Decision Rule

& Decision Boundary

+ Recall, Bayes Decision Rule:
= if P(y,| x) > P(y,| x), decide y,; otherwise decide y,

¢ Its Decision Boundary:
0

a

p(x|healthy)P(healthy)

p(x[ill)P(ill)

1 2 3:4 5 6 7

ill healthy
p(ill | x) > p(healthy | x) p(healthy | x) > p(ill | x)
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Classification: Bayes Decision Rule

& Decision Boundary

¢ Error of Bayes Decision Rule
p(x|/healthy)P(healthy)

b

Prediction :
V1 V2
p(xfil)P(ill)

Predict: y, Predict: y,
True: y, | True: y,

True

Predict: y, | Predict: y
True: y, | True:

B Correct _ o
oW Samples is healthy Samples is ill
rong when prediction is ill when prediction is
healthy
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Classification: Bayes Decision Rule

¢ Error Probability

p(x|healthy)P(healthy)
% [

‘Xz

P(error) = P(x € X,,v,) + P(x € X{,¥,)

Y1
p(ill)P(ill)

= P(x € X;|y1)P(y1) + P(x € X,1y2)P(¥2)

=" —— = [pyorodc+ [ peiyPodx
1 2 3 :4 5 6 S J
M X, X1
Xl Xz
X, = {x|xis classified as »i1} Xy = {x]|xbelongs to y,}
X, = {x|x is classified as ¥} X, = {x|xbelongs to y,!
Prediction True
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Classification: Bayes Decision Rule

0. Error

p(x|healthy)P(healthy)

¢ 0, or @' is better?
= Error of 6, < 6’
= 0, is better

¢ Is any boundary
better than Bayes p(xhealthy)P(healthy)
Decision Rule (6,)?

= Bayes Rule is optimal
(minimal classification

p(xill)P(ill)

g 1 2 3 4 :5 6 i
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Classification: Bayes Decision Rule

0. Error

p(x|healthy)P(healthy)

¢ Error =Bayes Error +
Added Error

¢ Bayes Error
Error of Bayes Rule
= Cannot be reduced

= Depend on the input space
and application

¢ Added Error
Additional error made by
other classifiers

= Can be reduced by
selecting better parameters

'1234556i
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Classification: Bayes Decision Rule

0. Extension to Multi-Class

¢ Extend to multi-class problem (¢ classes)
y:()’pJ’za '”ayc)

+ Bayes Decision Rule
= x IS y, if P(y|x) is maximum fori=1...c

¢ Error for Bayes Decision Rule
P(error | x) =1 - max[ P(y,|x), P(y,| x), ..., P(y.| x) ]
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Classification: Bayes Decision Rule

0. Extension to Multi-Class

¢ Three-class example
= Bayes Decision Rule
x is y, if P(y|x) is max for i=1...3

A

iJ(lez)P(y;) p(xy3)P(ys)

pGxy)P())

v

“ > » -
P(y,| x) " Py x)* P(y| x)

is max 1S max is max
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Classification: Bayes Decision Rule
& Extension to Multi-Class

a

()P

v

Error of Bayes Decision Rule: 1
P(error | x)

=1 — max[P(y,|x), P(»,| x), P(y3] x)]

v

For example, in the green region,
(x is classified as y, based on Bayes Rule)

P(error | x) *

* Posterior probabilit

=P, |x) + P3| x) (figures afe not) Y
=1-PU,|x)

=1- ir:nﬁz},% Pi|x)  * Must not be P(y,|x)

p(x[y3)P(y3)

HH
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Classification: Bayes Decision Rule

0. Extension to Multi-Class

¢ Three-class example
= Error of Bayes Decision Rule

PEbIPGY)  PGIPOR  PELIPO)

Therefore,

P(error | x)

= 1 = max[P(y,[x), P(y,| x), P(ys| )]

L
.

< >l >
POilx)  FP@l0P POiY)
is max is max is max
P x)+ P(vy| x)
P(y,| x)+ P(y,| x) P(y,| x)+ P(3,| x) } P(error | x)
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.. How to apply Bayes Rules?

+ Bayes Rules:

If p(x|y1)P(y1) > p(x|y2)P(y,), x is classified as y,
Otherwise, it is y,

¢ How to learn p(x|y) and P(y) in an application?
= P(y): Ratio of the class i
y, is discrete, easy to estimate

= p(x|y) : Distribution of samples in the class i

x is usually continues and has many dimensions,
different to estimate
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How to apply Bayes Rules?

&S p(x | y) and P(y,) Estimation

¢ p(x|y) means

p(x) and x is from y, [\/\Notlikely

¢ Given samples of a

class (x is from y), Hikely
how can we know its
real distribution p(x)?
= By estimation Likely
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p(x |y, Estimation

& Type of Learning

+ How to estimate P(x|y)? Shape is fixed
= Parametric Methods (Briefly Introduce here) |
Model-based Method Assume form of
sample distribution (pdf) is known N A

Estimate distribution parameters

Bias (Great if the assumptions are
correct)

= Non-Parametric Methods (Part 2, NN)
Model Free Method No assumption on pdf

A proper form for discriminant
function is assumed

Usually sub-optimal, but good results
generally

Any shape

—E‘
v
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Parametric Methods

0. Normal Distribution

¢ Assume samples in each class follow
normal distribution (Gaussian distribution),

D ~N(u, o°)
1-dimension: #() = e |-3(*5*
- . X) = ex ——
4 Imension: p N p S\
d-di i _ 1 1
‘ = ImenSIOn. p(X) = (27-[)d/2|2|1/2 exp _E
x = (x}, X,, ..., x,)': sample vector
= (i, 1, ..., i) - mean vector

¥ =dxd : covariance matrix e R -
o : variance (d=1 of covariance matrix) o
|~| and ! : determinant and inverse

t : transpose

34 Dr. Patrick Chan @ SCUT Artificial Intelligence IlI: Artificial Intelligence and Deep Learning - Lecture 3



Discriminant Functions
.. for the Normal Density

+ To simplify calculations by transforming
multiplication into addition

1 1
p(x|y)P(y) and p(xly) = i P B DR Ca D

¢ The natural log function is a monotonic increasing

function
p(x|y)P(y) « In(p(x|y)P(y))
= In(p(x|y)) + In(P(»))

¢ g(x) is used for comparison
g(x) = In(p(x|y)) + In(P(y))
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Discriminant Functions
.. for the Normal Density

¢ Substitute p(x|y) to g(x)

g(x) =In(p(x|y)) + In(P())

1 1
() = GarpgE P | T3 WIETHx — )

A\

~
¢ Therefore:

A A A AL
r Y N N/ N\

d 1 1
gx) = —Eann —ElanI —E(x —wWiEtx—pw) +InP(y)
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Parametric Methods

& Normal Distribution (2, = o° 1)

¢ Assume the covariance matrices are the
identity matrix, the distributions are
spherical

plxbuyg)
0.4}

W)

Plon =5 Ploagh=5
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Parametric Methods

Normal Distribution (2

¢ Assume each class has the same
covariance matric, the distributions is in
ellipse sharp
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Parametric Methods

& Normal Distribution (2, = o° 1)

¢ The covariance matric can be anything
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¢ Given b= [z] 2 = [_32]
() 276 )

¢ Assume P(y,)=P(@,)=0.5
¢ Decision Boundary g,(x)=-(x;-3)%- %(x2 — 6)% — In(4m)

1 1
g2(x) = _Z(X1 -3)* - Z(xz +2)? — In(8m)

3 1
g1(x) — g,(x) = —Z(x1 —3)? —E(xz -2)2-1In(2) =0

1 o d 1
gi(x) = -5 (=)' % (x —p) —5In2m —§1n|2i| +InP (w;)
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Parametric Methods

0. Normal Distribution

¢ Multi-class problem

= Even with small
number of classes,
the shapes of the
boundary regions is
complex
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