

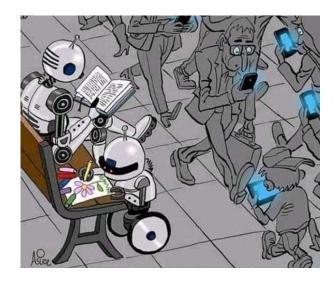
Artificial Intelligence III: Artificial Intelligence and Deep Learning

Fundamental Principles

Dr. Patrick Chan
patrickchan@ieee.org
South China University of Technology, China

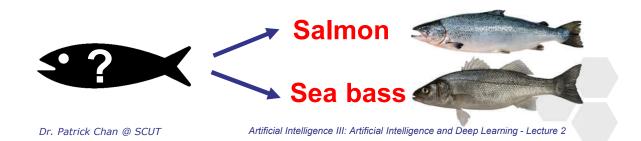
Machine Learning

- Design an algorithm is not easy
- What if a machine can learn...



Fish Packing Plant
 wants to automate the
 process of sorting
 incoming fishes (Salmon
 / Sea Bass) on a belt
 according to species

How to design a system?

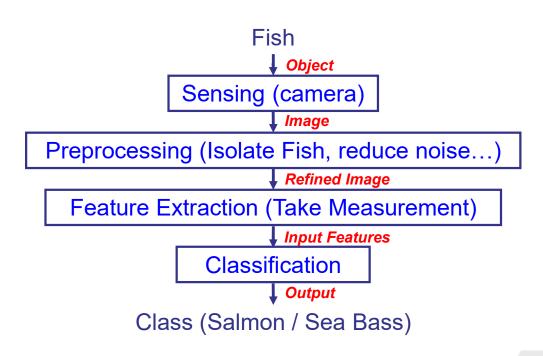


Machine Learning: Fish Packing Plant Example Salmon / Sea Bass

- Rule-base system is commonly used
 - Example: For a Fish
 - If Length > 10 and Fin Area > 10, Sea Bass
 - If Weight > 4.3 or Length < 4, Salmon</p>
 - Factor of a rule:
 - Characteristic (Feature) Length, Weight, Color Shape of fin / head,
 - Quantification (Threshold)
 Fin area > 10, Sea Bass
 Fin area < 10, Salmon</p>

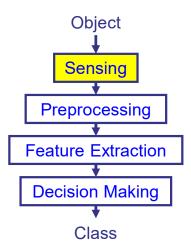
- Difficult to determine a rule manually, even for an expert
 - How to define the rules (Feature and Threshold)?
 - E.g. If Weight > 4.3 or Length < 4, Salmon
- Machine Learning can help
 - You do not know how but implement an algorithm which can learn from data

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2



Sensing

- Digitize the object to the format which can be handled by machines
- Example
 - Type of Device Camera? Depth Camera? Infra-red? Ultrasound? Movement Sense? Combination?
 - Setting of Device Number? Angle? Overlap shooting range?
 - Background Lighting? Background simplicity?



7

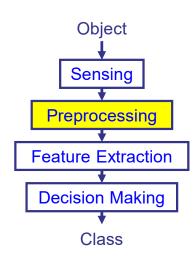
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Machine Learning: Fish Packing Plant Example **Process**

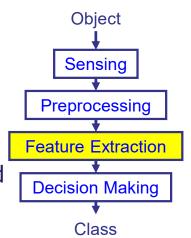
Preprocessing

- Refine the data
- Example
 - Lighting conditions
 - Position of fish
 - Angle of fish
 - Noise
 - Blurriness
 - Segmentation (remove object from background)



Feature Extraction

- Decide which information is able to distinguish classes
- Example
 - Length, width, weight, number and shape of fins, tail shape, etc.
- Rely on technical background and common sense
 - Experts may help



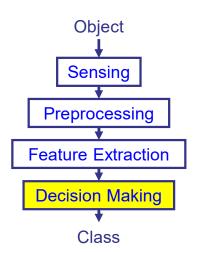
Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Machine Learning: Fish Packing Plant Example **Process**

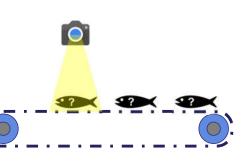
Decision Making

- Decision Type:
 - Class (Classification)
 - Value (Regression, Value Prediction)
 - Rank (Ranking)
 - Action (Reinforcement Learning)
 - Region (Segmentation)
- Many machine learning techniques are available

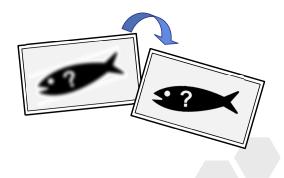


Sensing

Assume a fish is put on a belt and a single camera is installed to take a photo on each fish



Preprocessing Remove the blueness and noise



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Machine Learning: Fish Packing Plant Example **Feature Extraction**

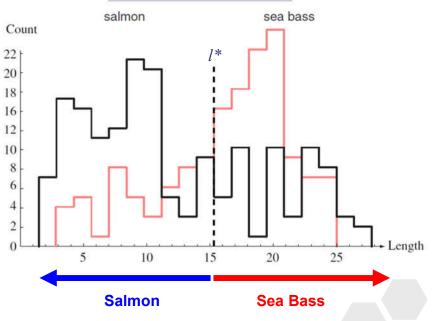
- The expert (e.g. Fisherman) suggests salmon is usually shorter than sea bass
- Length is chosen (as a feature) as a decision criterion

Machine Learning: Fish Packing Plant Example

Feature Extraction

- 15 is selected as the threshold
- Although sea bass is longer in general, there are many exceptions
- The experts "may be" wrong!
- How about other features?
- E.g. lightness





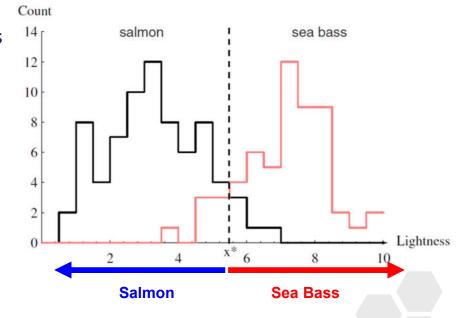
13 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Machine Learning: Fish Packing Plant Example Feature Extraction

- Try another feature "Lightness"
- 5.5 is selected as the threshold
- "lightness" is better than "length"

Histograms for the lightness feature for sea bass and salmon



 Besides accuracy, "costs of different errors" can be considered

Salmon \$ > Seabass \$

Case 1: Company's view

Salmon is more expensive than sea bass.
 Selling Salmon with the price of sea bass will be a loss

If salmon is classified as sea bass: HIGH cost
 If sea bass is classified as salmon: LOW cost

Case 2: Customer's view

- Customers who buy salmon will be upset if they get sea bass;
 Customers who buy sea bass will not be upset if they get the more expensive salmon
 - If salmon is classified as sea bass: LOW cost
 - If sea bass is classified as salmon : HIGH cost

15 Dr. Patrick Chan @ SCUT

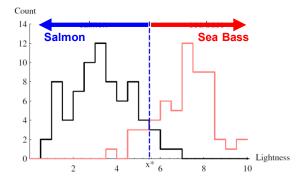
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

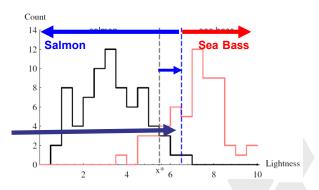
Machine Learning: Fish Packing Plant Example Cost Consideration

Case 1: Company's view

- HIGH cost
 Salmon is classified as sea bass
- LOW cost
 Sea bass is classified as salmon
- Avoid classifying salmon wrongly by scarifying sea bass

More seabass Mistaken as salmon



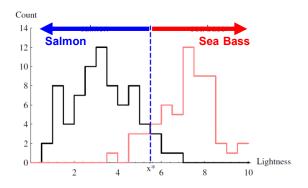


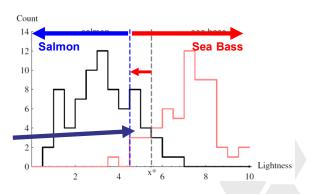
Machine Learning: Fish Packing Plant Example

Cost Consideration

- LOW cost
 Salmon is classified as sea bass
- HIGH cost
 Sea bass is classified as salmon
- Avoid classifying sea bass wrongly by scarifying salmon

More salmon Mistaken as seabass



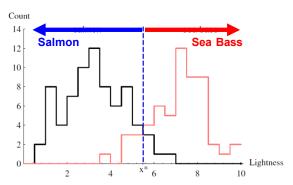


7 Dr. Patrick Chan @ SCUT

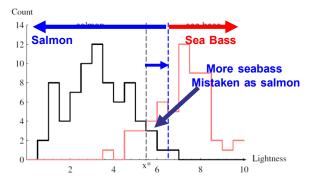
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

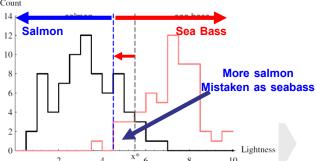
Machine Learning: Fish Packing Plant Example Cost Consideration

1ple



Case 1 Case 2



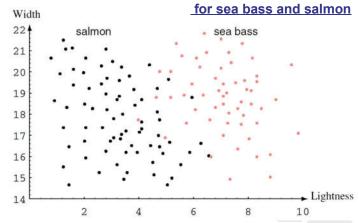


- Only ONE feature may not be good enough
- More features should be considered
- Two features: Lightness (x_1) , Width (x_2)

A fish is represented by

a point in a 2D feature space:

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$



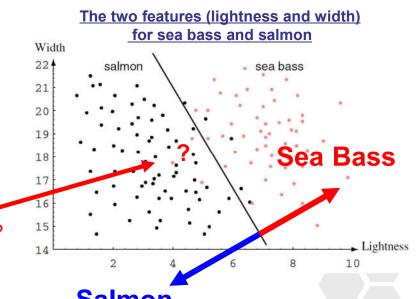
The two features (lightness and width)

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

19 Dr. Patrick Chan @ SCUT

Machine Learning: Fish Packing Plant Example Classifier

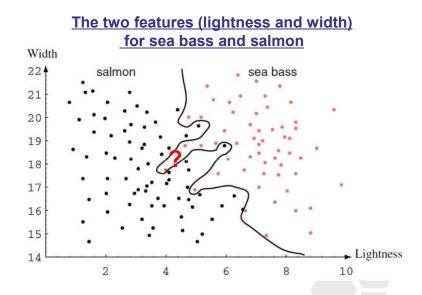
- A decision boundary can be drawn to divide the feature space into two regions
- Is it a linear classifier too simple?



Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

What is this unseen fish?

- Will other classifiers be better?
 - More complex classifier
- Perfectly classify training samples
- Ultimate objective is to classify unseen samples correctly
- Can it be generalized to unseen sample?



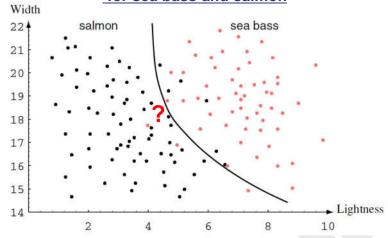
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

21 Dr. Patrick Chan @ SCUT

Machine Learning: Fish Packing Plant Example Classifier

- Tradeoff between accuracy of training samples and complexity
- Look more reasonable
 - Not too complex
 - Good in classifying the training samples

The two features (lightness and width) for sea bass and salmon



- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
- Task T: Separate Salmon and Sea Bass
- Performance P: Accuracy on identification
- Experience E: Caught Salmon and Sea Bass

23

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

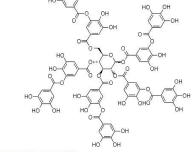
Key Concepts

- Data Type
- Dataset (Collected Samples)
- Data Cleaning
- Model Requirement
- Evaluation
- Comparison
- Terminology

Key Concepts: Data Type

- Record-based data
 - Data matrix
 - Document data
 - Transaction data
- Graph-based data
 - World wide web
 - Molecular structure
 - Map data
- Ordered data
 - Spatial data
 - Temporal data
 - Sequential data
 - Genetic/Genomic sequence data

Sale ID	Time	Customer	Product ID Q	uantity
S00001	12/1/2012 9:00:00 AM	C0001	P025	1
S00002	12/1/2012 9:05:58 AM	C0025	P025	3
S00003	12/1/2012 9:11:33 AM	C0010	P001	2
S00004	12/1/2012 9:17:16 AM	C0017	P023	4
S00005	12/1/2012 9:23:04 AM	C0018	P016	5
S00006	12/1/2012 9:28:43 AM	C0011	P018	4
20007	12/1/2019 9-24-07 AM	Come	2006	-



25

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Key Concepts: Data Type

Record-based Data

- Common illustration of Data
 - Excel
 - Traditional Database
- Properties / features of a specific object
- For example, human
 - Eye size (mm unit)
 - Eye color
 - Skin color
 - Height (cm unit)
 - Wear glasses or not
 - Gender
 - Age
 - Length of finger (cm unit)
 - ...

Attributes, Characteristics, Features, Variables, ..., etc

	-			
	Tid	Refund	Marital Status	Taxable Income
	1	Yes	Single	125K
	2	No	Married	100K
	3	No	Single	70K
	4	Yes	Married	120K
	5	No	Divorced	95K
1	6	No	Married	60K
	7	Yes	Divorced	220K
	8	No	Single	85K
	9	No	Married	75K
	10	No	Single	90K

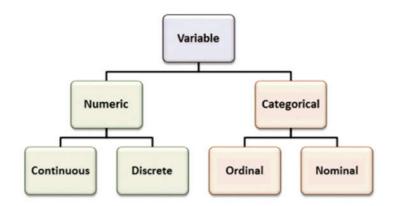
Object,

Instance.

Individual,

Sample,

Subject



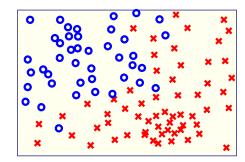
- Continuous: real number, e.g. height = 167.23cm
- Discrete: integer, e.g. age = 1
- Nominal: a natural order or rank, e.g. High Low
- Ordinal: no order, e.g. Red Blue Yellow

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

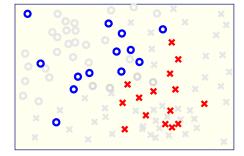
Key Concepts

Dataset (Collected Samples)

- Aim of machine learning Perform well on all samples
- What information we have? Collected samples



Sampling

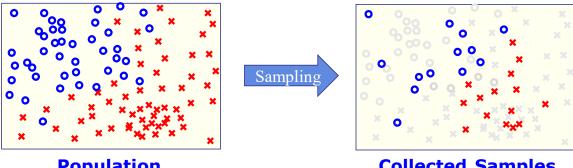


Population

- All possible samples (usually infinite)
- Usually represented by a distribution

Collected Samples

- Limited number
- Subset of population



Population

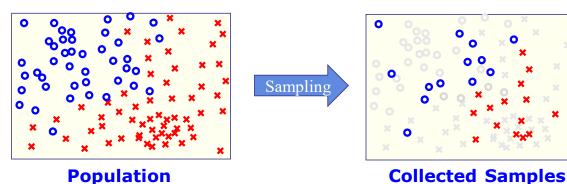
Collected Samples

- Any samples can be chosen?
 - Distribution of collected samples should be similar to the population's one
 - Independent and identically distributed (iid) is assumed
 - Randomly choose without any bias

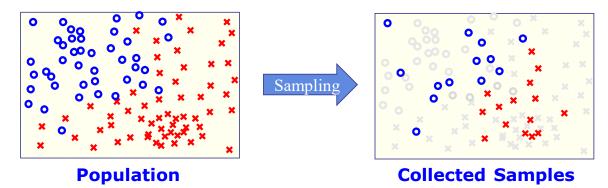
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Key Concepts

Dataset (Collected Samples)



- More samples are better?
 - Usually yes when the sampling method is fair



- How many samples are enough?
 - Depend on the complexity of the problem
 - Rely on the performance of the trained model
 - General answer: more is better

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Key Concepts Data Cleaning

- Once you have finished collecting samples, can we start the learning immediately?
- Garbage in Garbage out

• What data scientists spend the most time doing?

60%

	Building	training	sets	3%
--	----------	----------	------	----

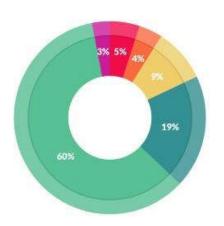
Cleaning and organizing data

Collecting data set 19%

Mining data9%

Refining algorithms 4%

Other 5%



33

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Key Concepts: Data Cleaning Bad Quality Data

- Identifying damaged or inaccurate, incomplete, incorrect, or irrelevant parts within data
- Replacing, modifying, or deleting the dirty or rough data

Quality

- Noise
- Outliers
- Missing values
- Duplicate data

- Noise can refer to any random fluctuation in a signal
- Attribute noise

Errors in features

- Value errors
 Incorrect or erroneous values
- Missing valuesData entries that are absent
- Irrelevant values
 Does not contribute

Feature 1	Feature 2	Class
0.25	Red	+
0.25	Red	-
0.99	Yellow	-
1.02	Yellow	+
2.05	Yellow	-

Class noise

Variability or errors in the labels

- Contradictory examples
 Identical features but different labels.
- Mislabeled examples label is incorrect

35 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Key Concepts: Data Cleaning

Noise

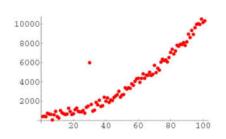
- Median/mean noise filter
 - Apply a sliding window to an image
 - Sort the pixel values within the window
 - Calculate the median/average value from the sorted values as the new value for the current pixel
 - Repeat until all the pixels are processed

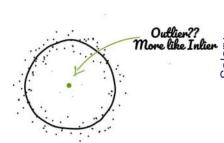
			1	3	1
	2		2	2	3
			0	1	0
1	2	1	0	2	2
2	5	3	1	2	5
1	1	4	2	3	0

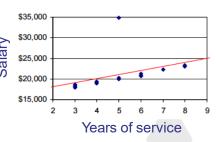
	_	Out	1		
1	4	0	1	3	1
2	1	1	1	1	3
1	1	1	1	2	0
1	1	1	1	1	2
2	2	2	2	2	5
1	1	4	2	3	0

Sorted:0,0,1,1,1,2,2,4,4

- An outlier is a data point that differs significantly from other observations
- Identification:
 - Subjective: visualization
 - Objective: statistical way, i.e. Cook's D value







37

Dr. Patrick Chan @ SCUT

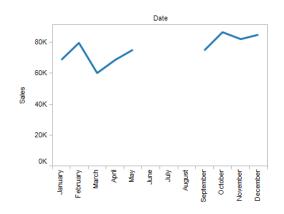
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

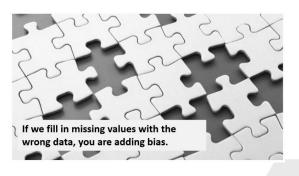
Key Concepts: Data Cleaning

Outlier

- Deletion
 - If the outlier is caused by human error (i.e. typo, unrealistic response)
- Replacement
 - Replace observations with other values (mean, etc.)
- Handle Differently
 - Analyze outliners separately from the rest

- No data value is stored
- Missing data are a common occurrence and can have a significant effect on the conclusions





39

Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Key Concepts: Data Cleaning Missing Value

Deletion

- Delete the whole observation with missing values
- Partial deletion (delete the part of missing values in downstream modeling)
- Replace with other values
 - mean, mode, median
 - Possibility that the model will be distorted
- Insert predicted values
 - Imputation by using statistical or machine learning methods

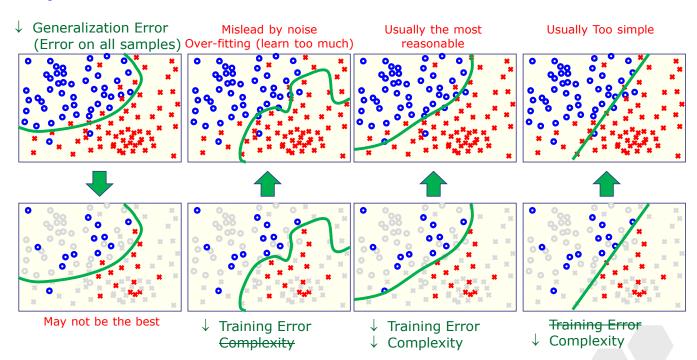
- Objects that are duplicates, or almost duplicates of one another
- Common issue when collecting data from heterogeneous sources
 - E.g. If a person has multiple email addresses
- Deletion
 - Which record should be deleted?
 - Time
 - Source Trustworthy
 - Majority

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

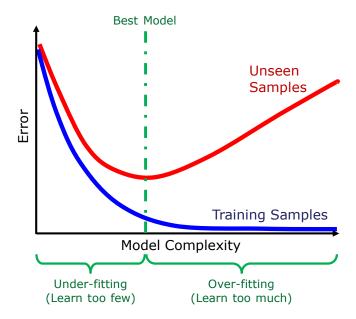
Key Concepts

Model Requirements

Population



Collected Samples



- Be noted that this is just a common situation in machine learning, where each application varies
 - E.g. Having more training samples reduces the variance between two lines.

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

- How to evaluate our trained model?
 - Evaluate by training samples?
 No, already see in training
 - What information we have? Collected samples
 - Some collected samples should not be used in training
 - Separate into two non-overlapping sets:
 - Training set : For training
 - Test set: For evaluation

- For a classification problem, given
 - Dataset D
 - Classifiers A and B
- How can we measure which classifier, A or B, is better for D?

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 48

Key Concepts

Comparing Classifiers

Method

- Randomly separate D into training and test sets
- Use Training Set to train A and B
- Use Test Set to measure the performances of the trained A and B
- Select the better performing classifier
- Is it ok?
 - The winner may just be lucky in performing better for that particular test set.
 - No guarantee for different test sets

- The bias of test set should be reduced
- Two re-sampling techniques
 - Independent Run
 - Cross-Validation

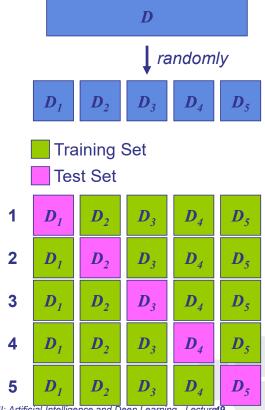
Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 47

Key Concepts: Comparing Classifiers Independent Run

- Statistical method
- Also called Bootstrap and Jackknifing
- Repeat the experiment "n" times independently
 - Repeat n times
 - i is the number of running time
 - Randomly separate D into Training Set, and Test Set,
 - Use Training Set, to train A_i and B_i
 - Use Test Set_i to evaluate the trained A_i and B_i
 - Select the classifier with higher average accuracy

Key Concepts: Comparing Classifiers Cross-Validation

- M-fold Cross-Validation
- Dataset D is randomly divided into m disjoint sets D_i of equal size n/m, where n is the number of samples in dataset
- Repeat m times
 - Trained by D_i
 - Evaluated by all D_i except D_i
- Select the classifier with higher average accuracy



Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture

Key Concepts Terminology

- Instance / Sample
 Observations from an application
- Feature / Attribute
 Property or characteristic of a sample
- Dimensionality
 The number of features

Training Set

A set of samples used to train a model

Test Set

A set of samples used to evaluate the performance of the trained model. Usually separate from the training set.

Unseen Samples

Any samples not in training set

1 Dr. Patrick Chan @ SCUT

Artificial Intelligence III: Artificial Intelligence and Deep Learning - Lecture 2

Key Concepts Terminology

Training Error

Error on training samples

Test Error

Error on test samples

Generalization Error

The ability of a model to perform well on unseen samples

In some discussion,

Test Error = Generalization Error

Objective Function / Error Function

A mathematical function used to quantify error made by a model, closely related to the objective

Can be more than error on samples, may include any other concepts

E.g. complexity of a model

